/*************************************************************************/ /* grid_map.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "grid_map.h" #include "io/marshalls.h" #include "message_queue.h" #include "os/os.h" #include "scene/3d/baked_light_instance.h" #include "scene/3d/light.h" #include "scene/resources/mesh_library.h" #include "scene/resources/surface_tool.h" #include "scene/scene_string_names.h" #include "servers/visual_server.h" bool GridMap::_set(const StringName &p_name, const Variant &p_value) { String name = p_name; if (name == "theme/theme") { set_theme(p_value); } else if (name == "cell/size") { set_cell_size(p_value); } else if (name == "cell/octant_size") { set_octant_size(p_value); } else if (name == "cell/center_x") { set_center_x(p_value); } else if (name == "cell/center_y") { set_center_y(p_value); } else if (name == "cell/center_z") { set_center_z(p_value); } else if (name == "cell/scale") { set_cell_scale(p_value); } else if (name == "lighting/bake") { set_use_baked_light(p_value); } else if (name == "theme/bake") { set_bake(p_value); /* } else if (name=="cells") { DVector cells = p_value; int amount=cells.size(); DVector::Read r = cells.read(); ERR_FAIL_COND_V(amount&1,false); // not even cell_map.clear(); for(int i=0;i cells = d["cells"]; int amount = cells.size(); DVector::Read r = cells.read(); ERR_FAIL_COND_V(amount % 3, false); // not even cell_map.clear(); for (int i = 0; i < amount / 3; i++) { IndexKey ik; ik.key = decode_uint64((const uint8_t *)&r[i * 3]); Cell cell; cell.cell = decode_uint32((const uint8_t *)&r[i * 3 + 2]); cell_map[ik] = cell; } } baked_lock = baked.size() != 0; _recreate_octant_data(); baked_lock = false; if (!baked.empty()) { List kl; baked.get_key_list(&kl); for (List::Element *E = kl.front(); E; E = E->next()) { Plane ikv = E->get(); Ref b = baked[ikv]; ERR_CONTINUE(!b.is_valid()); OctantKey ok; ok.x = ikv.normal.x; ok.y = ikv.normal.y; ok.z = ikv.normal.z; ok.area = ikv.d; ERR_CONTINUE(!octant_map.has(ok)); Octant &g = *octant_map[ok]; g.baked = b; g.bake_instance = VS::get_singleton()->instance_create(); VS::get_singleton()->instance_set_base(g.bake_instance, g.baked->get_rid()); VS::get_singleton()->instance_geometry_set_baked_light(g.bake_instance, baked_light_instance ? baked_light_instance->get_baked_light_instance() : RID()); } } } else if (name.begins_with("areas/")) { int which = name.get_slicec('/', 1).to_int(); String what = name.get_slicec('/', 2); if (what == "bounds") { ERR_FAIL_COND_V(area_map.has(which), false); create_area(which, p_value); return true; } ERR_FAIL_COND_V(!area_map.has(which), false); if (what == "name") area_set_name(which, p_value); else if (what == "disable_distance") area_set_portal_disable_distance(which, p_value); else if (what == "exterior_portal") area_set_portal_disable_color(which, p_value); else return false; } else return false; return true; } bool GridMap::_get(const StringName &p_name, Variant &r_ret) const { String name = p_name; if (name == "theme/theme") { r_ret = get_theme(); } else if (name == "cell/size") { r_ret = get_cell_size(); } else if (name == "cell/octant_size") { r_ret = get_octant_size(); } else if (name == "cell/center_x") { r_ret = get_center_x(); } else if (name == "cell/center_y") { r_ret = get_center_y(); } else if (name == "cell/center_z") { r_ret = get_center_z(); } else if (name == "cell/scale") { r_ret = cell_scale; } else if (name == "lighting/bake") { r_ret = is_using_baked_light(); } else if (name == "theme/bake") { r_ret = bake; } else if (name == "data") { Dictionary d; DVector cells; cells.resize(cell_map.size() * 3); { DVector::Write w = cells.write(); int i = 0; for (Map::Element *E = cell_map.front(); E; E = E->next(), i++) { encode_uint64(E->key().key, (uint8_t *)&w[i * 3]); encode_uint32(E->get().cell, (uint8_t *)&w[i * 3 + 2]); } } d["cells"] = cells; Dictionary baked; for (Map::Element *E = octant_map.front(); E; E = E->next()) { Octant &g = *E->get(); if (g.baked.is_valid()) { baked[Plane(E->key().x, E->key().y, E->key().z, E->key().area)] = g.baked; } } if (baked.size()) { d["baked"] = baked; } r_ret = d; } else if (name.begins_with("areas/")) { int which = name.get_slicec('/', 1).to_int(); String what = name.get_slicec('/', 2); if (what == "bounds") r_ret = area_get_bounds(which); else if (what == "name") r_ret = area_get_name(which); else if (what == "disable_distance") r_ret = area_get_portal_disable_distance(which); else if (what == "exterior_portal") r_ret = area_is_exterior_portal(which); else return false; } else return false; return true; } void GridMap::_get_property_list(List *p_list) const { p_list->push_back(PropertyInfo(Variant::OBJECT, "theme/theme", PROPERTY_HINT_RESOURCE_TYPE, "MeshLibrary")); p_list->push_back(PropertyInfo(Variant::BOOL, "theme/bake")); p_list->push_back(PropertyInfo(Variant::BOOL, "lighting/bake")); p_list->push_back(PropertyInfo(Variant::REAL, "cell/size", PROPERTY_HINT_RANGE, "0.01,16384,0.01")); p_list->push_back(PropertyInfo(Variant::INT, "cell/octant_size", PROPERTY_HINT_RANGE, "1,1024,1")); p_list->push_back(PropertyInfo(Variant::BOOL, "cell/center_x")); p_list->push_back(PropertyInfo(Variant::BOOL, "cell/center_y")); p_list->push_back(PropertyInfo(Variant::BOOL, "cell/center_z")); p_list->push_back(PropertyInfo(Variant::REAL, "cell/scale")); p_list->push_back(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); for (const Map::Element *E = area_map.front(); E; E = E->next()) { String base = "areas/" + itos(E->key()) + "/"; p_list->push_back(PropertyInfo(Variant::_AABB, base + "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); p_list->push_back(PropertyInfo(Variant::STRING, base + "name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); p_list->push_back(PropertyInfo(Variant::REAL, base + "disable_distance", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); p_list->push_back(PropertyInfo(Variant::COLOR, base + "disable_color", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); p_list->push_back(PropertyInfo(Variant::BOOL, base + "exterior_portal", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE)); } } void GridMap::set_theme(const Ref &p_theme) { if (!theme.is_null()) theme->unregister_owner(this); theme = p_theme; if (!theme.is_null()) theme->register_owner(this); _recreate_octant_data(); _change_notify("theme"); } Ref GridMap::get_theme() const { return theme; } void GridMap::set_cell_size(float p_size) { cell_size = p_size; _recreate_octant_data(); } float GridMap::get_cell_size() const { return cell_size; } void GridMap::set_octant_size(int p_size) { octant_size = p_size; _recreate_octant_data(); } int GridMap::get_octant_size() const { return octant_size; } void GridMap::set_center_x(bool p_enable) { center_x = p_enable; _recreate_octant_data(); } bool GridMap::get_center_x() const { return center_x; } void GridMap::set_center_y(bool p_enable) { center_y = p_enable; _recreate_octant_data(); } bool GridMap::get_center_y() const { return center_y; } void GridMap::set_center_z(bool p_enable) { center_z = p_enable; _recreate_octant_data(); } bool GridMap::get_center_z() const { return center_z; } int GridMap::_find_area(const IndexKey &p_pos) const { for (const Map::Element *E = area_map.front(); E; E = E->next()) { //this should somehow be faster... const Area &a = *E->get(); if (p_pos.x >= a.from.x && p_pos.x < a.to.x && p_pos.y >= a.from.y && p_pos.y < a.to.y && p_pos.z >= a.from.z && p_pos.z < a.to.z) { return E->key(); } } return 0; } void GridMap::set_cell_item(int p_x, int p_y, int p_z, int p_item, int p_rot) { ERR_FAIL_INDEX(ABS(p_x), 1 << 20); ERR_FAIL_INDEX(ABS(p_y), 1 << 20); ERR_FAIL_INDEX(ABS(p_z), 1 << 20); IndexKey key; key.x = p_x; key.y = p_y; key.z = p_z; OctantKey ok; ok.x = p_x / octant_size; ok.y = p_y / octant_size; ok.z = p_z / octant_size; ok.area = _find_area(key); if (cell_map.has(key)) { int prev_item = cell_map[key].item; OctantKey octantkey = ok; ERR_FAIL_COND(!octant_map.has(octantkey)); Octant &g = *octant_map[octantkey]; ERR_FAIL_COND(!g.items.has(prev_item)); ERR_FAIL_COND(!g.items[prev_item].cells.has(key)); g.items[prev_item].cells.erase(key); if (g.items[prev_item].cells.size() == 0) { VS::get_singleton()->free(g.items[prev_item].multimesh_instance); g.items.erase(prev_item); } if (g.items.empty() || !baked_lock) { //unbake just in case if (g.baked.is_valid()) { VS::get_singleton()->free(g.bake_instance); g.bake_instance = RID(); g.baked = Ref(); } } if (g.items.empty()) { PhysicsServer::get_singleton()->free(g.static_body); if (g.collision_debug.is_valid()) { PhysicsServer::get_singleton()->free(g.collision_debug); PhysicsServer::get_singleton()->free(g.collision_debug_instance); } memdelete(&g); octant_map.erase(octantkey); } else { g.dirty = true; } cell_map.erase(key); _queue_dirty_map(); } if (p_item < 0) return; OctantKey octantkey = ok; //add later if (!octant_map.has(octantkey)) { Octant *g = memnew(Octant); g->dirty = true; g->static_body = PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC); PhysicsServer::get_singleton()->body_attach_object_instance_ID(g->static_body, get_instance_ID()); if (is_inside_world()) PhysicsServer::get_singleton()->body_set_space(g->static_body, get_world()->get_space()); SceneTree *st = SceneTree::get_singleton(); if (st && st->is_debugging_collisions_hint()) { g->collision_debug = VisualServer::get_singleton()->mesh_create(); g->collision_debug_instance = VisualServer::get_singleton()->instance_create(); VisualServer::get_singleton()->instance_set_base(g->collision_debug_instance, g->collision_debug); if (is_inside_world()) { VisualServer::get_singleton()->instance_set_scenario(g->collision_debug_instance, get_world()->get_scenario()); VisualServer::get_singleton()->instance_set_transform(g->collision_debug_instance, get_global_transform()); } } octant_map[octantkey] = g; } Octant &g = *octant_map[octantkey]; if (!g.items.has(p_item)) { Octant::ItemInstances ii; if (theme.is_valid() && theme->has_item(p_item)) { ii.mesh = theme->get_item_mesh(p_item); ii.shape = theme->get_item_shape(p_item); ii.navmesh = theme->get_item_navmesh(p_item); } ii.multimesh = Ref(memnew(MultiMesh)); ii.multimesh->set_mesh(ii.mesh); ii.multimesh_instance = VS::get_singleton()->instance_create(); VS::get_singleton()->instance_set_base(ii.multimesh_instance, ii.multimesh->get_rid()); VS::get_singleton()->instance_geometry_set_baked_light(ii.multimesh_instance, baked_light_instance ? baked_light_instance->get_baked_light_instance() : RID()); if (!baked_lock) { //unbake just in case if (g.bake_instance.is_valid()) VS::get_singleton()->free(g.bake_instance); g.baked = Ref(); if (is_inside_world()) { VS::get_singleton()->instance_set_scenario(ii.multimesh_instance, get_world()->get_scenario()); if (ok.area) { VS::get_singleton()->instance_set_room(ii.multimesh_instance, area_map[ok.area]->instance); } } } g.items[p_item] = ii; } Octant::ItemInstances &ii = g.items[p_item]; ii.cells.insert(key); g.dirty = true; _queue_dirty_map(); cell_map[key] = Cell(); Cell &c = cell_map[key]; c.item = p_item; c.rot = p_rot; } int GridMap::get_cell_item(int p_x, int p_y, int p_z) const { ERR_FAIL_INDEX_V(ABS(p_x), 1 << 20, INVALID_CELL_ITEM); ERR_FAIL_INDEX_V(ABS(p_y), 1 << 20, INVALID_CELL_ITEM); ERR_FAIL_INDEX_V(ABS(p_z), 1 << 20, INVALID_CELL_ITEM); IndexKey key; key.x = p_x; key.y = p_y; key.z = p_z; if (!cell_map.has(key)) return INVALID_CELL_ITEM; return cell_map[key].item; } int GridMap::get_cell_item_orientation(int p_x, int p_y, int p_z) const { ERR_FAIL_INDEX_V(ABS(p_x), 1 << 20, -1); ERR_FAIL_INDEX_V(ABS(p_y), 1 << 20, -1); ERR_FAIL_INDEX_V(ABS(p_z), 1 << 20, -1); IndexKey key; key.x = p_x; key.y = p_y; key.z = p_z; if (!cell_map.has(key)) return -1; return cell_map[key].rot; } void GridMap::_octant_enter_tree(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); if (navigation) { Octant &g = *octant_map[p_key]; Vector3 ofs(cell_size * 0.5 * int(center_x), cell_size * 0.5 * int(center_y), cell_size * 0.5 * int(center_z)); _octant_clear_navmesh(p_key); for (Map::Element *E = g.items.front(); E; E = E->next()) { Octant::ItemInstances &ii = E->get(); for (Set::Element *F = ii.cells.front(); F; F = F->next()) { IndexKey ik = F->get(); Map::Element *C = cell_map.find(ik); ERR_CONTINUE(!C); Vector3 cellpos = Vector3(ik.x, ik.y, ik.z); Transform xform; if (clip && ((clip_above && cellpos[clip_axis] > clip_floor) || (!clip_above && cellpos[clip_axis] < clip_floor))) { xform.basis.set_zero(); } else { xform.basis.set_orthogonal_index(C->get().rot); } xform.set_origin(cellpos * cell_size + ofs); xform.basis.scale(Vector3(cell_scale, cell_scale, cell_scale)); // add the item's navmesh at given xform to GridMap's Navigation ancestor if (ii.navmesh.is_valid()) { int nm_id = navigation->navmesh_create(ii.navmesh, xform, this); Octant::NavMesh nm; nm.id = nm_id; nm.xform = xform; g.navmesh_ids[ik] = nm; } } } } } void GridMap::_octant_enter_world(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; PhysicsServer::get_singleton()->body_set_state(g.static_body, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); PhysicsServer::get_singleton()->body_set_space(g.static_body, get_world()->get_space()); //print_line("BODYPOS: "+get_global_transform()); if (g.collision_debug_instance.is_valid()) { VS::get_singleton()->instance_set_scenario(g.collision_debug_instance, get_world()->get_scenario()); VS::get_singleton()->instance_set_transform(g.collision_debug_instance, get_global_transform()); if (area_map.has(p_key.area)) { VS::get_singleton()->instance_set_room(g.collision_debug_instance, area_map[p_key.area]->instance); } } if (g.baked.is_valid()) { Transform xf = get_global_transform(); xf.translate(_octant_get_offset(p_key)); VS::get_singleton()->instance_set_transform(g.bake_instance, xf); VS::get_singleton()->instance_set_scenario(g.bake_instance, get_world()->get_scenario()); if (area_map.has(p_key.area)) { VS::get_singleton()->instance_set_room(g.bake_instance, area_map[p_key.area]->instance); } } else { for (Map::Element *E = g.items.front(); E; E = E->next()) { VS::get_singleton()->instance_set_scenario(E->get().multimesh_instance, get_world()->get_scenario()); VS::get_singleton()->instance_set_transform(E->get().multimesh_instance, get_global_transform()); //print_line("INSTANCEPOS: "+get_global_transform()); if (area_map.has(p_key.area)) { VS::get_singleton()->instance_set_room(E->get().multimesh_instance, area_map[p_key.area]->instance); } } } } void GridMap::_octant_transform(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; PhysicsServer::get_singleton()->body_set_state(g.static_body, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); if (g.collision_debug_instance.is_valid()) { VS::get_singleton()->instance_set_transform(g.collision_debug_instance, get_global_transform()); } if (g.baked.is_valid()) { Transform xf = get_global_transform(); xf.origin += _octant_get_offset(p_key); VS::get_singleton()->instance_set_transform(g.bake_instance, xf); } else { for (Map::Element *E = g.items.front(); E; E = E->next()) { VS::get_singleton()->instance_set_transform(E->get().multimesh_instance, get_global_transform()); //print_line("UPDATEPOS: "+get_global_transform()); } } } void GridMap::_octant_clear_navmesh(const OctantKey &p_key) { Octant &g = *octant_map[p_key]; if (navigation) { for (Map::Element *E = g.navmesh_ids.front(); E; E = E->next()) { Octant::NavMesh *nvm = &E->get(); if (nvm && nvm->id) { navigation->navmesh_remove(E->get().id); } } g.navmesh_ids.clear(); } } void GridMap::_octant_update(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; if (!g.dirty) return; Ref