/*************************************************************************/ /* physics_body.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "physics_body.h" #include "core/core_string_names.h" #include "core/engine.h" #include "core/list.h" #include "core/method_bind_ext.gen.inc" #include "core/object.h" #include "core/rid.h" #include "scene/scene_string_names.h" #ifdef TOOLS_ENABLED #include "editor/plugins/spatial_editor_plugin.h" #endif void PhysicsBody::_notification(int p_what) { } Vector3 PhysicsBody::get_linear_velocity() const { return Vector3(); } Vector3 PhysicsBody::get_angular_velocity() const { return Vector3(); } float PhysicsBody::get_inverse_mass() const { return 0; } Array PhysicsBody::get_collision_exceptions() { List exceptions; PhysicsServer::get_singleton()->body_get_collision_exceptions(get_rid(), &exceptions); Array ret; for (List::Element *E = exceptions.front(); E; E = E->next()) { RID body = E->get(); ObjectID instance_id = PhysicsServer::get_singleton()->body_get_object_instance_id(body); Object *obj = ObjectDB::get_instance(instance_id); PhysicsBody *physics_body = Object::cast_to(obj); ret.append(physics_body); } return ret; } void PhysicsBody::add_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); CollisionObject *collision_object = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject."); PhysicsServer::get_singleton()->body_add_collision_exception(get_rid(), collision_object->get_rid()); } void PhysicsBody::remove_collision_exception_with(Node *p_node) { ERR_FAIL_NULL(p_node); CollisionObject *collision_object = Object::cast_to(p_node); ERR_FAIL_COND_MSG(!collision_object, "Collision exception only works between two CollisionObject."); PhysicsServer::get_singleton()->body_remove_collision_exception(get_rid(), collision_object->get_rid()); } void PhysicsBody::_set_layers(uint32_t p_mask) { set_collision_layer(p_mask); set_collision_mask(p_mask); } uint32_t PhysicsBody::_get_layers() const { return get_collision_layer(); } void PhysicsBody::_bind_methods() { ClassDB::bind_method(D_METHOD("_set_layers", "mask"), &PhysicsBody::_set_layers); ClassDB::bind_method(D_METHOD("_get_layers"), &PhysicsBody::_get_layers); } PhysicsBody::PhysicsBody(PhysicsServer::BodyMode p_mode) : CollisionObject(PhysicsServer::get_singleton()->body_create(p_mode), false) { } #ifndef DISABLE_DEPRECATED void StaticBody::set_friction(real_t p_friction) { if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND_MSG(p_friction < 0 || p_friction > 1, "Friction must be between 0 and 1."); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_friction(p_friction); } real_t StaticBody::get_friction() const { WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 1; } return physics_material_override->get_friction(); } void StaticBody::set_bounce(real_t p_bounce) { if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND_MSG(p_bounce < 0 || p_bounce > 1, "Bounce must be between 0 and 1."); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_bounce(p_bounce); } real_t StaticBody::get_bounce() const { WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 0; } return physics_material_override->get_bounce(); } #endif void StaticBody::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } _reload_physics_characteristics(); } Ref StaticBody::get_physics_material_override() const { return physics_material_override; } void StaticBody::set_constant_linear_velocity(const Vector3 &p_vel) { constant_linear_velocity = p_vel; PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, constant_linear_velocity); } void StaticBody::set_constant_angular_velocity(const Vector3 &p_vel) { constant_angular_velocity = p_vel; PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, constant_angular_velocity); } Vector3 StaticBody::get_constant_linear_velocity() const { return constant_linear_velocity; } Vector3 StaticBody::get_constant_angular_velocity() const { return constant_angular_velocity; } void StaticBody::_bind_methods() { ClassDB::bind_method(D_METHOD("set_constant_linear_velocity", "vel"), &StaticBody::set_constant_linear_velocity); ClassDB::bind_method(D_METHOD("set_constant_angular_velocity", "vel"), &StaticBody::set_constant_angular_velocity); ClassDB::bind_method(D_METHOD("get_constant_linear_velocity"), &StaticBody::get_constant_linear_velocity); ClassDB::bind_method(D_METHOD("get_constant_angular_velocity"), &StaticBody::get_constant_angular_velocity); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_friction", "friction"), &StaticBody::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &StaticBody::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &StaticBody::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &StaticBody::get_bounce); #endif // DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &StaticBody::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &StaticBody::get_physics_material_override); ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &StaticBody::_reload_physics_characteristics); ClassDB::bind_method(D_METHOD("get_collision_exceptions"), &PhysicsBody::get_collision_exceptions); ClassDB::bind_method(D_METHOD("add_collision_exception_with", "body"), &PhysicsBody::add_collision_exception_with); ClassDB::bind_method(D_METHOD("remove_collision_exception_with", "body"), &PhysicsBody::remove_collision_exception_with); #ifndef DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce"); #endif // DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_linear_velocity"), "set_constant_linear_velocity", "get_constant_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "constant_angular_velocity"), "set_constant_angular_velocity", "get_constant_angular_velocity"); } StaticBody::StaticBody() : PhysicsBody(PhysicsServer::BODY_MODE_STATIC) { } StaticBody::~StaticBody() {} void StaticBody::_reload_physics_characteristics() { if (physics_material_override.is_null()) { PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, 0); PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, 1); } else { PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } void RigidBody::_body_enter_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(E->get().in_tree); E->get().in_tree = true; contact_monitor->locked = true; emit_signal(SceneStringNames::get_singleton()->body_entered, node); for (int i = 0; i < E->get().shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody::_body_exit_tree(ObjectID p_id) { Object *obj = ObjectDB::get_instance(p_id); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!node); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(p_id); ERR_FAIL_COND(!E); ERR_FAIL_COND(!E->get().in_tree); E->get().in_tree = false; contact_monitor->locked = true; emit_signal(SceneStringNames::get_singleton()->body_exited, node); for (int i = 0; i < E->get().shapes.size(); i++) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, E->get().rid, node, E->get().shapes[i].body_shape, E->get().shapes[i].local_shape); } contact_monitor->locked = false; } void RigidBody::_body_inout(int p_status, const RID &p_body, ObjectID p_instance, int p_body_shape, int p_local_shape) { bool body_in = p_status == 1; ObjectID objid = p_instance; Object *obj = ObjectDB::get_instance(objid); Node *node = Object::cast_to(obj); ERR_FAIL_COND(!contact_monitor); Map::Element *E = contact_monitor->body_map.find(objid); ERR_FAIL_COND(!body_in && !E); if (body_in) { if (!E) { E = contact_monitor->body_map.insert(objid, BodyState()); E->get().rid = p_body; //E->get().rc=0; E->get().in_tree = node && node->is_inside_tree(); if (node) { node->connect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree, make_binds(objid)); node->connect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree, make_binds(objid)); if (E->get().in_tree) { emit_signal(SceneStringNames::get_singleton()->body_entered, node); } } } //E->get().rc++; if (node) { E->get().shapes.insert(ShapePair(p_body_shape, p_local_shape)); } if (E->get().in_tree) { emit_signal(SceneStringNames::get_singleton()->body_shape_entered, p_body, node, p_body_shape, p_local_shape); } } else { //E->get().rc--; if (node) { E->get().shapes.erase(ShapePair(p_body_shape, p_local_shape)); } bool in_tree = E->get().in_tree; if (E->get().shapes.empty()) { if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree); if (in_tree) { emit_signal(SceneStringNames::get_singleton()->body_exited, node); } } contact_monitor->body_map.erase(E); } if (node && in_tree) { emit_signal(SceneStringNames::get_singleton()->body_shape_exited, p_body, obj, p_body_shape, p_local_shape); } } } struct _RigidBodyInOut { RID rid; ObjectID id; int shape; int local_shape; }; void RigidBody::_direct_state_changed(Object *p_state) { state = Object::cast_to(p_state); ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState object as argument"); set_ignore_transform_notification(true); set_global_transform(state->get_transform()); linear_velocity = state->get_linear_velocity(); angular_velocity = state->get_angular_velocity(); inverse_inertia_tensor = state->get_inverse_inertia_tensor(); if (sleeping != state->is_sleeping()) { sleeping = state->is_sleeping(); emit_signal(SceneStringNames::get_singleton()->sleeping_state_changed); } if (get_script_instance()) { get_script_instance()->call("_integrate_forces", state); } set_ignore_transform_notification(false); _on_transform_changed(); if (contact_monitor) { contact_monitor->locked = true; //untag all int rc = 0; for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { for (int i = 0; i < E->get().shapes.size(); i++) { E->get().shapes[i].tagged = false; rc++; } } _RigidBodyInOut *toadd = (_RigidBodyInOut *)alloca(state->get_contact_count() * sizeof(_RigidBodyInOut)); int toadd_count = 0; //state->get_contact_count(); RigidBody_RemoveAction *toremove = (RigidBody_RemoveAction *)alloca(rc * sizeof(RigidBody_RemoveAction)); int toremove_count = 0; //put the ones to add for (int i = 0; i < state->get_contact_count(); i++) { RID rid = state->get_contact_collider(i); ObjectID obj = state->get_contact_collider_id(i); int local_shape = state->get_contact_local_shape(i); int shape = state->get_contact_collider_shape(i); //bool found=false; Map::Element *E = contact_monitor->body_map.find(obj); if (!E) { toadd[toadd_count].rid = rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = obj; toadd[toadd_count].shape = shape; toadd_count++; continue; } ShapePair sp(shape, local_shape); int idx = E->get().shapes.find(sp); if (idx == -1) { toadd[toadd_count].rid = rid; toadd[toadd_count].local_shape = local_shape; toadd[toadd_count].id = obj; toadd[toadd_count].shape = shape; toadd_count++; continue; } E->get().shapes[idx].tagged = true; } //put the ones to remove for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { for (int i = 0; i < E->get().shapes.size(); i++) { if (!E->get().shapes[i].tagged) { toremove[toremove_count].rid = E->get().rid; toremove[toremove_count].body_id = E->key(); toremove[toremove_count].pair = E->get().shapes[i]; toremove_count++; } } } //process remotions for (int i = 0; i < toremove_count; i++) { _body_inout(0, toremove[i].rid, toremove[i].body_id, toremove[i].pair.body_shape, toremove[i].pair.local_shape); } //process aditions for (int i = 0; i < toadd_count; i++) { _body_inout(1, toadd[i].rid, toadd[i].id, toadd[i].shape, toadd[i].local_shape); } contact_monitor->locked = false; } state = nullptr; } void RigidBody::_notification(int p_what) { #ifdef TOOLS_ENABLED if (p_what == NOTIFICATION_ENTER_TREE) { if (Engine::get_singleton()->is_editor_hint()) { set_notify_local_transform(true); //used for warnings and only in editor } } if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) { if (Engine::get_singleton()->is_editor_hint()) { update_configuration_warning(); } } #endif } void RigidBody::set_mode(Mode p_mode) { mode = p_mode; switch (p_mode) { case MODE_RIGID: { PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_RIGID); } break; case MODE_STATIC: { PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_STATIC); } break; case MODE_CHARACTER: { PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_CHARACTER); } break; case MODE_KINEMATIC: { PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_KINEMATIC); } break; } update_configuration_warning(); } RigidBody::Mode RigidBody::get_mode() const { return mode; } void RigidBody::set_mass(real_t p_mass) { ERR_FAIL_COND(p_mass <= 0); mass = p_mass; _change_notify("mass"); _change_notify("weight"); PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_MASS, mass); } real_t RigidBody::get_mass() const { return mass; } void RigidBody::set_weight(real_t p_weight) { set_mass(p_weight / real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8))); } real_t RigidBody::get_weight() const { return mass * real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8)); } #ifndef DISABLE_DEPRECATED void RigidBody::set_friction(real_t p_friction) { if (p_friction == 1.