/*************************************************************************/ /* rasterizer_scene_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_rd.h" #include "core/os/os.h" #include "core/project_settings.h" #include "servers/rendering/rendering_server_raster.h" uint64_t RasterizerSceneRD::auto_exposure_counter = 2; void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) { rd.layers.clear(); rd.radiance_base_cubemap = RID(); if (rd.downsampled_radiance_cubemap.is_valid()) { RD::get_singleton()->free(rd.downsampled_radiance_cubemap); } rd.downsampled_radiance_cubemap = RID(); rd.downsampled_layer.mipmaps.clear(); rd.coefficient_buffer = RID(); } void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) { //recreate radiance and all data int mipmaps = p_mipmaps; uint32_t w = p_size, h = p_size; if (p_use_array) { int layers = p_low_quality ? 8 : roughness_layers; for (int i = 0; i < layers; i++) { ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(mipmaps); layer.views.resize(mipmaps); for (int j = 0; j < mipmaps; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } } else { mipmaps = p_low_quality ? 8 : mipmaps; //regular cubemap, lower quality (aliasing, less memory) ReflectionData::Layer layer; uint32_t mmw = w; uint32_t mmh = h; layer.mipmaps.resize(mipmaps); layer.views.resize(mipmaps); for (int j = 0; j < mipmaps; j++) { ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; for (int k = 0; k < 6; k++) { mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j); Vector fbtex; fbtex.push_back(mm.views[k]); mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); } layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } rd.layers.push_back(layer); } rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = 64; // Always 64x64 tf.height = 64; tf.type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.mipmaps = 7; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); { uint32_t mmw = 64; uint32_t mmh = 64; rd.downsampled_layer.mipmaps.resize(7); for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) { ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j]; mm.size.width = mmw; mm.size.height = mmh; mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP); mmw = MAX(1, mmw >> 1); mmh = MAX(1, mmh >> 1); } } } void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) { storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size); for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) { storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size); } Vector views; if (p_use_arrays) { for (int i = 1; i < rd.layers.size(); i++) { views.push_back(rd.layers[i].views[0]); } } else { for (int i = 1; i < rd.layers[0].views.size(); i++) { views.push_back(rd.layers[0].views[i]); } } storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays); } void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) { if (p_use_arrays) { //render directly to the layers storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x); } else { storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x); } } void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd) { if (sky_use_cubemap_array) { for (int i = 0; i < rd.layers.size(); i++) { for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) { for (int k = 0; k < 6; k++) { RID view = rd.layers[i].mipmaps[j].views[k]; RID fb = rd.layers[i].mipmaps[j + 1].framebuffers[k]; Vector2 size = rd.layers[i].mipmaps[j].size; size = Vector2(1.0 / size.x, 1.0 / size.y); storage->get_effects()->make_mipmap(view, fb, size); } } } } } RID RasterizerSceneRD::sky_create() { return sky_owner.make_rid(Sky()); } void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) { if (!p_sky->dirty) { p_sky->dirty = true; p_sky->dirty_list = dirty_sky_list; dirty_sky_list = p_sky; } } void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048); if (sky->radiance_size == p_radiance_size) { return; } sky->radiance_size = p_radiance_size; if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); sky->radiance_size = 256; } _sky_invalidate(sky); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); } void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); if (sky->mode == p_mode) { return; } sky->mode = p_mode; if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); sky_set_radiance_size(p_sky, 256); } _sky_invalidate(sky); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); } void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND(!sky); sky->material = p_material; } void RasterizerSceneRD::_update_dirty_skys() { Sky *sky = dirty_sky_list; while (sky) { bool texture_set_dirty = false; //update sky configuration if texture is missing if (sky->radiance.is_null()) { int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1; uint32_t w = sky->radiance_size, h = sky->radiance_size; int layers = roughness_layers; if (sky->mode == RS::SKY_MODE_REALTIME) { layers = 8; if (roughness_layers != 8) { WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections"); } } if (sky_use_cubemap_array) { //array (higher quality, 6 times more memory) RD::TextureFormat tf; tf.array_layers = layers * 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); } else { //regular cubemap, lower quality (aliasing, less memory) RD::TextureFormat tf; tf.array_layers = 6; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE; tf.mipmaps = MIN(mipmaps, layers); tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); } texture_set_dirty = true; } // Create subpass buffers if they havent been created already if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tformat.width = sky->screen_size.x / 2; tformat.height = sky->screen_size.y / 2; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; tformat.type = RD::TEXTURE_TYPE_2D; sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); Vector texs; texs.push_back(sky->half_res_pass); sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); texture_set_dirty = true; } if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tformat.width = sky->screen_size.x / 4; tformat.height = sky->screen_size.y / 4; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; tformat.type = RD::TEXTURE_TYPE_2D; sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); Vector texs; texs.push_back(sky->quarter_res_pass); sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); texture_set_dirty = true; } if (texture_set_dirty) { for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) { if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) { RD::get_singleton()->free(sky->texture_uniform_sets[i]); sky->texture_uniform_sets[i] = RID(); } } } sky->reflection.dirty = true; Sky *next = sky->dirty_list; sky->dirty_list = nullptr; sky->dirty = false; sky = next; } dirty_sky_list = nullptr; } RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); return sky->radiance; } RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) { sky->uniform_set = RID(); if (sky->radiance.is_valid()) { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(sky->radiance); uniforms.push_back(u); } sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set); } } return sky->uniform_set; } RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) { if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) { return p_sky->texture_uniform_sets[p_version]; } Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) { u.ids.push_back(p_sky->radiance); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; // half res if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) { if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(p_sky->reflection.layers[0].views[1]); } else { u.ids.push_back(p_sky->half_res_pass); } } else { if (p_version < SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } } uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; // quarter res if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) { if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(p_sky->reflection.layers[0].views[2]); } else { u.ids.push_back(p_sky->quarter_res_pass); } } else { if (p_version < SKY_TEXTURE_SET_CUBEMAP) { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); } } uniforms.push_back(u); } p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES); return p_sky->texture_uniform_sets[p_version]; } RID RasterizerSceneRD::sky_get_material(RID p_sky) const { Sky *sky = sky_owner.getornull(p_sky); ERR_FAIL_COND_V(!sky, RID()); return sky->material; } void RasterizerSceneRD::_draw_sky(bool p_can_continue, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { ERR_FAIL_COND(!is_environment(p_environment)); Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); ERR_FAIL_COND(!sky); RID sky_material = sky_get_material(environment_get_sky(p_environment)); SkyMaterialData *material = nullptr; if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); SkyShaderData *shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); Basis sky_transform = environment_get_sky_orientation(p_environment); sky_transform.invert(); float multiplier = environment_get_bg_energy(p_environment); float custom_fov = environment_get_sky_custom_fov(p_environment); // Camera CameraMatrix camera; if (custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } sky_transform = p_transform.basis * sky_transform; if (shader_data->uses_quarter_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES]; RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES); Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } if (shader_data->uses_half_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES]; RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES); Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND]; RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } void RasterizerSceneRD::_setup_sky(RID p_environment, const Vector3 &p_position, const Size2i