mesh; _octant_clear_navmesh(p_key); PhysicsServer::get_singleton()->body_clear_shapes(g.static_body); if (g.collision_debug.is_valid()) { VS::get_singleton()->mesh_clear(g.collision_debug); } DVector col_debug; /* * foreach item in this octant, * set item's multimesh's instance count to number of cells which have this item * and set said multimesh bounding box to one containing all cells which have this item */ for (Map::Element *E = g.items.front(); E; E = E->next()) { Octant::ItemInstances &ii = E->get(); ii.multimesh->set_instance_count(ii.cells.size()); AABB aabb; AABB mesh_aabb = ii.mesh.is_null() ? AABB() : ii.mesh->get_aabb(); Vector3 ofs(cell_size * 0.5 * int(center_x), cell_size * 0.5 * int(center_y), cell_size * 0.5 * int(center_z)); //print_line("OCTANT, CELLS: "+itos(ii.cells.size())); int idx = 0; // foreach cell containing this item type for (Set::Element *F = ii.cells.front(); F; F = F->next()) { IndexKey ik = F->get(); Map::Element *C = cell_map.find(ik); ERR_CONTINUE(!C); Vector3 cellpos = Vector3(ik.x, ik.y, ik.z); Transform xform; if (clip && ((clip_above && cellpos[clip_axis] > clip_floor) || (!clip_above && cellpos[clip_axis] < clip_floor))) { xform.basis.set_zero(); } else { xform.basis.set_orthogonal_index(C->get().rot); } xform.set_origin(cellpos * cell_size + ofs); xform.basis.scale(Vector3(cell_scale, cell_scale, cell_scale)); ii.multimesh->set_instance_transform(idx, xform); //ii.multimesh->set_instance_transform(idx,Transform() ); ii.multimesh->set_instance_color(idx, Color(1, 1, 1, 1)); //print_line("MMINST: "+xform); if (idx == 0) { aabb = xform.xform(mesh_aabb); } else { aabb.merge_with(xform.xform(mesh_aabb)); } // add the item's shape at given xform to octant's static_body if (ii.shape.is_valid()) { // add the item's shape PhysicsServer::get_singleton()->body_add_shape(g.static_body, ii.shape->get_rid(), xform); if (g.collision_debug.is_valid()) { ii.shape->add_vertices_to_array(col_debug, xform); } // print_line("PHIS x: "+xform); } // add the item's navmesh at given xform to GridMap's Navigation ancestor if (navigation) { if (ii.navmesh.is_valid()) { int nm_id = navigation->navmesh_create(ii.navmesh, xform, this); Octant::NavMesh nm; nm.id = nm_id; nm.xform = xform; g.navmesh_ids[ik] = nm; } } idx++; } ii.multimesh->set_aabb(aabb); } if (col_debug.size()) { Array arr; arr.resize(VS::ARRAY_MAX); arr[VS::ARRAY_VERTEX] = col_debug; VS::get_singleton()->mesh_add_surface(g.collision_debug, VS::PRIMITIVE_LINES, arr); SceneTree *st = SceneTree::get_singleton(); if (st) { VS::get_singleton()->mesh_surface_set_material(g.collision_debug, 0, st->get_debug_collision_material()->get_rid()); } } g.dirty = false; } void GridMap::_octant_exit_world(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; PhysicsServer::get_singleton()->body_set_state(g.static_body, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform()); PhysicsServer::get_singleton()->body_set_space(g.static_body, RID()); if (g.baked.is_valid()) { VS::get_singleton()->instance_set_room(g.bake_instance, RID()); VS::get_singleton()->instance_set_scenario(g.bake_instance, RID()); } if (g.collision_debug_instance.is_valid()) { VS::get_singleton()->instance_set_room(g.collision_debug_instance, RID()); VS::get_singleton()->instance_set_scenario(g.collision_debug_instance, RID()); } for (Map::Element *E = g.items.front(); E; E = E->next()) { VS::get_singleton()->instance_set_scenario(E->get().multimesh_instance, RID()); // VS::get_singleton()->instance_set_transform(E->get().multimesh_instance,get_global_transform()); VS::get_singleton()->instance_set_room(E->get().multimesh_instance, RID()); } } void GridMap::_octant_clear_baked(const OctantKey &p_key) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; if (!g.baked.is_valid()) return; VS::get_singleton()->free(g.bake_instance); g.bake_instance = RID(); g.baked = Ref(); if (is_inside_tree()) _octant_enter_world(p_key); g.dirty = true; _queue_dirty_map(); } void GridMap::_octant_bake(const OctantKey &p_key, const Ref &p_tmesh, const Vector &p_lights, List *p_prebake) { ERR_FAIL_COND(!octant_map.has(p_key)); Octant &g = *octant_map[p_key]; Ref tm = p_tmesh; if (!p_prebake && is_inside_world()) _octant_exit_world(p_key); Map, Ref > surfaces; Vector3 ofs(cell_size * 0.5 * int(center_x), cell_size * 0.5 * int(center_y), cell_size * 0.5 * int(center_z)); Vector3 octant_ofs = _octant_get_offset(p_key); for (Map::Element *E = g.items.front(); E; E = E->next()) { Octant::ItemInstances &ii = E->get(); if (ii.mesh.is_null()) continue; for (Set::Element *F = ii.cells.front(); F; F = F->next()) { IndexKey ik = F->get(); Map::Element *C = cell_map.find(ik); ERR_CONTINUE(!C); Vector3 cellpos = Vector3(ik.x, ik.y, ik.z); Transform xform; xform.basis.set_orthogonal_index(C->get().rot); xform.set_origin(cellpos * cell_size + ofs); if (!p_prebake) xform.origin -= octant_ofs; for (int i = 0; i < ii.mesh->get_surface_count(); i++) { if (p_prebake) { if (ii.