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_friction has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND(p_friction < 0 || p_friction > 1); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_friction(p_friction); } real_t RigidBody::get_friction() const { WARN_DEPRECATED_MSG("The method get_friction has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 1; } return physics_material_override->get_friction(); } void RigidBody::set_bounce(real_t p_bounce) { if (p_bounce == 0.0 && physics_material_override.is_null()) { // default value, don't create an override for that return; } WARN_DEPRECATED_MSG("The method set_bounce has been deprecated and will be removed in the future, use physics material instead."); ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1); if (physics_material_override.is_null()) { physics_material_override.instance(); set_physics_material_override(physics_material_override); } physics_material_override->set_bounce(p_bounce); } real_t RigidBody::get_bounce() const { WARN_DEPRECATED_MSG("The method get_bounce has been deprecated and will be removed in the future, use physics material instead."); if (physics_material_override.is_null()) { return 0; } return physics_material_override->get_bounce(); } #endif // DISABLE_DEPRECATED void RigidBody::set_physics_material_override(const Ref &p_physics_material_override) { if (physics_material_override.is_valid()) { if (physics_material_override->is_connected(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics")) { physics_material_override->disconnect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } } physics_material_override = p_physics_material_override; if (physics_material_override.is_valid()) { physics_material_override->connect(CoreStringNames::get_singleton()->changed, this, "_reload_physics_characteristics"); } _reload_physics_characteristics(); } Ref RigidBody::get_physics_material_override() const { return physics_material_override; } void RigidBody::set_gravity_scale(real_t p_gravity_scale) { gravity_scale = p_gravity_scale; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale); } real_t RigidBody::get_gravity_scale() const { return gravity_scale; } void RigidBody::set_linear_damp(real_t p_linear_damp) { ERR_FAIL_COND(p_linear_damp < -1); linear_damp = p_linear_damp; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_LINEAR_DAMP, linear_damp); } real_t RigidBody::get_linear_damp() const { return linear_damp; } void RigidBody::set_angular_damp(real_t p_angular_damp) { ERR_FAIL_COND(p_angular_damp < -1); angular_damp = p_angular_damp; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_ANGULAR_DAMP, angular_damp); } real_t RigidBody::get_angular_damp() const { return angular_damp; } void RigidBody::set_axis_velocity(const Vector3 &p_axis) { Vector3 v = state ? state->get_linear_velocity() : linear_velocity; Vector3 axis = p_axis.normalized(); v -= axis * axis.dot(v); v += p_axis; if (state) { set_linear_velocity(v); } else { PhysicsServer::get_singleton()->body_set_axis_velocity(get_rid(), p_axis); linear_velocity = v; } } void RigidBody::set_linear_velocity(const Vector3 &p_velocity) { linear_velocity = p_velocity; if (state) { state->set_linear_velocity(linear_velocity); } else { PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_LINEAR_VELOCITY, linear_velocity); } } Vector3 RigidBody::get_linear_velocity() const { return linear_velocity; } void RigidBody::set_angular_velocity(const Vector3 &p_velocity) { angular_velocity = p_velocity; if (state) { state->set_angular_velocity(angular_velocity); } else { PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_ANGULAR_VELOCITY, angular_velocity); } } Vector3 RigidBody::get_angular_velocity() const { return angular_velocity; } Basis RigidBody::get_inverse_inertia_tensor() { return inverse_inertia_tensor; } void RigidBody::set_use_custom_integrator(bool p_enable) { if (custom_integrator == p_enable) { return; } custom_integrator = p_enable; PhysicsServer::get_singleton()->body_set_omit_force_integration(get_rid(), p_enable); } bool RigidBody::is_using_custom_integrator() { return custom_integrator; } void RigidBody::set_sleeping(bool p_sleeping) { sleeping = p_sleeping; PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_SLEEPING, sleeping); } void RigidBody::set_can_sleep(bool p_active) { can_sleep = p_active; PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_CAN_SLEEP, p_active); } bool RigidBody::is_able_to_sleep() const { return can_sleep; } bool RigidBody::is_sleeping() const { return sleeping; } void RigidBody::set_max_contacts_reported(int p_amount) { max_contacts_reported = p_amount; PhysicsServer::get_singleton()->body_set_max_contacts_reported(get_rid(), p_amount); } int RigidBody::get_max_contacts_reported() const { return max_contacts_reported; } void RigidBody::add_central_force(const Vector3 &p_force) { PhysicsServer::get_singleton()->body_add_central_force(get_rid(), p_force); } void RigidBody::add_force(const Vector3 &p_force, const Vector3 &p_pos) { PhysicsServer::get_singleton()->body_add_force(get_rid(), p_force, p_pos); } void RigidBody::add_torque(const Vector3 &p_torque) { PhysicsServer::get_singleton()->body_add_torque(get_rid(), p_torque); } void RigidBody::apply_central_impulse(const Vector3 &p_impulse) { PhysicsServer::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse); } void RigidBody::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) { PhysicsServer::get_singleton()->body_apply_impulse(get_rid(), p_pos, p_impulse); } void RigidBody::apply_torque_impulse(const Vector3 &p_impulse) { PhysicsServer::get_singleton()->body_apply_torque_impulse(get_rid(), p_impulse); } void RigidBody::set_use_continuous_collision_detection(bool p_enable) { ccd = p_enable; PhysicsServer::get_singleton()->body_set_enable_continuous_collision_detection(get_rid(), p_enable); } bool