// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "default.h" #include "geometry.h" #include "buffer.h" namespace embree { /*! represents an array of line segments */ struct LineSegments : public Geometry { /*! type of this geometry */ static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE2; public: /*! line segments construction */ LineSegments (Device* device, Geometry::GType gtype); public: void setMask (unsigned mask); void setNumTimeSteps (unsigned int numTimeSteps); void setVertexAttributeCount (unsigned int N); void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref& buffer, size_t offset, size_t stride, unsigned int num); void* getBuffer(RTCBufferType type, unsigned int slot); void updateBuffer(RTCBufferType type, unsigned int slot); void commit(); bool verify (); void interpolate(const RTCInterpolateArguments* const args); void setTessellationRate(float N); void setMaxRadiusScale(float s); void addElementsToCount (GeometryCounts & counts) const; template void interpolate_impl(const RTCInterpolateArguments* const args) { unsigned int primID = args->primID; float u = args->u; RTCBufferType bufferType = args->bufferType; unsigned int bufferSlot = args->bufferSlot; float* P = args->P; float* dPdu = args->dPdu; float* ddPdudu = args->ddPdudu; unsigned int valueCount = args->valueCount; /* calculate base pointer and stride */ assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) || (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size())); const char* src = nullptr; size_t stride = 0; if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) { src = vertexAttribs[bufferSlot].getPtr(); stride = vertexAttribs[bufferSlot].getStride(); } else { src = vertices[bufferSlot].getPtr(); stride = vertices[bufferSlot].getStride(); } for (unsigned int i=0; i valid = vint((int)i)+vint(step) < vint(int(valueCount)); const vfloat p0 = mem>::loadu(valid,(float*)&src[(segment+0)*stride+ofs]); const vfloat p1 = mem>::loadu(valid,(float*)&src[(segment+1)*stride+ofs]); if (P ) mem>::storeu(valid,P+i,lerp(p0,p1,u)); if (dPdu ) mem>::storeu(valid,dPdu+i,p1-p0); if (ddPdudu) mem>::storeu(valid,dPdu+i,vfloat(zero)); } } public: /*! returns the number of vertices */ __forceinline size_t numVertices() const { return vertices[0].size(); } /*! returns the i'th segment */ __forceinline const unsigned int& segment(size_t i) const { return segments[i]; } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) /*! returns the i'th segment */ template __forceinline const vuint vsegment(const vuint& i) const { return segments[i.v]; } #endif /*! returns the segment to the left of the i'th segment */ __forceinline bool segmentLeftExists(size_t i) const { assert (flags); return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_LEFT) != 0; } /*! returns the segment to the right of the i'th segment */ __forceinline bool segmentRightExists(size_t i) const { assert (flags); return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_RIGHT) != 0; } /*! returns i'th vertex of the first time step */ __forceinline Vec3ff vertex(size_t i) const { return vertices0[i]; } /*! returns i'th vertex of the first time step */ __forceinline const char* vertexPtr(size_t i) const { return vertices0.getPtr(i); } /*! returns i'th normal of the first time step */ __forceinline Vec3fa normal(size_t i) const { return normals0[i]; } /*! returns i'th radius of the first time step */ __forceinline float radius(size_t i) const { return vertices0[i].w; } /*! returns i'th vertex of itime'th timestep */ __forceinline Vec3ff vertex(size_t i, size_t itime) const { return vertices[itime][i]; } /*! returns i'th vertex of itime'th timestep */ __forceinline const char* vertexPtr(size_t i, size_t itime) const { return vertices[itime].getPtr(i); } /*! returns i'th normal of itime'th timestep */ __forceinline Vec3fa normal(size_t i, size_t itime) const { return normals[itime][i]; } /*! returns i'th radius of itime'th timestep */ __forceinline float radius(size_t i, size_t itime) const { return vertices[itime][i].w; } /*! gathers the curve starting with i'th vertex */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid) const { p0 = vertex(vid+0); p1 = vertex(vid+1); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, const