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) continue; Array a = ii.mesh->surface_get_arrays(i); DVector av = a[VS::ARRAY_VERTEX]; int avs = av.size(); DVector::Read vr = av.read(); DVector ai = a[VS::ARRAY_INDEX]; int ais = ai.size(); if (ais) { DVector::Read ir = ai.read(); for (int j = 0; j < ais; j++) { p_prebake->push_back(xform.xform(vr[ir[j]])); //print_line("V SET: "+xform.xform(vr[ir[j]])); } } else { for (int j = 0; j < avs; j++) { p_prebake->push_back(xform.xform(vr[j])); } } } else { Ref m = ii.mesh->surface_get_material(i); Map, Ref >::Element *S = surfaces.find(m); if (!S) { S = surfaces.insert(m, Ref(memnew(SurfaceTool))); } Ref st = S->get(); List::Element *V = st->get_vertex_array().back(); st->append_from(ii.mesh, i, xform); st->set_material(m); if (tm.is_valid()) { if (V) V = V->next(); else V = st->get_vertex_array().front(); int lc = p_lights.size(); const BakeLight *bl = p_lights.ptr(); float ofs = cell_size * 0.02; for (; V; V = V->next()) { SurfaceTool::Vertex &v = V->get(); Vector3 vertex = v.vertex + octant_ofs; //print_line("V GET: "+vertex); Vector3 normal = tm->get_area_normal(AABB(Vector3(-ofs, -ofs, -ofs) + vertex, Vector3(ofs, ofs, ofs) * 2.0)); if (normal == Vector3()) { print_line("couldn't find for vertex: " + vertex); } ERR_CONTINUE(normal == Vector3()); float max_l = 1.0; float max_dist = 1.0; if (lc) { for (int j = 0; j < lc; j++) { const BakeLight &l = bl[j]; switch (l.type) { case VS::LIGHT_DIRECTIONAL: { Vector3 ray_from = vertex + normal * ofs; Vector3 ray_to = l.dir * 5000; Vector3 n; Vector3 p; if (tm->intersect_segment(ray_from, ray_to, p, n)) { float dist = 1.0 - l.param[VS::LIGHT_PARAM_SHADOW_DARKENING]; if (dist <= max_dist) { max_dist = dist; max_l = 1.0 - dist; } } } break; } } } v.color = Color(max_l, max_l, max_l, 1.0); } st->add_to_format(VS::ARRAY_FORMAT_COLOR); if (m.is_valid()) { Ref fm = m; if (fm.is_valid()) fm->set_fixed_flag(FixedMaterial::FLAG_USE_COLOR_ARRAY, true); } } } } } } if (p_prebake) return; g.baked = Ref(memnew(Mesh)); for (Map, Ref >::Element *E = surfaces.front(); E; E = E->next()) { Ref st = E->get(); st->commit(g.baked); } g.bake_instance = VS::get_singleton()->instance_create(); VS::get_singleton()->instance_set_base(g.bake_instance, g.baked->get_rid()); if (is_inside_world()) _octant_enter_world(p_key); g.dirty = true; _queue_dirty_map(); } void GridMap::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_WORLD: { _update_area_instances(); for (Map::Element *E = octant_map.front(); E; E = E->next()) { // IndexKey ik; // ik.key = E->key().indexkey; _octant_enter_world(E->key()); _octant_update(E->key()); } awaiting_update = false; last_transform = get_global_transform(); if (use_baked_light) { _find_baked_light(); } } break; case NOTIFICATION_TRANSFORM_CHANGED: { Transform new_xform = get_global_transform(); if (new_xform == last_transform) break; //update run for (Map::Element *E = octant_map.front(); E; E = E->next()) { _octant_transform(E->key()); } last_transform = new_xform; } break; case NOTIFICATION_EXIT_WORLD: { for (Map::Element *E = octant_map.front(); E; E = E->next()) { _octant_exit_world(E->key()); } if (use_baked_light) { if (baked_light_instance) { baked_light_instance->disconnect(SceneStringNames::get_singleton()->baked_light_changed, this, SceneStringNames::get_singleton()->_baked_light_changed); baked_light_instance = NULL; } _baked_light_changed(); } //_queue_dirty_map(MAP_DIRTY_INSTANCES|MAP_DIRTY_TRANSFORMS); //_update_dirty_map_callback(); //_update_area_instances(); } break; case NOTIFICATION_ENTER_TREE: { Spatial *c = this; while (c) { navigation = c->cast_to(); if (navigation) { break; } c = c->get_parent()->cast_to(); } if (navigation) { for (Map::Element *E = octant_map.front(); E; E = E->next()) { if (navigation) { _octant_enter_tree(E->key()); } } } _queue_dirty_map(); } break; case NOTIFICATION_EXIT_TREE: { for (Map::Element *E = octant_map.front(); E; E = E->next()) { if (navigation) { _octant_clear_navmesh(E->key()); } } navigation = NULL; } break; } } void GridMap::_queue_dirty_map() { if (awaiting_update) return; if (is_inside_world()) { MessageQueue::get_singleton()->push_call(this, "_update_dirty_map_callback"); awaiting_update = true; } } void GridMap::_recreate_octant_data() { Map cell_copy = cell_map; _clear_internal(true); for (Map::Element *E = cell_copy.front(); E; E = E->next()) { set_cell_item(E->key().x, E->key().y, E->key().z, E->get().item, E->get().rot); } } void GridMap::_clear_internal(bool p_keep_areas) { for (Map::Element *E = octant_map.front(); E; E = E->next()) { if (is_inside_world()) _octant_exit_world(E->key()); for (Map::Element *F = E->get()->items.front(); F; F = F->next()) { VS::get_singleton()->free(F->get().multimesh_instance); } //unbake just in case if (E->get()->bake_instance.is_valid()) VS::get_singleton()->free(E->get()->bake_instance); if (E->get()->collision_debug.is_valid()) VS::get_singleton()->free(E->get()->collision_debug); if (E->get()->collision_debug_instance.is_valid()) VS::get_singleton()->free(E->get()->collision_debug_instance); PhysicsServer::get_singleton()->free(E->get()->static_body); memdelete(E->get()); } octant_map.clear(); cell_map.clear(); if (p_keep_areas) return; for (Map::Element *E = area_map.front(); E; E = E->next()) { VS::get_singleton()->free(E->get()->base_portal); VS::get_singleton()->free(E->get()->instance); for (int i = 0; i < E->get()->portals.size(); i++) { VS::get_singleton()->free(E->get()->portals[i].instance); } memdelete(E->get()); } } void