RigidBody::is_using_continuous_collision_detection() const { return ccd; } void RigidBody::set_contact_monitor(bool p_enabled) { if (p_enabled == is_contact_monitor_enabled()) { return; } if (!p_enabled) { ERR_FAIL_COND_MSG(contact_monitor->locked, "Can't disable contact monitoring during in/out callback. Use call_deferred(\"set_contact_monitor\", false) instead."); for (Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { //clean up mess Object *obj = ObjectDB::get_instance(E->key()); Node *node = Object::cast_to(obj); if (node) { node->disconnect(SceneStringNames::get_singleton()->tree_entered, this, SceneStringNames::get_singleton()->_body_enter_tree); node->disconnect(SceneStringNames::get_singleton()->tree_exiting, this, SceneStringNames::get_singleton()->_body_exit_tree); } } memdelete(contact_monitor); contact_monitor = nullptr; } else { contact_monitor = memnew(ContactMonitor); contact_monitor->locked = false; } } bool RigidBody::is_contact_monitor_enabled() const { return contact_monitor != nullptr; } void RigidBody::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool p_lock) { PhysicsServer::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock); } bool RigidBody::get_axis_lock(PhysicsServer::BodyAxis p_axis) const { return PhysicsServer::get_singleton()->body_is_axis_locked(get_rid(), p_axis); } Array RigidBody::get_colliding_bodies() const { ERR_FAIL_COND_V(!contact_monitor, Array()); Array ret; ret.resize(contact_monitor->body_map.size()); int idx = 0; for (const Map::Element *E = contact_monitor->body_map.front(); E; E = E->next()) { Object *obj = ObjectDB::get_instance(E->key()); if (!obj) { ret.resize(ret.size() - 1); //ops } else { ret[idx++] = obj; } } return ret; } String RigidBody::get_configuration_warning() const { Transform t = get_transform(); String warning = CollisionObject::get_configuration_warning(); if ((get_mode() == MODE_RIGID || get_mode() == MODE_CHARACTER) && (ABS(t.basis.get_axis(0).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(1).length() - 1.0) > 0.05 || ABS(t.basis.get_axis(2).length() - 1.0) > 0.05)) { if (warning != String()) { warning += "\n\n"; } warning += TTR("Size changes to RigidBody (in character or rigid modes) will be overridden by the physics engine when running.\nChange the size in children collision shapes instead."); } return warning; } void RigidBody::_bind_methods() { ClassDB::bind_method(D_METHOD("set_mode", "mode"), &RigidBody::set_mode); ClassDB::bind_method(D_METHOD("get_mode"), &RigidBody::get_mode); ClassDB::bind_method(D_METHOD("set_mass", "mass"), &RigidBody::set_mass); ClassDB::bind_method(D_METHOD("get_mass"), &RigidBody::get_mass); ClassDB::bind_method(D_METHOD("set_weight", "weight"), &RigidBody::set_weight); ClassDB::bind_method(D_METHOD("get_weight"), &RigidBody::get_weight); #ifndef DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_friction", "friction"), &RigidBody::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &RigidBody::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &RigidBody::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &RigidBody::get_bounce); #endif // DISABLE_DEPRECATED ClassDB::bind_method(D_METHOD("set_physics_material_override", "physics_material_override"), &RigidBody::set_physics_material_override); ClassDB::bind_method(D_METHOD("get_physics_material_override"), &RigidBody::get_physics_material_override); ClassDB::bind_method(D_METHOD("_reload_physics_characteristics"), &RigidBody::_reload_physics_characteristics); ClassDB::bind_method(D_METHOD("set_linear_velocity", "linear_velocity"), &RigidBody::set_linear_velocity); ClassDB::bind_method(D_METHOD("get_linear_velocity"), &RigidBody::get_linear_velocity); ClassDB::bind_method(D_METHOD("set_angular_velocity", "angular_velocity"), &RigidBody::set_angular_velocity); ClassDB::bind_method(D_METHOD("get_angular_velocity"), &RigidBody::get_angular_velocity); ClassDB::bind_method(D_METHOD("get_inverse_inertia_tensor"), &RigidBody::get_inverse_inertia_tensor); ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &RigidBody::set_gravity_scale); ClassDB::bind_method(D_METHOD("get_gravity_scale"), &RigidBody::get_gravity_scale); ClassDB::bind_method(D_METHOD("set_linear_damp", "linear_damp"), &RigidBody::set_linear_damp); ClassDB::bind_method(D_METHOD("get_linear_damp"), &RigidBody::get_linear_damp); ClassDB::bind_method(D_METHOD("set_angular_damp", "angular_damp"), &RigidBody::set_angular_damp); ClassDB::bind_method(D_METHOD("get_angular_damp"), &RigidBody::get_angular_damp); ClassDB::bind_method(D_METHOD("set_max_contacts_reported", "amount"), &RigidBody::set_max_contacts_reported); ClassDB::bind_method(D_METHOD("get_max_contacts_reported"), &RigidBody::get_max_contacts_reported); ClassDB::bind_method(D_METHOD("set_use_custom_integrator", "enable"), &RigidBody::set_use_custom_integrator); ClassDB::bind_method(D_METHOD("is_using_custom_integrator"), &RigidBody::is_using_custom_integrator); ClassDB::bind_method(D_METHOD("set_contact_monitor", "enabled"), &RigidBody::set_contact_monitor); ClassDB::bind_method(D_METHOD("is_contact_monitor_enabled"), &RigidBody::is_contact_monitor_enabled); ClassDB::bind_method(D_METHOD("set_use_continuous_collision_detection", "enable"), &RigidBody::set_use_continuous_collision_detection); ClassDB::bind_method(D_METHOD("is_using_continuous_collision_detection"), &RigidBody::is_using_continuous_collision_detection); ClassDB::bind_method(D_METHOD("set_axis_velocity", "axis_velocity"), &RigidBody::set_axis_velocity); ClassDB::bind_method(D_METHOD("add_central_force", "force"), &RigidBody::add_central_force); ClassDB::bind_method(D_METHOD("add_force", "force", "position"), &RigidBody::add_force); ClassDB::bind_method(D_METHOD("add_torque", "torque"), &RigidBody::add_torque); ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &RigidBody::apply_central_impulse); ClassDB::bind_method(D_METHOD("apply_impulse", "position", "impulse"), &RigidBody::apply_impulse); ClassDB::bind_method(D_METHOD("apply_torque_impulse", "impulse"), &RigidBody::apply_torque_impulse); ClassDB::bind_method(D_METHOD("set_sleeping", "sleeping"), &RigidBody::set_sleeping); ClassDB::bind_method(D_METHOD("is_sleeping"), &RigidBody::is_sleeping); ClassDB::bind_method(D_METHOD("set_can_sleep", "able_to_sleep"), &RigidBody::set_can_sleep); ClassDB::bind_method(D_METHOD("is_able_to_sleep"), &RigidBody::is_able_to_sleep); ClassDB::bind_method(D_METHOD("_direct_state_changed"), &RigidBody::_direct_state_changed); ClassDB::bind_method(D_METHOD("_body_enter_tree"), &RigidBody::_body_enter_tree); ClassDB::bind_method(D_METHOD("_body_exit_tree"), &RigidBody::_body_exit_tree); ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &RigidBody::set_axis_lock); ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &RigidBody::get_axis_lock); ClassDB::bind_method(D_METHOD("get_colliding_bodies"), &RigidBody::get_colliding_bodies); BIND_VMETHOD(MethodInfo("_integrate_forces", PropertyInfo(Variant::OBJECT, "state", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsDirectBodyState"))); ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Rigid,Static,Character,Kinematic"), "set_mode", "get_mode"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_mass", "get_mass"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01", PROPERTY_USAGE_EDITOR), "set_weight", "get_weight"); #ifndef DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01", 0), "set_bounce", "get_bounce"); #endif // DISABLE_DEPRECATED ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "physics_material_override", PROPERTY_HINT_RESOURCE_TYPE, "PhysicsMaterial"), "set_physics_material_override", "get_physics_material_override"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-128,128,0.01"), "set_gravity_scale", "get_gravity_scale"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "custom_integrator"), "set_use_custom_integrator", "is_using_custom_integrator"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "continuous_cd"), "set_use_continuous_collision_detection", "is_using_continuous_collision_detection"); ADD_PROPERTY(PropertyInfo(Variant::INT, "contacts_reported", PROPERTY_HINT_RANGE, "0,64,1,or_greater"), "set_max_contacts_reported", "get_max_contacts_reported"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "contact_monitor"), "set_contact_monitor", "is_contact_monitor_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "sleeping"), "set_sleeping", "is_sleeping"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "can_sleep"), "set_can_sleep", "is_able_to_sleep"); ADD_GROUP("Axis Lock", "axis_lock_"); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_linear_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Z); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_angular_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_ANGULAR_Z); ADD_GROUP("Linear", "linear_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "linear_velocity"), "set_linear_velocity", "get_linear_velocity"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "linear_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_linear_damp", "get_linear_damp"); ADD_GROUP("Angular", "angular_"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "angular_velocity"), "set_angular_velocity", "get_angular_velocity"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "angular_damp", PROPERTY_HINT_RANGE, "-1,100,0.001,or_greater"), "set_angular_damp", "get_angular_damp"); ADD_SIGNAL(MethodInfo("body_shape_entered", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_shape_exited", PropertyInfo(Variant::_RID, "body_rid"), PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"), PropertyInfo(Variant::INT, "body_shape_index"), PropertyInfo(Variant::INT, "local_shape_index"))); ADD_SIGNAL(MethodInfo("body_entered", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("body_exited", PropertyInfo(Variant::OBJECT, "body", PROPERTY_HINT_RESOURCE_TYPE, "Node"))); ADD_SIGNAL(MethodInfo("sleeping_state_changed")); BIND_ENUM_CONSTANT(MODE_RIGID); BIND_ENUM_CONSTANT(MODE_STATIC); BIND_ENUM_CONSTANT(MODE_CHARACTER); BIND_ENUM_CONSTANT(MODE_KINEMATIC); } RigidBody::RigidBody() : PhysicsBody(PhysicsServer::BODY_MODE_RIGID) { mode = MODE_RIGID; mass = 1; max_contacts_reported = 0; state = nullptr; gravity_scale = 1; linear_damp = -1; angular_damp = -1; //angular_velocity=0; sleeping = false; ccd = false; custom_integrator = false; contact_monitor = nullptr; can_sleep = true; PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed"); } RigidBody::~RigidBody() { if (contact_monitor) { memdelete(contact_monitor); } } void RigidBody::_reload_physics_characteristics() { if (physics_material_override.is_null()) { PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, 0); PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, 1); } else { PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, physics_material_override->computed_bounce()); PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, physics_material_override->computed_friction()); } } ////////////////////////////////////////////////////// ////////////////////////// Ref KinematicBody::_move(const Vector3 &p_motion, bool p_infinite_inertia, bool p_exclude_raycast_shapes, bool p_test_only) { Collision col; if (move_and_collide(p_motion, p_infinite_inertia, col, p_exclude_raycast_shapes, p_test_only)) { // Create a new instance when the cached reference is invalid or still in use in script. if (motion_cache.is_null() || motion_cache->reference_get_count() > 1) { motion_cache.instance(); motion_cache->owner = this; } motion_cache->collision = col; return motion_cache; } return Ref(); } bool KinematicBody::move_and_collide(const Vector3 &p_motion, bool p_infinite_inertia, Collision &r_collision, bool p_exclude_raycast_shapes, bool p_test_only, bool p_cancel_sliding, const Set &p_exclude) { if (sync_to_physics) { ERR_PRINT("Functions move_and_slide and move_and_collide do not work together with 'sync to physics' option. Please read the documentation."); } Transform gt = get_global_transform(); PhysicsServer::MotionResult result; bool colliding = PhysicsServer::get_singleton()->body_test_motion(get_rid(), gt, p_motion, p_infinite_inertia, &result, p_exclude_raycast_shapes, p_exclude); // Restore direction of motion to be along original motion, // in order to avoid sliding due to recovery, // but only if collision depth is low enough to avoid tunneling. if (p_cancel_sliding) { real_t motion_length = p_motion.length(); real_t