vuint& vid) const { p0 = vertex(vid.v+0); p1 = vertex(vid.v+1); } #endif /*! gathers the curve starting with i'th vertex of itime'th timestep */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid, size_t itime) const { p0 = vertex(vid+0,itime); p1 = vertex(vid+1,itime); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, const vuint& vid, const vint& itime) const { p0 = vertex(vid.v+0,itime.v); p1 = vertex(vid.v+1,itime.v); } #endif /*! loads curve vertices for specified time */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3ff a0,a1; gather(a0,a1,vid,itime); Vec3ff b0,b1; gather(b0,b1,vid,itime+1); p0 = madd(Vec3ff(t0),a0,t1*b0); p1 = madd(Vec3ff(t0),a1,t1*b1); } /*! loads curve vertices for specified time for mblur and non-mblur case */ __forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, unsigned int vid, float time) const { if (hasMotionBlur()) gather(p0,p1,vid,time); else gather(p0,p1,vid); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, const vuint& vid, const vfloat& time) const { vfloat ftime; const vint itime = timeSegment(time, ftime); const vfloat t0 = 1.0f - ftime; const vfloat t1 = ftime; Vec4vf a0,a1; vgather(a0,a1,vid,itime); Vec4vf b0,b1; vgather(b0,b1,vid,itime+1); p0 = madd(Vec4vf(t0),a0,t1*b0); p1 = madd(Vec4vf(t0),a1,t1*b1); } #endif /*! gathers the cone curve starting with i'th vertex */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, unsigned int vid) const { gather(p0,p1,vid); cL = !segmentLeftExists (primID); cR = !segmentRightExists(primID); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, vbool& cL, vbool& cR, const vuint& primID, const vuint& vid) const { vgather(p0,p1,vid); cL = !segmentLeftExists (primID.v); cR = !segmentRightExists(primID.v); } #endif /*! gathers the cone curve starting with i'th vertex of itime'th timestep */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, size_t itime) const { gather(p0,p1,vid,itime); cL = !segmentLeftExists (primID); cR = !segmentRightExists(primID); } /*! loads cone curve vertices for specified time */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, float time) const { gather(p0,p1,vid,time); cL = !segmentLeftExists (primID); cR = !segmentRightExists(primID); } /*! loads cone curve vertices for specified time for mblur and non-mblur geometry */ __forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, float time) const { if (hasMotionBlur()) gather(p0,p1,cL,cR,primID,vid,time); else gather(p0,p1,cL,cR,primID,vid); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, vbool& cL, vbool& cR, const vuint& primID, const vuint& vid, const vfloat& time) const { vgather(p0,p1,vid,time); cL = !segmentLeftExists (primID.v); cR = !segmentRightExists(primID.v); } #endif /*! gathers the curve starting with i'th vertex */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid) const { p0 = vertex(vid+0); p1 = vertex(vid+1); p2 = segmentLeftExists (primID) ? vertex(vid-1) : Vec3ff(inf); p3 = segmentRightExists(primID) ? vertex(vid+2) : Vec3ff(inf); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, Vec4vf& p2, Vec4vf& p3, const vuint& primID, const vuint& vid) const { p0 = vertex(vid.v+0); p1 = vertex(vid.v+1); vbool left = segmentLeftExists (primID.v); vbool right = segmentRightExists(primID.v); vuint i2 = select(left, vid-1,vid+0); vuint i3 = select(right,vid+2,vid+1); p2 = vertex(i2.v); p3 = vertex(i3.v); p2 = select(left, p2,Vec4vf(inf)); p3 = select(right,p3,Vec4vf(inf)); } #endif /*! gathers the curve starting with i'th vertex of itime'th timestep */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, size_t itime) const { p0 = vertex(vid+0,itime); p1 = vertex(vid+1,itime); p2 = segmentLeftExists (primID) ? vertex(vid-1,itime) : Vec3ff(inf); p3 = segmentRightExists(primID) ? vertex(vid+2,itime) : Vec3ff(inf); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, Vec4vf& p2, Vec4vf& p3, const vuint& primID, const vuint& vid, const vint& itime) const { p0 = vertex(vid.v+0, itime.v); p1 = vertex(vid.v+1, itime.v); vbool left = segmentLeftExists (primID.v); vbool right = segmentRightExists(primID.v); vuint i2 = select(left, vid-1,vid+0); vuint i3 = select(right,vid+2,vid+1); p2 = vertex(i2.v, itime.v); p3 = vertex(i3.v, itime.v); p2 = select(left, p2,Vec4vf(inf)); p3 = select(right,p3,Vec4vf(inf)); } #endif /*! loads curve vertices for specified time */ __forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, float time) const { float ftime; const size_t itime = timeSegment(time, ftime); const float t0 = 1.0f - ftime; const float t1 = ftime; Vec3ff a0,a1,a2,a3; gather(a0,a1,a2,a3,primID,vid,itime); Vec3ff b0,b1,b2,b3; gather(b0,b1,b2,b3,primID,vid,itime+1); p0 = madd(Vec3ff(t0),a0,t1*b0); p1 = madd(Vec3ff(t0),a1,t1*b1); p2 = madd(Vec3ff(t0),a2,t1*b2); p3 = madd(Vec3ff(t0),a3,t1*b3); } /*! loads curve vertices for specified time for mblur and non-mblur geometry */ __forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, float time) const { if (hasMotionBlur()) gather(p0,p1,p2,p3,primID,vid,time); else gather(p0,p1,p2,p3,primID,vid); } #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) template __forceinline void vgather(Vec4vf& p0, Vec4vf& p1, Vec4vf& p2, Vec4vf& p3, const vuint& primID, const vuint& vid, const vfloat& time) const { vfloat ftime; const vint itime = timeSegment(time, ftime); const vfloat t0 = 1.0f - ftime; const vfloat t1 = ftime; Vec4vf a0,a1,a2,a3; vgather(a0,a1,a2,a3,primID,vid,itime); Vec4vf b0,b1,b2,b3; vgather(b0,b1,b2,b3,primID,vid,itime+1); p0 = madd(Vec4vf(t0),a0,t1*b0); p1 = madd(Vec4vf(t0),a1,t1*b1); p2 = madd(Vec4vf(t0),a2,t1*b2); p3 = madd(Vec4vf(t0),a3,t1*b3); } #endif /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const Vec3ff& v0, const Vec3ff& v1) const { const BBox3ff b = merge(BBox3ff(v0),BBox3ff(v1)); return enlarge((BBox3fa)b,maxRadiusScale*Vec3fa(max(v0.w,v1.w))); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(size_t i) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0); const Vec3ff v1 = vertex(index+1); return bounds(v0,v1); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(size_t i, size_t itime) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); return bounds(v0,v1); } /*! calculates bounding box of i'th line segment */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0); const Vec3ff v1 = vertex(index+1); const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w); const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w); return bounds(w0,w1); } /*! calculates bounding box of i'th line segment for the itime'th time step */ __forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const { const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w); const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w); return bounds(w0,w1); } /*! calculates bounding box of i'th segment */ __forceinline BBox3fa bounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { const float r_scale = r_scale0*scale; const unsigned int index = segment(i); const Vec3ff v0 = vertex(index+0,itime); const Vec3ff v1 = vertex(index+1,itime); const Vec3ff w0(xfmVector(space,(v0-ofs)*Vec3fa(scale)),maxRadiusScale*v0.w*r_scale); const Vec3ff w1(xfmVector(space,(v1-ofs)*Vec3fa(scale)),maxRadiusScale*v1.w*r_scale); return bounds(w0,w1); } /*! check if the i'th primitive is valid at the itime'th timestep */ __forceinline bool valid(size_t i, size_t itime) const { return valid(i, make_range(itime, itime)); } /*! check if the i'th primitive is valid between the specified time range */ __forceinline bool valid(size_t i, const range& itime_range) const { const unsigned int index = segment(i); if (index+1 >= numVertices()) return false; #if !defined(__SYCL_DEVICE_ONLY__) for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) { const Vec3ff v0 = vertex(index+0,itime); if (unlikely(!isvalid4(v0))) return false; const Vec3ff v1 = vertex(index+1,itime); if (unlikely(!isvalid4(v1))) return false; if (min(v0.w,v1.w) < 0.0f) return false; } #endif return true; } /*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */ __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const { return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1)); } /*! calculates the build bounds of the i'th primitive, if it's valid */ __forceinline bool buildBounds(size_t i, BBox3fa* bbox) const { if (!valid(i,0)) return false; *bbox = bounds(i); return true; } /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */ __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const { if (!valid(i,itime+0) || !valid(i,itime+1)) return false; bbox = bounds(i,itime); // use bounds of first time step in builder return true; } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline LBBox3fa linearBounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const { return LBBox3fa([&] (size_t itime) { return bounds(ofs, scale, r_scale0, space, primID, itime); }, dt, this->time_range, fnumTimeSegments); } /*! calculates the linear bounds of the i'th primitive for the specified time range */ __forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const { if (!valid(i, timeSegmentRange(time_range))) return false; bbox = linearBounds(i, time_range); return true; } /*! get fast access to first vertex buffer */ __forceinline float * getCompactVertexArray () const { return (float*) vertices0.getPtr(); } public: BufferView segments; //!< array of line segment indices BufferView vertices0; //!< fast access to first vertex buffer BufferView normals0; //!< fast access to first normal buffer BufferView flags; //!< start, end flag per segment Device::vector> vertices = device; //!< vertex array for each timestep Device::vector> normals = device; //!< normal array for each timestep Device::vector> vertexAttribs = device; //!< user buffers int tessellationRate; //!< tessellation rate for bezier curve float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii }; namespace isa { struct LineSegmentsISA : public LineSegments { LineSegmentsISA (Device* device, Geometry::GType gtype) : LineSegments(device,gtype) {} LinearSpace3fa computeAlignedSpace(const size_t primID) const { const Vec3fa dir = normalize(computeDirection(primID)); if (is_finite(dir)) return frame(dir); else return LinearSpace3fa(one); } LinearSpace3fa computeAlignedSpaceMB(const size_t primID, const BBox1f time_range) const { Vec3fa axisz(0,0,1); Vec3fa axisy(0,1,0); const range tbounds = this->timeSegmentRange(time_range); if (tbounds.size() == 0) return frame(axisz); const size_t itime = (tbounds.begin()+tbounds.end())/2; const Vec3fa dir = normalize(computeDirection(primID,itime)); if (is_finite(dir)) return frame(dir); else return LinearSpace3fa(one); } Vec3fa computeDirection(unsigned int primID) const { const unsigned vtxID = segment(primID); const Vec3fa v0 = vertex(vtxID+0); const Vec3fa v1 = vertex(vtxID+1); return v1-v0; } Vec3fa computeDirection(unsigned int primID, size_t time) const { const unsigned vtxID = segment(primID); const Vec3fa v0 = vertex(vtxID+0,time); const Vec3fa v1 = vertex(vtxID+1,time); return v1-v0; } PrimInfo createPrimRefArray(PrimRef* prims, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& prims, size_t itime, const range& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); for (size_t j=r.begin(); j& r, size_t k, unsigned int geomID) const { PrimInfo pinfo(empty); const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range); if (t0t1.empty()) return pinfo; for (size_t j = r.begin(); j < r.end(); j++) { LBBox3fa lbounds = empty; if (!linearBounds(j, t0t1, lbounds)) continue; const PrimRef prim(lbounds.bounds(), geomID, unsigned(j)); pinfo.add_center2(prim); prims[k++] = prim; } return pinfo; } PrimInfoMB createPrimRefMBArray(mvector& prims, const BBox1f& t0t1, const range& r, size_t k, unsigned int geomID) const { PrimInfoMB pinfo(empty); for (size_t j=r.begin(); jnumTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j)); pinfo.add_primref(prim); prims[k++] = prim; } return pinfo; } BBox3fa vbounds(size_t i) const { return bounds(i); } BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const { return bounds(space,i); } BBox3fa vbounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const { return bounds(ofs,scale,r_scale0,space,i,itime); } LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const { return linearBounds(primID,time_range); } LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const { return linearBounds(space,primID,time_range); } LBBox3fa vlinearBounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const { return linearBounds(ofs,scale,r_scale0,space,primID,time_range); } }; } DECLARE_ISA_FUNCTION(LineSegments*, createLineSegments, Device* COMMA Geometry::GType); }