GridMap::clear() { _clear_internal(); } void GridMap::resource_changed(const RES &p_res) { _recreate_octant_data(); } void GridMap::_update_dirty_map_callback() { if (!awaiting_update) return; for (Map::Element *E = octant_map.front(); E; E = E->next()) { _octant_update(E->key()); } awaiting_update = false; } void GridMap::_bind_methods() { ObjectTypeDB::bind_method(_MD("set_theme", "theme:MeshLibrary"), &GridMap::set_theme); ObjectTypeDB::bind_method(_MD("get_theme:MeshLibrary"), &GridMap::get_theme); ObjectTypeDB::bind_method(_MD("set_bake", "enable"), &GridMap::set_bake); ObjectTypeDB::bind_method(_MD("is_baking_enabled"), &GridMap::is_baking_enabled); ObjectTypeDB::bind_method(_MD("set_cell_size", "size"), &GridMap::set_cell_size); ObjectTypeDB::bind_method(_MD("get_cell_size"), &GridMap::get_cell_size); ObjectTypeDB::bind_method(_MD("set_octant_size", "size"), &GridMap::set_octant_size); ObjectTypeDB::bind_method(_MD("get_octant_size"), &GridMap::get_octant_size); ObjectTypeDB::bind_method(_MD("set_cell_item", "x", "y", "z", "item", "orientation"), &GridMap::set_cell_item, DEFVAL(0)); ObjectTypeDB::bind_method(_MD("get_cell_item", "x", "y", "z"), &GridMap::get_cell_item); ObjectTypeDB::bind_method(_MD("get_cell_item_orientation", "x", "y", "z"), &GridMap::get_cell_item_orientation); // ObjectTypeDB::bind_method(_MD("_recreate_octants"),&GridMap::_recreate_octants); ObjectTypeDB::bind_method(_MD("_update_dirty_map_callback"), &GridMap::_update_dirty_map_callback); ObjectTypeDB::bind_method(_MD("resource_changed", "resource"), &GridMap::resource_changed); ObjectTypeDB::bind_method(_MD("set_center_x", "enable"), &GridMap::set_center_x); ObjectTypeDB::bind_method(_MD("get_center_x"), &GridMap::get_center_x); ObjectTypeDB::bind_method(_MD("set_center_y", "enable"), &GridMap::set_center_y); ObjectTypeDB::bind_method(_MD("get_center_y"), &GridMap::get_center_y); ObjectTypeDB::bind_method(_MD("set_center_z", "enable"), &GridMap::set_center_z); ObjectTypeDB::bind_method(_MD("get_center_z"), &GridMap::get_center_z); ObjectTypeDB::bind_method(_MD("set_clip", "enabled", "clipabove", "floor", "axis"), &GridMap::set_clip, DEFVAL(true), DEFVAL(0), DEFVAL(Vector3::AXIS_X)); ObjectTypeDB::bind_method(_MD("create_area", "id", "area"), &GridMap::create_area); ObjectTypeDB::bind_method(_MD("area_get_bounds", "area", "bounds"), &GridMap::area_get_bounds); ObjectTypeDB::bind_method(_MD("area_set_exterior_portal", "area", "enable"), &GridMap::area_set_exterior_portal); ObjectTypeDB::bind_method(_MD("area_set_name", "area", "name"), &GridMap::area_set_name); ObjectTypeDB::bind_method(_MD("area_get_name", "area"), &GridMap::area_get_name); ObjectTypeDB::bind_method(_MD("area_is_exterior_portal", "area"), &GridMap::area_is_exterior_portal); ObjectTypeDB::bind_method(_MD("area_set_portal_disable_distance", "area", "distance"), &GridMap::area_set_portal_disable_distance); ObjectTypeDB::bind_method(_MD("area_get_portal_disable_distance", "area"), &GridMap::area_get_portal_disable_distance); ObjectTypeDB::bind_method(_MD("area_set_portal_disable_color", "area", "color"), &GridMap::area_set_portal_disable_color); ObjectTypeDB::bind_method(_MD("area_get_portal_disable_color", "area"), &GridMap::area_get_portal_disable_color); ObjectTypeDB::bind_method(_MD("erase_area", "area"), &GridMap::erase_area); ObjectTypeDB::bind_method(_MD("get_unused_area_id", "area"), &GridMap::get_unused_area_id); ObjectTypeDB::bind_method(_MD("bake_geometry"), &GridMap::bake_geometry); ObjectTypeDB::bind_method(_MD("_baked_light_changed"), &GridMap::_baked_light_changed); ObjectTypeDB::bind_method(_MD("set_use_baked_light", "use"), &GridMap::set_use_baked_light); ObjectTypeDB::bind_method(_MD("is_using_baked_light", "use"), &GridMap::is_using_baked_light); ObjectTypeDB::bind_method(_MD("_get_baked_light_meshes"), &GridMap::_get_baked_light_meshes); ObjectTypeDB::set_method_flags("GridMap", "bake_geometry", METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ObjectTypeDB::bind_method(_MD("clear"), &GridMap::clear); BIND_CONSTANT(INVALID_CELL_ITEM); } void GridMap::set_clip(bool p_enabled, bool p_clip_above, int p_floor, Vector3::Axis p_axis) { if (!p_enabled && !clip) return; if (clip && p_enabled && clip_floor == p_floor && p_clip_above == clip_above && p_axis == clip_axis) return; clip = p_enabled; clip_floor = p_floor; clip_axis = p_axis; clip_above = p_clip_above; //make it all update for (Map::Element *E = octant_map.front(); E; E = E->next()) { Octant *g = E->get(); g->dirty = true; } awaiting_update = true; _update_dirty_map_callback(); } void GridMap::_update_areas() { //clear the portals for (Map::Element *E = area_map.front(); E; E = E->next()) { //this should somehow be faster... Area &a = *E->get(); a.portals.clear(); if (a.instance.is_valid()) { VisualServer::get_singleton()->free(a.instance); a.instance = RID(); } } //test all areas against all areas and create portals - this sucks (slow :( ) for (Map::Element *E = area_map.front(); E; E = E->next()) { Area &a = *E->get(); if (a.exterior_portal) //that's pretty much all it does... yes it is continue; Vector3 from_a(a.from.x, a.from.y, a.from.z); Vector3 