precision = 0.001; if (colliding) { // Can't just use margin as a threshold because collision depth is calculated on unsafe motion, // so even in normal resting cases the depth can be a bit more than the margin. precision += motion_length * (result.collision_unsafe_fraction - result.collision_safe_fraction); if (result.collision_depth > (real_t)margin + precision) { p_cancel_sliding = false; } } if (p_cancel_sliding) { // When motion is null, recovery is the resulting motion. Vector3 motion_normal; if (motion_length > CMP_EPSILON) { motion_normal = p_motion / motion_length; } // Check depth of recovery. real_t projected_length = result.motion.dot(motion_normal); Vector3 recovery = result.motion - motion_normal * projected_length; real_t recovery_length = recovery.length(); // Fixes cases where canceling slide causes the motion to go too deep into the ground, // because we're only taking rest information into account and not general recovery. if (recovery_length < (real_t)margin + precision) { // Apply adjustment to motion. result.motion = motion_normal * projected_length; result.remainder = p_motion - result.motion; } } } if (colliding) { r_collision.collider_metadata = result.collider_metadata; r_collision.collider_shape = result.collider_shape; r_collision.collider_vel = result.collider_velocity; r_collision.collision = result.collision_point; r_collision.normal = result.collision_normal; r_collision.collider = result.collider_id; r_collision.collider_rid = result.collider; r_collision.travel = result.motion; r_collision.remainder = result.remainder; r_collision.local_shape = result.collision_local_shape; } for (int i = 0; i < 3; i++) { if (locked_axis & (1 << i)) { result.motion[i] = 0; } } if (!p_test_only) { gt.origin += result.motion; set_global_transform(gt); } return colliding; } //so, if you pass 45 as limit, avoid numerical precision errors when angle is 45. #define FLOOR_ANGLE_THRESHOLD 0.01 Vector3 KinematicBody::_move_and_slide_internal(const Vector3 &p_linear_velocity, const Vector3 &p_snap, const Vector3 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { Vector3 body_velocity = p_linear_velocity; Vector3 body_velocity_normal = body_velocity.normalized(); Vector3 up_direction = p_up_direction.normalized(); bool was_on_floor = on_floor; for (int i = 0; i < 3; i++) { if (locked_axis & (1 << i)) { body_velocity[i] = 0; } } // Hack in order to work with calling from _process as well as from _physics_process; calling from thread is risky float delta = Engine::get_singleton()->is_in_physics_frame() ? get_physics_process_delta_time() : get_process_delta_time(); Vector3 current_floor_velocity = floor_velocity; if (on_floor && on_floor_body.is_valid()) { // This approach makes sure there is less delay between the actual body velocity and the one we saved. PhysicsDirectBodyState *bs = PhysicsServer::get_singleton()->body_get_direct_state(on_floor_body); if (bs) { Transform gt = get_global_transform(); Vector3 local_position = gt.origin - bs->get_transform().origin; current_floor_velocity = bs->get_velocity_at_local_position(local_position); } else { // Body is removed or destroyed, invalidate floor. current_floor_velocity = Vector3(); on_floor_body = RID(); } } colliders.clear(); on_floor = false; on_ceiling = false; on_wall = false; floor_normal = Vector3(); floor_velocity = Vector3(); if (current_floor_velocity != Vector3() && on_floor_body.is_valid()) { Collision floor_collision; Set exclude; exclude.insert(on_floor_body); if (move_and_collide(current_floor_velocity * delta, p_infinite_inertia, floor_collision, true, false, false, exclude)) { colliders.push_back(floor_collision); _set_collision_direction(floor_collision, up_direction, p_floor_max_angle); } } on_floor_body = RID(); Vector3 motion = body_velocity * delta; // No sliding on first attempt to keep floor motion stable when possible, // when stop on slope is enabled. bool sliding_enabled = !p_stop_on_slope; for (int iteration = 0; iteration < p_max_slides; ++iteration) { Collision collision; bool found_collision = false; for (int i = 0; i < 2; ++i) { bool collided; if (i == 0) { //collide collided = move_and_collide(motion, p_infinite_inertia, collision, true, false, !sliding_enabled); if (!collided) { motion = Vector3(); //clear because no collision happened and motion completed } } else { //separate raycasts (if any) collided = separate_raycast_shapes(p_infinite_inertia, collision); if (collided) { collision.remainder = motion; //keep collision.travel = Vector3(); } } if (collided) { found_collision = true; colliders.push_back(collision); _set_collision_direction(collision, up_direction, p_floor_max_angle); if (on_floor && p_stop_on_slope) { if ((body_velocity_normal + up_direction).length() < 0.01) { Transform gt = get_global_transform(); if (collision.travel.length() > margin) { gt.origin -= collision.travel.slide(up_direction); } else { gt.origin -= collision.travel; } set_global_transform(gt); return Vector3(); } } if (sliding_enabled || !on_floor) { motion = collision.remainder.slide(collision.normal); body_velocity = body_velocity.slide(collision.normal); for (int j = 0; j < 3; j++) { if (locked_axis & (1 << j)) { body_velocity[j] = 0; } } } else { motion = collision.remainder; } } sliding_enabled = true; } if (!found_collision || motion == Vector3()) { break; } } if (was_on_floor && p_snap != Vector3() && !on_floor) { // Apply snap. Collision col; Transform gt = get_global_transform(); if (move_and_collide(p_snap, p_infinite_inertia, col, false, true, false)) { bool apply = true; if (up_direction != Vector3()) { if (Math::acos(col.normal.dot(up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { on_floor = true; floor_normal = col.normal; on_floor_body = col.collider_rid; floor_velocity = col.collider_vel; if (p_stop_on_slope) { // move and collide may stray the object a bit because of pre un-stucking, // so only ensure that motion happens on floor direction in this case. if (col.travel.length() > margin) { col.travel = col.travel.project(up_direction); } else { col.travel = Vector3(); } } } else { apply = false; //snapped with floor direction, but did not snap to a floor, do not snap. } } if (apply) { gt.origin += col.travel; set_global_transform(gt); } } } if (!on_floor) { // Add last platform velocity when just left a moving platform. return body_velocity + current_floor_velocity; } return body_velocity; } Vector3 KinematicBody::move_and_slide(const Vector3 &p_linear_velocity, const Vector3 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { return _move_and_slide_internal(p_linear_velocity, Vector3(), p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia); } Vector3 KinematicBody::move_and_slide_with_snap(const Vector3 &p_linear_velocity, const Vector3 &p_snap, const Vector3 &p_up_direction, bool p_stop_on_slope, int p_max_slides, float p_floor_max_angle, bool p_infinite_inertia) { return _move_and_slide_internal(p_linear_velocity, p_snap, p_up_direction, p_stop_on_slope, p_max_slides, p_floor_max_angle, p_infinite_inertia); } void KinematicBody::_set_collision_direction(const Collision &p_collision, const Vector3 &p_up_direction, float p_floor_max_angle) { if (p_up_direction == Vector3()) { //all is a wall on_wall = true; } else { if (Math::acos(p_collision.normal.dot(p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //floor on_floor = true; floor_normal = p_collision.normal; on_floor_body = p_collision.collider_rid; floor_velocity = p_collision.collider_vel; } else if (Math::acos(p_collision.normal.dot(-p_up_direction)) <= p_floor_max_angle + FLOOR_ANGLE_THRESHOLD) { //ceiling on_ceiling = true; } else { on_wall = true; } } } bool KinematicBody::is_on_floor() const { return on_floor; } bool KinematicBody::is_on_wall() const { return on_wall; } bool KinematicBody::is_on_ceiling() const { return on_ceiling; } Vector3 KinematicBody::get_floor_normal() const { return floor_normal; } real_t KinematicBody::get_floor_angle(const Vector3 &p_up_direction) const { ERR_FAIL_COND_V(p_up_direction == Vector3(), 0); return Math::acos(floor_normal.dot(p_up_direction)); } Vector3 KinematicBody::get_floor_velocity() const { return floor_velocity; } bool KinematicBody::test_move(const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia) { ERR_FAIL_COND_V(!is_inside_tree(), false); PhysicsServer::MotionResult result; bool colliding = PhysicsServer::get_singleton()->body_test_motion(get_rid(), p_from, p_motion, p_infinite_inertia, &result); if (colliding) { // Don't report collision when the whole motion is done. return (result.collision_safe_fraction < 1.0); } else { return false; } } bool KinematicBody::separate_raycast_shapes(bool p_infinite_inertia, Collision &r_collision) { PhysicsServer::SeparationResult sep_res[8]; //max 8 rays Transform gt = get_global_transform(); Vector3 recover; int hits = PhysicsServer::get_singleton()->body_test_ray_separation(get_rid(), gt, p_infinite_inertia, recover, sep_res, 8, margin); int deepest = -1; float deepest_depth; for (int i = 0; i < hits; i++) { if (deepest == -1 || sep_res[i].collision_depth > deepest_depth) { deepest = i; deepest_depth = sep_res[i].collision_depth; } } gt.origin += recover; set_global_transform(gt); if (deepest != -1) { r_collision.collider = sep_res[deepest].collider_id; r_collision.collider_rid = sep_res[deepest].collider; r_collision.collider_metadata = sep_res[deepest].collider_metadata; r_collision.collider_shape = sep_res[deepest].collider_shape; r_collision.collider_vel = sep_res[deepest].collider_velocity; r_collision.collision = sep_res[deepest].collision_point; r_collision.normal = sep_res[deepest].collision_normal; r_collision.local_shape = sep_res[deepest].collision_local_shape; r_collision.travel = recover; r_collision.remainder = Vector3(); return true; } else { return false; } } void KinematicBody::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool p_lock) { if (p_lock) { locked_axis |= p_axis; } else { locked_axis &= (~p_axis); } PhysicsServer::get_singleton()->body_set_axis_lock(get_rid(), p_axis, p_lock); } bool KinematicBody::get_axis_lock(PhysicsServer::BodyAxis p_axis) const { return PhysicsServer::get_singleton()->body_is_axis_locked(get_rid(), p_axis); } void KinematicBody::set_safe_margin(float p_margin) { margin = p_margin; PhysicsServer::get_singleton()->body_set_kinematic_safe_margin(get_rid(), margin); } float KinematicBody::get_safe_margin() const { return margin; } int KinematicBody::get_slide_count() const { return colliders.size(); } KinematicBody::Collision KinematicBody::get_slide_collision(int p_bounce) const { ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Collision()); return colliders[p_bounce]; } Ref KinematicBody::_get_slide_collision(int p_bounce) { ERR_FAIL_INDEX_V(p_bounce, colliders.size(), Ref()); if (p_bounce >= slide_colliders.size()) { slide_colliders.resize(p_bounce + 1); } // Create a new instance when the cached reference is invalid or still in use in script. if (slide_colliders[p_bounce].is_null() || slide_colliders[p_bounce]->reference_get_count() > 1) { slide_colliders.write[p_bounce].instance(); slide_colliders.write[p_bounce]->owner = this; } slide_colliders.write[p_bounce]->collision = colliders[p_bounce]; return slide_colliders[p_bounce]; } Ref KinematicBody::_get_last_slide_collision() { if (colliders.size() == 0) { return Ref(); } return _get_slide_collision(colliders.size() - 1); } void KinematicBody::set_sync_to_physics(bool p_enable) { if (sync_to_physics == p_enable) { return; } sync_to_physics = p_enable; if (Engine::get_singleton()->is_editor_hint()) { return; } if (p_enable) { PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed"); set_only_update_transform_changes(true); set_notify_local_transform(true); } else { PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), nullptr, ""); set_only_update_transform_changes(false); set_notify_local_transform(false); } } bool KinematicBody::is_sync_to_physics_enabled() const { return sync_to_physics; } void KinematicBody::_direct_state_changed(Object *p_state) { if (!sync_to_physics) { return; } PhysicsDirectBodyState *state = Object::cast_to(p_state); ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState object as argument"); last_valid_transform = state->get_transform(); set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); _on_transform_changed(); } void KinematicBody::_notification(int p_what) { if (p_what == NOTIFICATION_ENTER_TREE) { last_valid_transform = get_global_transform(); // Reset