p_screen_size) { ERR_FAIL_COND(!is_environment(p_environment)); Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); ERR_FAIL_COND(!sky); RID sky_material = sky_get_material(environment_get_sky(p_environment)); SkyMaterialData *material = nullptr; if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); SkyShaderData *shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); // Invalidate supbass buffers if screen size changes if (sky->screen_size != p_screen_size) { sky->screen_size = p_screen_size; sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x; sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y; if (shader_data->uses_half_res) { if (sky->half_res_pass.is_valid()) { RD::get_singleton()->free(sky->half_res_pass); sky->half_res_pass = RID(); } _sky_invalidate(sky); } if (shader_data->uses_quarter_res) { if (sky->quarter_res_pass.is_valid()) { RD::get_singleton()->free(sky->quarter_res_pass); sky->quarter_res_pass = RID(); } _sky_invalidate(sky); } } // Create new subpass buffers if necessary if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) || (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) || sky->radiance.is_null()) { _sky_invalidate(sky); _update_dirty_skys(); } if (shader_data->uses_time && time - sky->prev_time > 0.00001) { sky->prev_time = time; sky->reflection.dirty = true; RenderingServerRaster::redraw_request(); } if (material != sky->prev_material) { sky->prev_material = material; sky->reflection.dirty = true; } if (material->uniform_set_updated) { material->uniform_set_updated = false; sky->reflection.dirty = true; } if (!p_position.is_equal_approx(sky->prev_position) && shader_data->uses_position) { sky->prev_position = p_position; sky->reflection.dirty = true; } if (shader_data->uses_light || sky_scene_state.light_uniform_set.is_null()) { // Check whether the directional_light_buffer changes bool light_data_dirty = false; if (sky_scene_state.directional_light_count != sky_scene_state.last_frame_directional_light_count) { light_data_dirty = true; for (uint32_t i = sky_scene_state.directional_light_count; i < sky_scene_state.max_directional_lights; i++) { sky_scene_state.directional_lights[i].enabled = false; } } if (!light_data_dirty) { for (uint32_t i = 0; i < sky_scene_state.directional_light_count; i++) { if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] || sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] || sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] || sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy || sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] || sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] || sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] || sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled) { light_data_dirty = true; break; } } } if (light_data_dirty || sky_scene_state.light_uniform_set.is_null()) { RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true); if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) { RD::get_singleton()->free(sky_scene_state.light_uniform_set); } Vector uniforms; { RD::Uniform u; u.binding = 0; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(sky_scene_state.directional_light_buffer); uniforms.push_back(u); } sky_scene_state.light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_LIGHTS); RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights; sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights; sky_scene_state.directional_lights = temp; sky_scene_state.last_frame_directional_light_count = sky_scene_state.directional_light_count; sky->reflection.dirty = true; } } } void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { ERR_FAIL_COND(!is_environment(p_environment)); Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); ERR_FAIL_COND(!sky); RID sky_material = sky_get_material(environment_get_sky(p_environment)); SkyMaterialData *material = nullptr; if (sky_material.is_valid()) { material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_shader.default_material; material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); } ERR_FAIL_COND(!material); SkyShaderData *shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); float multiplier = environment_get_bg_energy(p_environment); // Update radiance cubemap if (sky->reflection.dirty) { static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, +1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; CameraMatrix cm; cm.set_perspective(90, 1, 0.01, 10.0); CameraMatrix correction; correction.set_depth_correction(true); cm = correction * cm; if (shader_data->uses_quarter_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES]; Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID cubemap_draw_list; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } } if (shader_data->uses_half_res) { RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES]; Vector clear_colors; clear_colors.push_back(Color(0.0, 0.0, 0.0)); RD::DrawListID cubemap_draw_list; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } } RD::DrawListID cubemap_draw_list; RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP]; for (int i = 0; i < 6; i++) { Transform local_view; local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP); cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); RD::get_singleton()->draw_list_end(); } if (sky_use_cubemap_array) { if (sky->mode == RS::SKY_MODE_QUALITY) { for (int i = 1; i < sky->reflection.layers.size(); i++) { _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i); } } else { _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array); } _update_reflection_mipmaps(sky->reflection); } else { if (sky->mode == RS::SKY_MODE_QUALITY) { for (int i = 1; i < sky->reflection.layers[0].mipmaps.size(); i++) { _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i); } } else { _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array); } } sky->reflection.dirty = false; } } /* SKY SHADER */ void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) { //compile code = p_code; valid = false; ubo_size = 0; uniforms.clear(); if (code == String()) { return; //just invalid, but no error } ShaderCompilerRD::GeneratedCode gen_code; ShaderCompilerRD::IdentifierActions actions; uses_time = false; uses_half_res = false; uses_quarter_res = false; uses_position = false; uses_light = false; actions.render_mode_flags["use_half_res_pass"] = &uses_half_res; actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res; actions.usage_flag_pointers["TIME"] = &uses_time; actions.usage_flag_pointers["POSITION"] = &uses_position; actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light; actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light; actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light; actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light; actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light; actions.uniforms = &uniforms; RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code); ERR_FAIL_COND(err != OK); if (version.is_null()) { version = scene_singleton->sky_shader.shader.version_create(); } #if 0 print_line("**compiling shader:"); print_line("**defines:\n"); for (int i = 0; i < gen_code.defines.size(); i++) { print_line(gen_code.defines[i]); } print_line("\n**uniforms:\n" + gen_code.uniforms); // print_line("\n**vertex_globals:\n" + gen_code.vertex_global); // print_line("\n**vertex_code:\n" + gen_code.vertex); print_line("\n**fragment_globals:\n" + gen_code.fragment_global); print_line("\n**fragment_code:\n" + gen_code.fragment); print_line("\n**light_code:\n" + gen_code.light); #endif scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines); ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version)); ubo_size = gen_code.uniform_total_size; ubo_offsets = gen_code.uniform_offsets; texture_uniforms = gen_code.texture_uniforms; //update pipelines for (int i = 0; i < SKY_VERSION_MAX; i++) { RD::PipelineDepthStencilState depth_stencil_state; depth_stencil_state.enable_depth_test = true; depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i); pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0); } valid = true; } void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) { if (!p_texture.is_valid()) { default_texture_params.erase(p_name); } else { default_texture_params[p_name] = p_texture; } } void RasterizerSceneRD::SkyShaderData::get_param_list(List *p_param_list) const { Map order; for (Map::Element *E = uniforms.front(); E; E = E->next()) { if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]); pi.name = E->get(); p_param_list->push_back(pi); } } bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const { if (!uniforms.has(p_param)) { return false; } return uniforms[p_param].texture_order >= 0; } bool RasterizerSceneRD::SkyShaderData::is_animated() const { return false; } bool RasterizerSceneRD::SkyShaderData::casts_shadows() const { return false; } Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const { if (uniforms.has(p_parameter)) { ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter]; Vector default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } return Variant(); } RasterizerSceneRD::SkyShaderData::SkyShaderData() { valid = false; } RasterizerSceneRD::SkyShaderData::~SkyShaderData() { RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; ERR_FAIL_COND(!scene_singleton); //pipeline variants will clear themselves if shader is gone if (version.is_valid()) { scene_singleton->sky_shader.shader.version_free(version); } } RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() { SkyShaderData *shader_data = memnew(SkyShaderData); return shader_data; } void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; uniform_set_updated = true; if ((uint32_t)ubo_data.size() != shader_data->ubo_size) { p_uniform_dirty = true; if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); uniform_buffer = RID(); } ubo_data.resize(shader_data->ubo_size); if (ubo_data.size()) { uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear } //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } //check whether buffer changed if (p_uniform_dirty && ubo_data.size()) { update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false); RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw()); } uint32_t tex_uniform_count = shader_data->texture_uniforms.size(); if ((uint32_t)texture_cache.size() != tex_uniform_count) { texture_cache.resize(tex_uniform_count); p_textures_dirty = true; //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } if (p_textures_dirty && tex_uniform_count) { update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true); } if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) { // This material does not require an uniform set, so don't create it. return; } if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { //no reason to update uniform set, only UBO (or nothing) was needed to update return; } Vector uniforms; { if (shader_data->ubo_size) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(uniform_buffer); uniforms.push_back(u); } const RID *textures = texture_cache.ptrw(); for (uint32_t i = 0; i < tex_uniform_count; i++) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1 + i; u.ids.push_back(textures[i]); uniforms.push_back(u); } } uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL); } RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() { if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); } if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); } } RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) { SkyMaterialData *material_data = memnew(SkyMaterialData); material_data->shader_data = p_shader; material_data->last_frame = false; //update will happen later anyway so do nothing. return material_data; } RID RasterizerSceneRD::environment_create() { return environment_owner.make_rid(Environent()); } void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->background = p_bg; } void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ambient_light = p_color; env->ambient_source = p_ambient; env->ambient_light_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; env->reflection_source = p_reflection_source; env->ao_color = p_ao_color; } RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX); return env->background; } RID RasterizerSceneRD::environment_get_sky(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RID()); return env->sky; } float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->sky_custom_fov; } Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Basis()); return env->sky_orientation; } Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->bg_color; } float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->bg_energy; } int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->canvas_max_layer; } Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ambient_light; } RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG); return env->ambient_source; } float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_light_energy; } float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, 0); return env->ambient_sky_contribution; } RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED); return env->reflection_source; } Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, Color()); return env->ao_color; } void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->exposure = p_exposure; env->tone_mapper = p_tone_mapper; if (!env->auto_exposure && p_auto_exposure) { env->auto_exposure_version = ++auto_exposure_counter; } env->auto_exposure = p_auto_exposure; env->white = p_white; env->min_luminance = p_min_luminance; env->max_luminance = p_max_luminance; env->auto_exp_speed = p_auto_exp_speed; env->auto_exp_scale = p_auto_exp_scale; } void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->glow_enabled = p_enable; env->glow_levels = p_level_flags; env->glow_intensity = p_intensity; env->glow_strength = p_strength; env->glow_mix = p_mix; env->glow_bloom = p_bloom_threshold; env->glow_blend_mode = p_blend_mode; env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; env->glow_hdr_bleed_scale = p_hdr_bleed_scale; env->glow_hdr_luminance_cap = p_hdr_luminance_cap; } void RasterizerSceneRD::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ssao_enabled = p_enable; env->ssao_radius = p_radius; env->ssao_intensity = p_intensity; env->ssao_bias = p_bias; env->ssao_direct_light_affect = p_light_affect; env->ssao_ao_channel_affect = p_ao_channel_affect; env->ssao_blur = p_blur; } void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) { ssao_quality = p_quality; ssao_half_size = p_half_size; } bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_enabled; } float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_ao_channel_affect; } float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return env->ssao_direct_light_affect; } bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const { Environent *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, false); return false; } bool RasterizerSceneRD::is_environment(RID p_env) const { return environment_owner.owns(p_env); } //////////////////////////////////////////////////////////// RID RasterizerSceneRD::reflection_atlas_create() { ReflectionAtlas ra; ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count"); ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size"); return reflection_atlas_owner.make_rid(ra); } void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND(!ra); if (ra->size == p_reflection_size && ra->count == p_reflection_count) { return; //no changes } ra->size = p_reflection_size; ra->count = p_reflection_count; if (ra->reflection.is_valid()) { //clear and invalidate everything RD::get_singleton()->free(ra->reflection); ra->reflection = RID(); RD::get_singleton()->free(ra->depth_buffer); ra->depth_buffer = RID(); for (int i = 0; i < ra->reflections.size(); i++) { _clear_reflection_data(ra->reflections.write[i].data); if (ra->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(ra->reflections[i].owner); //rp->atlasindex clear } ra->reflections.clear(); } } //////////////////////// RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; return reflection_probe_instance_owner.make_rid(rpi); } void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; rpi->dirty = true; } void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); if (rpi->atlas.is_null()) { return; //nothing to release } ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND(!atlas); ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); atlas->reflections.write[rpi->atlas_index].owner = RID(); rpi->atlas_index = -1; rpi->atlas = RID(); } bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return rpi->atlas_index == -1; } bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->atlas.is_valid(); } bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas); ERR_FAIL_COND_V(!atlas, false); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings."); reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { // Invalidate reflection atlas, need to regenerate RD::get_singleton()->free(atlas->reflection); atlas->reflection = RID(); for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(atlas->reflections[i].owner); } atlas->reflections.clear(); } if (atlas->reflection.is_null()) { int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering { //reflection atlas was unused, create: RD::TextureFormat tf; tf.array_layers = 6 * atlas->count; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; tf.mipmaps = mipmaps; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = atlas->size; tf.height = atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); } atlas->reflections.resize(atlas->count); for (int i = 0; i < atlas->count; i++) { _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS); for (int j = 0; j < 6; j++) { Vector fb; fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]); fb.push_back(atlas->depth_buffer); atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb); } } Vector fb; fb.push_back(atlas->depth_buffer); atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); } if (rpi->atlas_index == -1) { for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { rpi->atlas_index = i; break; } } //find the one used last if (rpi->atlas_index == -1) { //everything is in use, find the one least used via LRU uint64_t pass_min = 0; for (int i = 0; i < atlas->reflections.size(); i++) { ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner); if (rpi2->last_pass < pass_min) { pass_min = rpi2->last_pass; rpi->atlas_index = i; } } } } rpi->atlas = p_reflection_atlas; rpi->rendering = true; rpi->dirty = false; rpi->processing_layer = 1; rpi->processing_side = 0; return true; } bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); ERR_FAIL_COND_V(rpi->atlas.is_null(), false); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); if (!atlas || rpi->atlas_index == -1) { //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) rpi->rendering = false; return false; } if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { // Using real time reflections, all roughness is done in one step _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false); rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } if (rpi->processing_layer > 1) { _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer); rpi->processing_layer++; if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { rpi->rendering = false; rpi->processing_side = 0; rpi->processing_layer = 1; return true; } return false; } else { _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer); } rpi->processing_side++; if (rpi->processing_side == 6) { rpi->processing_side = 0; rpi->processing_layer++; } return false; } uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, 0); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, 0); return atlas->size; } RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflections[rpi->atlas_index].fbs[p_index]; } RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, RID()); ERR_FAIL_INDEX_V(p_index, 6, RID()); ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth_fb; } /////////////////////////////////////////////////////////// RID RasterizerSceneRD::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size) return; // erasing atlas if (shadow_atlas->depth.is_valid()) { RD::get_singleton()->free(shadow_atlas->depth); shadow_atlas->depth = RID(); shadow_atlas->fb = RID(); } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.resize(0); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; if (shadow_atlas->size) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = shadow_atlas->size; tf.height = shadow_atlas->size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb; fb.push_back(shadow_atlas->depth); shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb); } } void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) return; //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) continue; if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) continue; //nothing found if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) continue; //unused int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) break; //too large valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); //see if it already exists if (shadow_atlas->shadow_owners.has(p_light_intance)) { //it does! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } //erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no better place for this shadow found, keep current //already existing, see if it should redraw or it's just OK shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.getornull(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no place to allocate this light, apologies return false; } void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size) { return; } directional_shadow.size = p_size; if (directional_shadow.depth.is_valid()) { RD::get_singleton()->free(directional_shadow.depth); directional_shadow.depth = RID(); directional_shadow.fb = RID(); } if (p_size > 0) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = p_size; tf.height = p_size; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb; fb.push_back(directional_shadow.depth); directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb); } _base_uniforms_changed(); } void RasterizerSceneRD::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { int split_h = 1; int split_v = 1; while (split_h * split_v < p_shadow_count) { if (split_h == split_v) { split_h <<= 1; } else { split_v <<= 1; } } Rect2i rect(0, 0, p_size, p_size); rect.size.width /= split_h; rect.size.height /= split_v; rect.position.x = rect.size.width * (p_shadow_index % split_h); rect.position.y = rect.size.height * (p_shadow_index / split_h); return rect; } int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (storage->light_directional_get_shadow_mode(light_instance->light)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; } return MAX(r.size.width, r.size.height); } ////////////////////////////////////////////////// RID RasterizerSceneRD::camera_effects_create() { return camera_effects_owner.make_rid(CameraEffects()); } void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) { dof_blur_quality = p_quality; dof_blur_use_jitter = p_use_jitter; } void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) { dof_blur_bokeh_shape = p_shape; } void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->dof_blur_far_enabled = p_far_enable; camfx->dof_blur_far_distance = p_far_distance; camfx->dof_blur_far_transition = p_far_transition; camfx->dof_blur_near_enabled = p_near_enable; camfx->dof_blur_near_distance = p_near_distance; camfx->dof_blur_near_transition = p_near_transition; camfx->dof_blur_amount = p_amount; } void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) { CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); ERR_FAIL_COND(!camfx); camfx->override_exposure_enabled = p_enable; camfx->override_exposure = p_exposure; } RID RasterizerSceneRD::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.getornull(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = storage->light_get_type(p_light); return li; } void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) { p_pass = 0; } ERR_FAIL_INDEX(p_pass, 4); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; } void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) { if (!shadow_cubemaps.has(p_size)) { ShadowCubemap sc; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size; tf.height = p_size; tf.type = RD::TEXTURE_TYPE_CUBE; tf.array_layers = 6; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); } for (int i = 0; i < 6; i++) { RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); Vector fbtex; fbtex.push_back(side_texture); sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); } shadow_cubemaps[p_size] = sc; } return &shadow_cubemaps[p_size]; } RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) { if (!shadow_maps.has(p_size)) { ShadowMap sm; { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; tf.width = p_size.width; tf.height = p_size.height; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } Vector fbtex; fbtex.push_back(sm.depth); sm.fb = RD::get_singleton()->framebuffer_create(fbtex); shadow_maps[p_size] = sm; } return &shadow_maps[p_size]; } ///////////////////////////////// RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) { //find a free slot int index = -1; for (int i = 0; i < gi_probe_slots.size(); i++) { if (gi_probe_slots[i] == RID()) { index = i; break; } } ERR_FAIL_COND_V(index == -1, RID()); GIProbeInstance gi_probe; gi_probe.slot = index; gi_probe.probe = p_base; RID rid = gi_probe_instance_owner.make_rid(gi_probe); gi_probe_slots.write[index] = rid; return rid; } void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gi_probe); gi_probe->transform = p_xform; } bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND_V(!gi_probe, false); //return true; return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe); } void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gi_probe); uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe); // (RE)CREATE IF NEEDED if (gi_probe->last_probe_data_version != data_version) { //need to re-create everything if (gi_probe->texture.is_valid()) { RD::get_singleton()->free(gi_probe->texture); if (gi_probe_use_anisotropy) { RD::get_singleton()->free(gi_probe->anisotropy_r16[0]); RD::get_singleton()->free(gi_probe->anisotropy_r16[1]); } RD::get_singleton()->free(gi_probe->write_buffer); gi_probe->mipmaps.clear(); } for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); } gi_probe->dynamic_maps.clear(); Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); if (octree_size != Vector3i()) { //can create a 3D texture Vector levels = storage->gi_probe_get_level_counts(gi_probe->probe); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = octree_size.x; tf.height = octree_size.y; tf.depth = octree_size.z; tf.type = RD::TEXTURE_TYPE_3D; tf.mipmaps = levels.size(); tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); if (gi_probe_use_anisotropy) { tf.format = RD::DATA_FORMAT_R16_UINT; tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT); tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16); //need to create R16 first, else driver does not like the storage bit for compute.. gi_probe->anisotropy_r16[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); gi_probe->anisotropy_r16[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16; gi_probe->anisotropy[0] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[0]); gi_probe->anisotropy[1] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[1]); RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); } { int total_elements = 0; for (int i = 0; i < levels.size(); i++) { total_elements += levels[i]; } if (gi_probe_use_anisotropy) { total_elements *= 6; } gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16); } for (int i = 0; i < levels.size(); i++) { GIProbeInstance::Mipmap mipmap; mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D); if (gi_probe_use_anisotropy) { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R16_UINT; mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D); mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D); } mipmap.level = levels.size() - i - 1; mipmap.cell_offset = 0; for (uint32_t j = 0; j < mipmap.level; j++) { mipmap.cell_offset += levels[j]; } mipmap.cell_count = levels[mipmap.level]; Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.ids.push_back(gi_probe->write_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { Vector copy_uniforms = uniforms; if (i == 0) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.ids.push_back(gi_probe_lights_uniform); copy_uniforms.push_back(u); } mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0); copy_uniforms = uniforms; //restore { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.ids.push_back(gi_probe->texture); copy_uniforms.push_back(u); } if (gi_probe_use_anisotropy) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 7; u.ids.push_back(gi_probe->anisotropy[0]); copy_uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.ids.push_back(gi_probe->anisotropy[1]); copy_uniforms.push_back(u); } } mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0); } else { mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0); } } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(mipmap.texture); uniforms.push_back(u); } if (gi_probe_use_anisotropy) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(mipmap.anisotropy[0]); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(mipmap.anisotropy[1]); uniforms.push_back(u); } } mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0); gi_probe->mipmaps.push_back(mipmap); } { uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z); uint32_t oversample = nearest_power_of_2_templated(4); int mipmap_index = 0; while (mipmap_index < gi_probe->mipmaps.size()) { GIProbeInstance::DynamicMap dmap; if (oversample > 0) { dmap.size = dynamic_map_size * (1 << oversample); dmap.mipmap = -1; oversample--; } else { dmap.size = dynamic_map_size >> mipmap_index; dmap.mipmap = mipmap_index; mipmap_index++; } RD::TextureFormat dtf; dtf.width = dmap.size; dtf.height = dmap.size; dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; if (gi_probe->dynamic_maps.size() == 0) { dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; } dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView()); if (gi_probe->dynamic_maps.size() == 0) { //render depth for first one dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); } //just use depth as-is dtf.format = RD::DATA_FORMAT_R32_SFLOAT; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); if (gi_probe->dynamic_maps.size() == 0) { dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView()); dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView()); dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView()); Vector fb; fb.push_back(dmap.albedo); fb.push_back(dmap.normal); fb.push_back(dmap.orm); fb.push_back(dmap.texture); //emission fb.push_back(dmap.depth); fb.push_back(dmap.fb_depth); dmap.fb = RD::get_singleton()->framebuffer_create(fb); { Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.ids.push_back(gi_probe_lights_uniform); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(dmap.albedo); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(dmap.normal); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(dmap.orm); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.ids.push_back(dmap.fb_depth); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.ids.push_back(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.ids.push_back(dmap.depth); uniforms.push_back(u); } dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0); } } else { bool plot = dmap.mipmap >= 0; bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1); Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 5; u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 6; u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth); uniforms.push_back(u); } if (write) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 7; u.ids.push_back(dmap.texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 8; u.ids.push_back(dmap.depth); uniforms.push_back(u); } } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } if (plot) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 11; u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture); uniforms.push_back(u); } if (gi_probe_is_anisotropic()) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 12; u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[0]); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 13; u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[1]); uniforms.push_back(u); } } } dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0); } gi_probe->dynamic_maps.push_back(dmap); } } } gi_probe->last_probe_data_version = data_version; p_update_light_instances = true; //just in case _base_uniforms_changed(); } // UDPDATE TIME if (gi_probe->has_dynamic_object_data) { //if it has dynamic object data, it needs to be cleared RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); if (gi_probe_is_anisotropic()) { RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); } } uint32_t light_count = 0; if (p_update_light_instances || p_dynamic_object_count > 0) { light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size()); { Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe); Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse(); //update lights for (uint32_t i = 0; i < light_count; i++) { GIProbeLight &l = gi_probe_lights[i]; RID light_instance = p_light_instances[i]; RID light = light_instance_get_base_light(light_instance); l.type = storage->light_get_type(light); l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION); l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY); l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length(); Color color = storage->light_get_color(light).to_linear(); l.color[0] = color.r; l.color[1] = color.g; l.color[2] = color.b; l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)); l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION); Transform xform = light_instance_get_base_transform(light_instance); Vector3 pos = to_probe_xform.xform(xform.origin); Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized(); l.position[0] = pos.x; l.position[1] = pos.y; l.position[2] = pos.z; l.direction[0] = dir.x; l.direction[1] = dir.y; l.direction[2] = dir.z; l.has_shadow = storage->light_has_shadow(light); } RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true); } } if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) { // PROCESS MIPMAPS if (gi_probe->mipmaps.size()) { //can update mipmaps Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe); GIProbePushConstant push_constant; push_constant.limits[0] = probe_size.x; push_constant.limits[1] = probe_size.y; push_constant.limits[2] = probe_size.z; push_constant.stack_size = gi_probe->mipmaps.size(); push_constant.emission_scale = 1.0; push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.light_count = light_count; push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe); /* print_line("probe update to version " + itos(gi_probe->last_probe_version)); print_line("propagation " + rtos(push_constant.propagation)); print_line("dynrange " + rtos(push_constant.dynamic_range)); */ RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); int passes; if (p_update_light_instances) { passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1; } else { passes = 1; //only re-blitting is necessary } int wg_size = 64; int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X); for (int pass = 0; pass < passes; pass++) { if (p_update_light_instances) { for (int i = 0; i < gi_probe->mipmaps.size(); i++) { if (i == 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]); } else if (i == 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]); } if (pass == 1 || i > 0) { RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } if (pass == 0 || i > 0) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0); } else { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0); } push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; push_constant.cell_count = gi_probe->mipmaps[i].cell_count; int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]); for (int i = 0; i < gi_probe->mipmaps.size(); i++) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0); push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; push_constant.cell_count = gi_probe->mipmaps[i].cell_count; int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; while (wg_todo) { int wg_count = MIN(wg_todo, wg_limit_x); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); wg_todo -= wg_count; push_constant.cell_offset += wg_count * wg_size; } } } RD::get_singleton()->compute_list_end(); } } gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) { Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z); Transform oversample_scale; oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier)); Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe); Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse(); Transform to_probe_xform = to_world_xform.affine_inverse(); AABB probe_aabb(Vector3(), octree_size); //this could probably be better parallelized in compute.. for (int i = 0; i < p_dynamic_object_count; i++) { InstanceBase *instance = p_dynamic_objects[i]; //not used, so clear instance->depth_layer = 0; instance->depth = 0; //transform aabb to giprobe AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb); //this needs to wrap to grid resolution to avoid jitter //also extend margin a bit just in case Vector3i begin = aabb.position - Vector3i(1, 1, 1); Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1); for (int j = 0; j < 3; j++) { if ((end[j] - begin[j]) & 1) { end[j]++; //for half extents split, it needs to be even } begin[j] = MAX(begin[j], 0); end[j] = MIN(end[j], octree_size[j] * multiplier); } //aabb = aabb.intersection(probe_aabb); //intersect aabb.position = begin; aabb.size = end - begin; //print_line("aabb: " + aabb); for (int j = 0; j < 6; j++) { //if (j != 0 && j != 3) { // continue; //} static const Vector3 render_z[6] = { Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(-1, 0, 0), Vector3(0, -1, 0), Vector3(0, 0, -1), }; static const Vector3 render_up[6] = { Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), Vector3(0, 1, 0), Vector3(0, 0, 1), Vector3(0, 1, 0), }; Vector3 render_dir = render_z[j]; Vector3 up_dir = render_up[j]; Vector3 center = aabb.position + aabb.size * 0.5; Transform xform; xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir); Vector3 x_dir = xform.basis.get_axis(0).abs(); int x_axis = int(Vector3(0, 1, 2).dot(x_dir)); Vector3 y_dir = xform.basis.get_axis(1).abs(); int y_axis = int(Vector3(0, 1, 2).dot(y_dir)); Vector3 z_dir = -xform.basis.get_axis(2); int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs())); Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]); bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0); bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0); bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0); CameraMatrix