to_a(a.to.x, a.to.y, a.to.z); for (Map::Element *F = area_map.front(); F; F = F->next()) { Area &b = *F->get(); Vector3 from_b(b.from.x, b.from.y, b.from.z); Vector3 to_b(b.to.x, b.to.y, b.to.z); // initially test intersection and discards int axis = -1; float sign = 0; bool valid = true; Vector3 axmin, axmax; for (int i = 0; i < 3; i++) { if (from_a[i] == to_b[i]) { if (axis != -1) { valid = false; break; } axis = i; sign = -1; } else if (from_b[i] == to_a[i]) { if (axis != -1) { valid = false; break; } axis = i; sign = +1; } if (from_a[i] > to_b[i] || to_a[i] < from_b[i]) { valid = false; break; } else { axmin[i] = (from_a[i] > from_b[i]) ? from_a[i] : from_b[i]; axmax[i] = (to_a[i] < to_b[i]) ? to_a[i] : to_b[i]; } } if (axis == -1 || !valid) continue; Transform xf; for (int i = 0; i < 3; i++) { int ax = (axis + i) % 3; Vector3 axis_vec; float scale = (i == 0) ? sign : ((axmax[ax] - axmin[ax]) * cell_size); axis_vec[ax] = scale; xf.basis.set_axis((2 + i) % 3, axis_vec); xf.origin[i] = axmin[i] * cell_size; } Area::Portal portal; portal.xform = xf; a.portals.push_back(portal); } } _update_area_instances(); } void GridMap::_update_area_instances() { Transform base_xform; if (_in_tree) base_xform = get_global_transform(); for (Map::Element *E = area_map.front(); E; E = E->next()) { //this should somehow be faster... Area &a = *E->get(); if (a.instance.is_valid() != _in_tree) { if (!_in_tree) { for (int i = 0; i < a.portals.size(); i++) { Area::Portal &p = a.portals[i]; ERR_CONTINUE(!p.instance.is_valid()); VisualServer::get_singleton()->free(p.instance); p.instance = RID(); } VisualServer::get_singleton()->free(a.instance); a.instance = RID(); } else { //a.instance = VisualServer::get_singleton()->instance_create2(base_room,get_world()->get_scenario()); for (int i = 0; i < a.portals.size(); i++) { Area::Portal &p = a.portals[i]; ERR_CONTINUE(p.instance.is_valid()); p.instance = VisualServer::get_singleton()->instance_create2(a.base_portal, get_world()->get_scenario()); VisualServer::get_singleton()->instance_set_room(p.instance, a.instance); } } } if (a.instance.is_valid()) { Transform xform; Vector3 from_a(a.from.x, a.from.y, a.from.z); Vector3 to_a(a.to.x, a.to.y, a.to.z); for (int i = 0; i < 3; i++) { xform.origin[i] = from_a[i] * cell_size; Vector3 s; s[i] = (to_a[i] - from_a[i]) * cell_size; xform.basis.set_axis(i, s); } VisualServer::get_singleton()->instance_set_transform(a.instance, base_xform * xform); for (int i = 0; i < a.portals.size(); i++) { Area::Portal &p = a.portals[i]; ERR_CONTINUE(!p.instance.is_valid()); VisualServer::get_singleton()->instance_set_transform(p.instance, base_xform * xform); } } } } Error GridMap::create_area(int p_id, const AABB &p_bounds) { ERR_FAIL_COND_V(area_map.has(p_id), ERR_ALREADY_EXISTS); ERR_EXPLAIN("ID 0 is taken as global area, start from 1"); ERR_FAIL_COND_V(p_id == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_bounds.has_no_area(), ERR_INVALID_PARAMETER); // FIRST VALIDATE AREA IndexKey from, to; from.x = p_bounds.pos.x; from.y = p_bounds.pos.y; from.z = p_bounds.pos.z; to.x = p_bounds.pos.x + p_bounds.size.x; to.y = p_bounds.pos.y + p_bounds.size.y; to.z = p_bounds.pos.z + p_bounds.size.z; for (Map::Element *E = area_map.front(); E; E = E->next()) { //this should somehow be faster... Area &a = *E->get(); //does it interset with anything else? if (from.x >= a.to.x || to.x <= a.from.x || from.y >= a.to.y || to.y <= a.from.y || from.z >= a.to.z || to.z <= a.from.z) { // all good } else { return ERR_INVALID_PARAMETER; } } Area *area = memnew(Area); area->from = from; area->to = to; area->portal_disable_distance = 0; area->exterior_portal = false; area->name = "Area " + itos(p_id); area_map[p_id] = area; _recreate_octant_data(); return OK; } AABB GridMap::area_get_bounds(int p_area) const { ERR_FAIL_COND_V(!area_map.has(p_area), AABB()); const Area *a = area_map[p_area]; AABB aabb; aabb.pos = Vector3(a->from.x, a->from.y, a->from.z); aabb.size = Vector3(a->to.x, a->to.y, a->to.z) - aabb.pos; return aabb; } void GridMap::area_set_name(int p_area, const String &p_name) { ERR_FAIL_COND(!area_map.has(p_area)); Area *a = area_map[p_area]; a->name = p_name; } String GridMap::area_get_name(int p_area) const { ERR_FAIL_COND_V(!area_map.has(p_area), ""); const Area *a = area_map[p_area]; return a->name; } void GridMap::area_set_exterior_portal(int p_area, bool p_enable) { ERR_FAIL_COND(!area_map.has(p_area)); Area *a = area_map[p_area]; if (a->exterior_portal == p_enable) return; a->exterior_portal = p_enable; _recreate_octant_data(); } bool GridMap::area_is_exterior_portal(int p_area) const { ERR_FAIL_COND_V(!area_map.has(p_area), false); const Area *a = area_map[p_area]; return a->exterior_portal; } void GridMap::area_set_portal_disable_distance(int p_area, float p_distance) { ERR_FAIL_COND(!area_map.has(p_area)); Area *a = area_map[p_area]; a->portal_disable_distance = p_distance; } float GridMap::area_get_portal_disable_distance(int p_area) const { ERR_FAIL_COND_V(!area_map.has(p_area), 0); const Area *a = area_map[p_area]; return a->portal_disable_distance; } void GridMap::area_set_portal_disable_color(int p_area, Color p_color) { ERR_FAIL_COND(!area_map.has(p_area)); Area *a = area_map[p_area]; a->portal_disable_color = p_color; } Color GridMap::area_get_portal_disable_color(int p_area) const { ERR_FAIL_COND_V(!area_map.has(p_area), Color()); const Area *a = area_map[p_area]; return a->portal_disable_color; } void GridMap::get_area_list(List *p_areas) const { for (const Map::Element *E = area_map.front(); E; E = E->next()) { p_areas->push_back(E->key()); } } GridMap::Area::Portal::~Portal() { if (instance.is_valid()) VisualServer::get_singleton()->free(instance); } GridMap::Area::Area() { base_portal = VisualServer::get_singleton()->portal_create(); Vector points; points.push_back(Point2(0, 1)); points.push_back(Point2(1, 1)); points.push_back(Point2(1, 0)); points.push_back(Point2(0, 0)); VisualServer::get_singleton()->portal_set_shape(base_portal, points); } GridMap::Area::~Area() { if (instance.is_valid()) VisualServer::get_singleton()->free(instance); VisualServer::get_singleton()->free(base_portal); } void GridMap::erase_area(int p_area) { ERR_FAIL_COND(!area_map.has(p_area)); Area *a = area_map[p_area]; memdelete(a); area_map.erase(p_area); _recreate_octant_data(); } int GridMap::get_unused_area_id() const { if (area_map.empty()) return 1; else return area_map.back()->key() + 1; } void GridMap::set_bake(bool p_bake) { bake = p_bake; if (bake == false) { for (Map::Element *E = octant_map.front(); E; E = E->next()) { _octant_clear_baked(E->key()); } } } bool GridMap::is_baking_enabled() const { return bake; } void GridMap::set_cell_scale(float p_scale) { cell_scale = p_scale; _queue_dirty_map(); } float GridMap::get_cell_scale() const { return cell_scale; } void GridMap::bake_geometry() { //used to compute vertex occlusion Ref tmesh; Vector lights; if (true) { List vertices; for (Map::Element *E = octant_map.front(); E; E = E->next()) { _octant_bake(E->key(), tmesh, lights, &vertices); } DVector vv; vv.fill_with(vertices); //print_line("TOTAL VERTICES: "+itos(vv.size())); tmesh = Ref(memnew(TriangleMesh)); tmesh->create(vv); for (int i = 0; i < get_child_count(); i++) { if (get_child(i)->cast_to()) { Light *l = get_child(i)->cast_to(); BakeLight bl; for (int i = 0; i < Light::PARAM_MAX; i++) { bl.param[i] = l->get_parameter(Light::Parameter(i)); } Transform t = l->get_global_transform(); bl.pos = t.origin; bl.dir = t.basis.get_axis(2); bl.type = l->get_light_type(); lights.push_back(bl); } } } int idx = 0; for (Map::Element *E = octant_map.front(); E; E = E->next()) { if (E->get()->baked.is_valid()) _octant_clear_baked(E->key()); _octant_bake(E->key(), tmesh, lights); print_line("baking " + itos(idx) + "/" + itos(octant_map.size())); idx++; } } void GridMap::_baked_light_changed() { // if (!baked_light_instance) // VS::get_singleton()->instance_geometry_set_baked_light(get_instance(),RID()); // else // VS::get_singleton()->instance_geometry_set_baked_light(get_instance(),baked_light_instance->get_baked_light_instance()); for (Map::Element *E = octant_map.front(); E; E = E->next()) { for (Map::Element *F = E->get()->items.front(); F; F = F->next()) { VS::get_singleton()->instance_geometry_set_baked_light(F->get().multimesh_instance, baked_light_instance ? baked_light_instance->get_baked_light_instance() : RID()); } } } void GridMap::_find_baked_light() { Node *n = get_parent(); while (n) { BakedLightInstance *bl = n->cast_to(); if (bl) { baked_light_instance = bl; baked_light_instance->connect(SceneStringNames::get_singleton()->baked_light_changed, this, SceneStringNames::get_singleton()->_baked_light_changed); _baked_light_changed(); return; } n = n->get_parent(); } _baked_light_changed(); } Array GridMap::_get_baked_light_meshes() { if (theme.is_null()) return Array(); Vector3 ofs(cell_size * 0.5 * int(center_x), cell_size * 0.5 * int(center_y), cell_size * 0.5 * int(center_z)); Array meshes; for (Map::Element *E = cell_map.front(); E; E = E->next()) { int id = E->get().item; if (!theme->has_item(id)) continue; Ref mesh = theme->get_item_mesh(id); if (mesh.is_null()) continue; IndexKey ik = E->key(); Vector3 cellpos = Vector3(ik.x, ik.y, ik.z); Transform xform; xform.basis.set_orthogonal_index(E->get().rot); xform.set_origin(cellpos * cell_size + ofs); xform.basis.scale(Vector3(cell_scale, cell_scale, cell_scale)); meshes.push_back(xform); meshes.push_back(mesh); } return meshes; } void GridMap::set_use_baked_light(bool p_use) { if (use_baked_light == p_use) return; use_baked_light = p_use; if (is_inside_world()) { if (!p_use) { if (baked_light_instance) { baked_light_instance->disconnect(SceneStringNames::get_singleton()->baked_light_changed, this, SceneStringNames::get_singleton()->_baked_light_changed); baked_light_instance = NULL; } _baked_light_changed(); } else { _find_baked_light(); } } } bool GridMap::is_using_baked_light() const { return use_baked_light; } GridMap::GridMap() { cell_size = 2; octant_size = 4; awaiting_update = false; _in_tree = false; center_x = true; center_y = true; center_z = true; clip = false; clip_floor = 0; clip_axis = Vector3::AXIS_Z; clip_above = true; baked_lock = false; bake = false; cell_scale = 1.0; baked_light_instance = NULL; use_baked_light = false; navigation = NULL; } GridMap::~GridMap() { if (!theme.is_null()) theme->unregister_owner(this); clear(); }