cm; cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]); _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size)); GIProbeDynamicPushConstant push_constant; zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant)); push_constant.limits[0] = octree_size.x; push_constant.limits[1] = octree_size.y; push_constant.limits[2] = octree_size.z; push_constant.light_count = p_light_instances.size(); push_constant.x_dir[0] = x_dir[0]; push_constant.x_dir[1] = x_dir[1]; push_constant.x_dir[2] = x_dir[2]; push_constant.y_dir[0] = y_dir[0]; push_constant.y_dir[1] = y_dir[1]; push_constant.y_dir[2] = y_dir[2]; push_constant.z_dir[0] = z_dir[0]; push_constant.z_dir[1] = z_dir[1]; push_constant.z_dir[2] = z_dir[2]; push_constant.z_base = xform.origin[z_axis]; push_constant.z_sign = (z_flip ? -1.0 : 1.0); push_constant.pos_multiplier = float(1.0) / multiplier; push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.flip_x = x_flip; push_constant.flip_y = y_flip; push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.prev_rect_ofs[0] = 0; push_constant.prev_rect_ofs[1] = 0; push_constant.prev_rect_size[0] = 0; push_constant.prev_rect_size[1] = 0; push_constant.on_mipmap = false; push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); push_constant.pad[0] = 0; push_constant.pad[1] = 0; push_constant.pad[2] = 0; //process lighting RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); //print_line("rect: " + itos(i) + ": " + rect); for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) { // enlarge the rect if needed so all pixels fit when downscaled, // this ensures downsampling is smooth and optimal because no pixels are left behind //x if (rect.position.x & 1) { rect.size.x++; push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal } else { push_constant.prev_rect_ofs[0] = 0; } if (rect.size.x & 1) { rect.size.x++; } rect.position.x >>= 1; rect.size.x = MAX(1, rect.size.x >> 1); //y if (rect.position.y & 1) { rect.size.y++; push_constant.prev_rect_ofs[1] = 1; } else { push_constant.prev_rect_ofs[1] = 0; } if (rect.size.y & 1) { rect.size.y++; } rect.position.y >>= 1; rect.size.y = MAX(1, rect.size.y >> 1); //shrink limits to ensure plot does not go outside map if (gi_probe->dynamic_maps[k].mipmap > 0) { for (int l = 0; l < 3; l++) { push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1); } } //print_line("rect: " + itos(i) + ": " + rect); push_constant.rect_pos[0] = rect.position[0]; push_constant.rect_pos[1] = rect.position[1]; push_constant.prev_rect_size[0] = push_constant.rect_size[0]; push_constant.prev_rect_size[1] = push_constant.rect_size[1]; push_constant.rect_size[0] = rect.size[0]; push_constant.rect_size[1] = rect.size[1]; push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0; RD::get_singleton()->compute_list_add_barrier(compute_list); if (gi_probe->dynamic_maps[k].mipmap < 0) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]); } else if (k < gi_probe->dynamic_maps.size() - 1) { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]); } else { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]); } RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); } RD::get_singleton()->compute_list_end(); } } gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again } gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe); } void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); if (gi_probe->mipmaps.size() == 0) { return; } CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse()); int level = 0; Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); GIProbeDebugPushConstant push_constant; push_constant.alpha = p_alpha; push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset; push_constant.level = level; push_constant.bounds[0] = octree_size.x >> level; push_constant.bounds[1] = octree_size.y >> level; push_constant.bounds[2] = octree_size.z >> level; push_constant.pad = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { push_constant.projection[i * 4 + j] = transform.matrix[i][j]; } } if (giprobe_debug_uniform_set.is_valid()) { RD::get_singleton()->free(giprobe_debug_uniform_set); } Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.ids.push_back(gi_probe->texture); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 3; u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); uniforms.push_back(u); } if (gi_probe_use_anisotropy) { { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 4; u.ids.push_back(gi_probe->anisotropy[0]); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.ids.push_back(gi_probe->anisotropy[1]); uniforms.push_back(u); } } int cell_count; if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) { cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2]; } else { cell_count = gi_probe->mipmaps[level].cell_count; } giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0); RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0); RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant)); RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36); } const Vector &RasterizerSceneRD::gi_probe_get_slots() const { return gi_probe_slots; } RasterizerSceneRD::GIProbeQuality RasterizerSceneRD::gi_probe_get_quality() const { return gi_probe_quality; } //////////////////////////////// RID RasterizerSceneRD::render_buffers_create() { RenderBuffers rb; rb.data = _create_render_buffer_data(); return render_buffers_owner.make_rid(rb); } void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->blur[0].texture.is_null()); uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.mipmaps = mipmaps_required; rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); //the second one is smaller (only used for separatable part of blur) tf.width >>= 1; tf.height >>= 1; tf.mipmaps--; rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); int base_width = rb->width; int base_height = rb->height; for (uint32_t i = 0; i < mipmaps_required; i++) { RenderBuffers::Blur::Mipmap mm; mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i); { Vector fbs; fbs.push_back(mm.texture); mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs); } mm.width = base_width; mm.height = base_height; rb->blur[0].mipmaps.push_back(mm); if (i > 0) { mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1); { Vector fbs; fbs.push_back(mm.texture); mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs); } rb->blur[1].mipmaps.push_back(mm); } base_width = MAX(1, base_width >> 1); base_height = MAX(1, base_height >> 1); } } void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) { ERR_FAIL_COND(!rb->luminance.current.is_null()); int w = rb->width; int h = rb->height; while (true) { w = MAX(w / 8, 1); h = MAX(h / 8, 1); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = w; tf.height = h; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; bool final = w == 1 && h == 1; if (final) { tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; } RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->luminance.reduce.push_back(texture); if (final) { rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView()); break; } } } void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) { if (rb->texture.is_valid()) { RD::get_singleton()->free(rb->texture); rb->texture = RID(); } if (rb->depth_texture.is_valid()) { RD::get_singleton()->free(rb->depth_texture); rb->depth_texture = RID(); } for (int i = 0; i < 2; i++) { if (rb->blur[i].texture.is_valid()) { RD::get_singleton()->free(rb->blur[i].texture); rb->blur[i].texture = RID(); rb->blur[i].mipmaps.clear(); } } for (int i = 0; i < rb->luminance.reduce.size(); i++) { RD::get_singleton()->free(rb->luminance.reduce[i]); } for (int i = 0; i < rb->luminance.reduce.size(); i++) { RD::get_singleton()->free(rb->luminance.reduce[i]); } rb->luminance.reduce.clear(); if (rb->luminance.current.is_valid()) { RD::get_singleton()->free(rb->luminance.current); rb->luminance.current = RID(); } if (rb->ssao.ao[0].is_valid()) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao[0]); if (rb->ssao.ao[1].is_valid()) { RD::get_singleton()->free(rb->ssao.ao[1]); } if (rb->ssao.ao_full.is_valid()) { RD::get_singleton()->free(rb->ssao.ao_full); } rb->ssao.depth = RID(); rb->ssao.ao[0] = RID(); rb->ssao.ao[1] = RID(); rb->ssao.ao_full = RID(); rb->ssao.depth_slices.clear(); } } void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); Environent *env = environment_owner.getornull(p_environment); ERR_FAIL_COND(!env); if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) { RD::get_singleton()->free(rb->ssao.depth); RD::get_singleton()->free(rb->ssao.ao[0]); if (rb->ssao.ao[1].is_valid()) { RD::get_singleton()->free(rb->ssao.ao[1]); } if (rb->ssao.ao_full.is_valid()) { RD::get_singleton()->free(rb->ssao.ao_full); } rb->ssao.depth = RID(); rb->ssao.ao[0] = RID(); rb->ssao.ao[1] = RID(); rb->ssao.ao_full = RID(); rb->ssao.depth_slices.clear(); } if (!rb->ssao.ao[0].is_valid()) { //allocate depth slices { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R32_SFLOAT; tf.width = rb->width / 2; tf.height = rb->height / 2; tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); for (uint32_t i = 0; i < tf.mipmaps; i++) { RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i); rb->ssao.depth_slices.push_back(slice); } } { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = ssao_half_size ? rb->width / 2 : rb->width; tf.height = ssao_half_size ? rb->height / 2 : rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); } if (ssao_half_size) { //upsample texture RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView()); } _render_buffers_uniform_set_changed(p_render_buffers); } storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness); } void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); Environent *env = environment_owner.getornull(p_environment); //glow (if enabled) CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); bool can_use_effects = rb->width >= 8 && rb->height >= 8; if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) { if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } float bokeh_size = camfx->dof_blur_amount * 64.0; storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal()); } if (can_use_effects && env && env->auto_exposure) { if (rb->luminance.current.is_null()) { _allocate_luminance_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version; rb->auto_exposure_version = env->auto_exposure_version; double step = env->auto_exp_speed * time_step; storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate); //swap final reduce with prev luminance SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]); RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on } int max_glow_level = -1; int glow_mask = 0; if (can_use_effects && env && env->glow_enabled) { /* see that blur textures are allocated */ if (rb->blur[0].texture.is_null()) { _allocate_blur_textures(rb); _render_buffers_uniform_set_changed(p_render_buffers); } for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { if (env->glow_levels & (1 << i)) { if (i >= rb->blur[1].mipmaps.size()) { max_glow_level = rb->blur[1].mipmaps.size() - 1; glow_mask |= 1 << max_glow_level; } else { max_glow_level = i; glow_mask |= (1 << i); } } } for (int i = 0; i < (max_glow_level + 1); i++) { int vp_w = rb->blur[1].mipmaps[i].width; int vp_h = rb->blur[1].mipmaps[i].height; if (i == 0) { RID luminance_texture; if (env->auto_exposure && rb->luminance.current.is_valid()) { luminance_texture = rb->luminance.current; } storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale); } else { storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength); } } } { //tonemap RasterizerEffectsRD::TonemapSettings tonemap; tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) { tonemap.use_auto_exposure = true; tonemap.exposure_texture = rb->luminance.current; tonemap.auto_exposure_grey = env->auto_exp_scale; } else { tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); } if (can_use_effects && env && env->glow_enabled) { tonemap.use_glow = true; tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode); tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity; tonemap.glow_level_flags = glow_mask; tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width; tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height; tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale; tonemap.glow_texture = rb->blur[1].texture; } else { tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); } if (env) { tonemap.tonemap_mode = env->tone_mapper; tonemap.white = env->white; tonemap.exposure = env->exposure; } storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap); } storage->render_target_disable_clear_request(rb->render_target); } void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) { RasterizerEffectsRD *effects = storage->get_effects(); RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { if (rb->luminance.current.is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; effects->copy_to_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_ROUGHNESS_LIMITER && _render_buffers_get_roughness_texture(p_render_buffers).is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_rect(_render_buffers_get_roughness_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) { Size2 rtsize = storage->render_target_get_size(rb->render_target); effects->copy_to_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize)); } } RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); if (!rb->blur[0].texture.is_valid()) { return RID(); //not valid at the moment } return rb->blur[0].texture; } RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, RID()); return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; } void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); rb->width = p_width; rb->height = p_height; rb->render_target = p_render_target; rb->msaa = p_msaa; _free_render_buffer_data(rb); { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = rb->width; tf.height = rb->height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa); _render_buffers_uniform_set_changed(p_render_buffers); } int RasterizerSceneRD::get_roughness_layers() const { return roughness_layers; } bool RasterizerSceneRD::is_using_radiance_cubemap_array() const { return sky_use_cubemap_array; } RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND_V(!rb, nullptr); return rb->data; } void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { Color clear_color; if (p_render_buffers.is_valid()) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb); clear_color = storage->render_target_get_clear_request_color(rb->render_target); } else { clear_color = storage->get_default_clear_color(); } _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color); if (p_render_buffers.is_valid()) { RENDER_TIMESTAMP("Tonemap"); _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection); _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas); } } void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); Rect2i atlas_rect; RID atlas_fb; bool using_dual_paraboloid = false; bool using_dual_paraboloid_flip = false; float zfar = 0; RID render_fb; RID render_texture; float bias = 0; float normal_bias = 0; bool render_cubemap = false; bool finalize_cubemap = false; CameraMatrix light_projection; Transform light_transform; if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); directional_shadow.current_light++; light_instance->last_scene_shadow_pass = scene_pass; } light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; atlas_rect.position.x = light_instance->directional_rect.position.x; atlas_rect.position.y = light_instance->directional_rect.position.y; atlas_rect.size.width = light_instance->directional_rect.size.x; atlas_rect.size.height = light_instance->directional_rect.size.y; if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { atlas_rect.size.width /= 2; atlas_rect.size.height /= 2; if (p_pass == 1) { atlas_rect.position.x += atlas_rect.size.width; } else if (p_pass == 2) { atlas_rect.position.y += atlas_rect.size.height; } else if (p_pass == 3) { atlas_rect.position.x += atlas_rect.size.width; atlas_rect.position.y += atlas_rect.size.height; } } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { atlas_rect.size.height /= 2; if (p_pass == 0) { } else { atlas_rect.position.y += atlas_rect.size.height; } } light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect; light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size; light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size; float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE)); zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult; normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; atlas_fb = directional_shadow.fb; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; atlas_rect.position.x = (quadrant & 1) * quadrant_size; atlas_rect.position.y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; atlas_rect.size.width = shadow_size; atlas_rect.size.height = shadow_size; atlas_fb = shadow_atlas->fb; zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS); normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS); if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) { if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); render_fb = cubemap->side_fb[p_pass]; render_texture = cubemap->cubemap; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; render_cubemap = true; finalize_cubemap = p_pass == 5; } else { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; atlas_rect.size.height /= 2; atlas_rect.position.y += p_pass * atlas_rect.size.height; using_dual_paraboloid = true; using_dual_paraboloid_flip = p_pass == 1; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; } } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); render_fb = shadow_map->fb; render_texture = shadow_map->depth; } } if (render_cubemap) { //rendering to cubemap _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false); if (finalize_cubemap) { //reblit atlas_rect.size.height /= 2; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, false); atlas_rect.position.y += atlas_rect.size.height; storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, true); } } else { //render shadow _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip); //copy to atlas storage->get_effects()->copy_to_rect(render_texture, atlas_fb, atlas_rect, true); //does not work from depth to color //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true); } } void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) { _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region); } bool RasterizerSceneRD::free(RID p_rid) { if (render_buffers_owner.owns(p_rid)) { RenderBuffers *rb = render_buffers_owner.getornull(p_rid); _free_render_buffer_data(rb); memdelete(rb->data); render_buffers_owner.free(p_rid); } else if (environment_owner.owns(p_rid)) { //not much to delete, just free it environment_owner.free(p_rid); } else if (camera_effects_owner.owns(p_rid)) { //not much to delete, just free it camera_effects_owner.free(p_rid); } else if (reflection_atlas_owner.owns(p_rid)) { reflection_atlas_set_size(p_rid, 0, 0); reflection_atlas_owner.free(p_rid); } else if (reflection_probe_instance_owner.owns(p_rid)) { //not much to delete, just free it //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); } else if (gi_probe_instance_owner.owns(p_rid)) { GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid); if (gi_probe->texture.is_valid()) { RD::get_singleton()->free(gi_probe->texture); RD::get_singleton()->free(gi_probe->write_buffer); } if (gi_probe->anisotropy[0].is_valid()) { RD::get_singleton()->free(gi_probe->anisotropy[0]); RD::get_singleton()->free(gi_probe->anisotropy[1]); } for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); } gi_probe_slots.write[gi_probe->slot] = RID(); gi_probe_instance_owner.free(p_rid); } else if (sky_owner.owns(p_rid)) { _update_dirty_skys(); Sky *sky = sky_owner.getornull(p_rid); if (sky->radiance.is_valid()) { RD::get_singleton()->free(sky->radiance); sky->radiance = RID(); } _clear_reflection_data(sky->reflection); if (sky->uniform_buffer.is_valid()) { RD::get_singleton()->free(sky->uniform_buffer); sky->uniform_buffer = RID(); } if (sky->half_res_pass.is_valid()) { RD::get_singleton()->free(sky->half_res_pass); sky->half_res_pass = RID(); } if (sky->quarter_res_pass.is_valid()) { RD::get_singleton()->free(sky->quarter_res_pass); sky->quarter_res_pass = RID(); } if (sky->material.is_valid()) { storage->free(sky->material); } sky_owner.free(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getornull(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); } else if (shadow_atlas_owner.owns(p_rid)) { shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); } else { return false; } return true; } void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } void RasterizerSceneRD::update() { _update_dirty_skys(); } void RasterizerSceneRD::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) { screen_space_roughness_limiter = p_enable; screen_space_roughness_limiter_curve = p_curve; } bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const { return screen_space_roughness_limiter; } float RasterizerSceneRD::screen_space_roughness_limiter_get_curve() const { return screen_space_roughness_limiter_curve; } RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr; RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) { storage = p_storage; singleton = this; roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers"); sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples"); sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); // sky_use_cubemap_array = false; uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); { //kinda complicated to compute the amount of slots, we try to use as many as we can gi_probe_max_lights = 32; gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights); gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight)); gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic"); gi_probe_quality = GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 2)); if (textures_per_stage <= 16) { gi_probe_slots.resize(2); //thats all you can get gi_probe_use_anisotropy = false; } else if (textures_per_stage <= 31) { gi_probe_slots.resize(4); //thats all you can get, iOS gi_probe_use_anisotropy = false; } else if (textures_per_stage <= 128) { gi_probe_slots.resize(32); //old intel gi_probe_use_anisotropy = false; } else if (textures_per_stage <= 256) { gi_probe_slots.resize(64); //old intel too gi_probe_use_anisotropy = false; } else { if (gi_probe_use_anisotropy) { gi_probe_slots.resize(1024 / 3); //needs 3 textures } else { gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater } } String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n"; if (gi_probe_use_anisotropy) { defines += "\n#define MODE_ANISOTROPIC\n"; } Vector versions; versions.push_back("\n#define MODE_COMPUTE_LIGHT\n"); versions.push_back("\n#define MODE_SECOND_BOUNCE\n"); versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n"); versions.push_back("\n#define MODE_WRITE_TEXTURE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n"); versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); giprobe_shader.initialize(versions, defines); giprobe_lighting_shader_version = giprobe_shader.version_create(); for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) { giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i); giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]); } } { String defines; if (gi_probe_use_anisotropy) { defines += "\n#define USE_ANISOTROPY\n"; } Vector versions; versions.push_back("\n#define MODE_DEBUG_COLOR\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n"); versions.push_back("\n#define MODE_DEBUG_EMISSION\n"); versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n"); giprobe_debug_shader.initialize(versions, defines); giprobe_debug_shader_version = giprobe_debug_shader.version_create(); for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) { giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i); RD::PipelineRasterizationState rs; rs.cull_mode = RD::POLYGON_CULL_FRONT; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); } } /* SKY SHADER */ { // Start with the directional lights for the sky sky_scene_state.max_directional_lights = 4; uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData); sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1; sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n"; // Initialize sky Vector sky_modes; sky_modes.push_back(""); // Full size sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap sky_shader.shader.initialize(sky_modes, defines); } // register our shader funds storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs); storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs); { ShaderCompilerRD::DefaultIdentifierActions actions; actions.renames["COLOR"] = "color"; actions.renames["ALPHA"] = "alpha"; actions.renames["EYEDIR"] = "cube_normal"; actions.renames["POSITION"] = "params.position_multiplier.xyz"; actions.renames["SKY_COORDS"] = "panorama_coords"; actions.renames["SCREEN_UV"] = "uv"; actions.renames["TIME"] = "params.time"; actions.renames["HALF_RES_COLOR"] = "half_res_color"; actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color"; actions.renames["RADIANCE"] = "radiance"; actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled"; actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction"; actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].energy"; actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color"; actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled"; actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction"; actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].energy"; actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color"; actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled"; actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction"; actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].energy"; actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color"; actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled"; actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction"; actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].energy"; actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color"; actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS"; actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS"; actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS"; actions.custom_samplers["RADIANCE"] = "material_samplers[3]"; actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n"; actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n"; actions.sampler_array_name = "material_samplers"; actions.base_texture_binding_index = 1; actions.texture_layout_set = 1; actions.base_uniform_string = "material."; actions.base_varying_index = 10; actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP; actions.default_repeat = ShaderLanguage::REPEAT_ENABLE; sky_shader.compiler.initialize(actions); } { // default material and shader for sky shader sky_shader.default_shader = storage->shader_create(); storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = mix(vec3(0.3), vec3(0.2, 0.4, 0.9), smoothstep(0.0, 0.05, EYEDIR.y)); } \n"); sky_shader.default_material = storage->material_create(); storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader); SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND); Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 0; u.ids.resize(12); RID *ids_ptr = u.ids.ptrw(); ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); uniforms.push_back(u); } sky_scene_state.sampler_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_SAMPLERS); } camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_shape")))); camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/filters/depth_of_field_use_jitter")); environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size")); screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter"); screen_space_roughness_limiter_curve = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter_curve"); glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0; } RasterizerSceneRD::~RasterizerSceneRD() { for (Map::Element *E = shadow_maps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().depth); } for (Map::Element *E = shadow_cubemaps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().cubemap); } if (sky_scene_state.sampler_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.sampler_uniform_set)) { RD::get_singleton()->free(sky_scene_state.sampler_uniform_set); } if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) { RD::get_singleton()->free(sky_scene_state.light_uniform_set); } RD::get_singleton()->free(gi_probe_lights_uniform); giprobe_debug_shader.version_free(giprobe_debug_shader_version); giprobe_shader.version_free(giprobe_lighting_shader_version); memdelete_arr(gi_probe_lights); SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); sky_shader.shader.version_free(md->shader_data->version); RD::get_singleton()->free(sky_scene_state.directional_light_buffer); memdelete_arr(sky_scene_state.directional_lights); memdelete_arr(sky_scene_state.last_frame_directional_lights); storage->free(sky_shader.default_shader); storage->free(sky_shader.default_material); }