move_and_slide() data. on_floor = false; on_floor_body = RID(); on_ceiling = false; on_wall = false; colliders.clear(); floor_velocity = Vector3(); } if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) { //used by sync to physics, send the new transform to the physics Transform new_transform = get_global_transform(); PhysicsServer::get_singleton()->body_set_state(get_rid(), PhysicsServer::BODY_STATE_TRANSFORM, new_transform); //but then revert changes set_notify_local_transform(false); set_global_transform(last_valid_transform); set_notify_local_transform(true); _on_transform_changed(); } } void KinematicBody::_bind_methods() { ClassDB::bind_method(D_METHOD("move_and_collide", "rel_vec", "infinite_inertia", "exclude_raycast_shapes", "test_only"), &KinematicBody::_move, DEFVAL(true), DEFVAL(true), DEFVAL(false)); ClassDB::bind_method(D_METHOD("move_and_slide", "linear_velocity", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody::move_and_slide, DEFVAL(Vector3(0, 0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true)); ClassDB::bind_method(D_METHOD("move_and_slide_with_snap", "linear_velocity", "snap", "up_direction", "stop_on_slope", "max_slides", "floor_max_angle", "infinite_inertia"), &KinematicBody::move_and_slide_with_snap, DEFVAL(Vector3(0, 0, 0)), DEFVAL(false), DEFVAL(4), DEFVAL(Math::deg2rad((float)45)), DEFVAL(true)); ClassDB::bind_method(D_METHOD("test_move", "from", "rel_vec", "infinite_inertia"), &KinematicBody::test_move, DEFVAL(true)); ClassDB::bind_method(D_METHOD("is_on_floor"), &KinematicBody::is_on_floor); ClassDB::bind_method(D_METHOD("is_on_ceiling"), &KinematicBody::is_on_ceiling); ClassDB::bind_method(D_METHOD("is_on_wall"), &KinematicBody::is_on_wall); ClassDB::bind_method(D_METHOD("get_floor_normal"), &KinematicBody::get_floor_normal); ClassDB::bind_method(D_METHOD("get_floor_angle", "up_direction"), &KinematicBody::get_floor_angle, DEFVAL(Vector3(0.0, 1.0, 0.0))); ClassDB::bind_method(D_METHOD("get_floor_velocity"), &KinematicBody::get_floor_velocity); ClassDB::bind_method(D_METHOD("set_axis_lock", "axis", "lock"), &KinematicBody::set_axis_lock); ClassDB::bind_method(D_METHOD("get_axis_lock", "axis"), &KinematicBody::get_axis_lock); ClassDB::bind_method(D_METHOD("set_safe_margin", "pixels"), &KinematicBody::set_safe_margin); ClassDB::bind_method(D_METHOD("get_safe_margin"), &KinematicBody::get_safe_margin); ClassDB::bind_method(D_METHOD("get_slide_count"), &KinematicBody::get_slide_count); ClassDB::bind_method(D_METHOD("get_slide_collision", "slide_idx"), &KinematicBody::_get_slide_collision); ClassDB::bind_method(D_METHOD("get_last_slide_collision"), &KinematicBody::_get_last_slide_collision); ClassDB::bind_method(D_METHOD("set_sync_to_physics", "enable"), &KinematicBody::set_sync_to_physics); ClassDB::bind_method(D_METHOD("is_sync_to_physics_enabled"), &KinematicBody::is_sync_to_physics_enabled); ClassDB::bind_method(D_METHOD("_direct_state_changed"), &KinematicBody::_direct_state_changed); ADD_GROUP("Axis Lock", "axis_lock_"); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_motion_x"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_motion_y"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "axis_lock_motion_z"), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Z); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "move_lock_x", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_X); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "move_lock_y", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Y); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "move_lock_z", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_axis_lock", "get_axis_lock", PhysicsServer::BODY_AXIS_LINEAR_Z); ADD_PROPERTY(PropertyInfo(Variant::REAL, "collision/safe_margin", PROPERTY_HINT_RANGE, "0.001,256,0.001"), "set_safe_margin", "get_safe_margin"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "motion/sync_to_physics"), "set_sync_to_physics", "is_sync_to_physics_enabled"); } KinematicBody::KinematicBody() : PhysicsBody(PhysicsServer::BODY_MODE_KINEMATIC) { locked_axis = 0; on_floor = false; on_ceiling = false; on_wall = false; set_safe_margin(0.001); } KinematicBody::~KinematicBody() { if (motion_cache.is_valid()) { motion_cache->owner = nullptr; } for (int i = 0; i < slide_colliders.size(); i++) { if (slide_colliders[i].is_valid()) { slide_colliders.write[i]->owner = nullptr; } } } /////////////////////////////////////// Vector3 KinematicCollision::get_position() const { return collision.collision; } Vector3 KinematicCollision::get_normal() const { return collision.normal; } Vector3 KinematicCollision::get_travel() const { return collision.travel; } Vector3 KinematicCollision::get_remainder() const { return collision.remainder; } real_t KinematicCollision::get_angle(const Vector3 &p_up_direction) const { ERR_FAIL_COND_V(p_up_direction == Vector3(), 0); return collision.get_angle(p_up_direction); } Object *KinematicCollision::get_local_shape() const { if (!owner) { return nullptr; } uint32_t ownerid = owner->shape_find_owner(collision.local_shape); return owner->shape_owner_get_owner(ownerid); } Object *KinematicCollision::get_collider() const { if (collision.collider) { return ObjectDB::get_instance(collision.collider); } return nullptr; } ObjectID KinematicCollision::get_collider_id() const { return collision.collider; } RID KinematicCollision::get_collider_rid() const { return collision.collider_rid; } Object *KinematicCollision::get_collider_shape() const { Object *collider = get_collider(); if (collider) { CollisionObject *obj2d = Object::cast_to(collider); if (obj2d) { uint32_t ownerid = obj2d->shape_find_owner(collision.collider_shape); return obj2d->shape_owner_get_owner(ownerid); } } return nullptr; } int KinematicCollision::get_collider_shape_index() const { return collision.collider_shape; } Vector3 KinematicCollision::get_collider_velocity() const { return collision.collider_vel; } Variant KinematicCollision::get_collider_metadata() const { return Variant(); } void KinematicCollision::_bind_methods() { ClassDB::bind_method(D_METHOD("get_position"), &KinematicCollision::get_position); ClassDB::bind_method(D_METHOD("get_normal"), &KinematicCollision::get_normal); ClassDB::bind_method(D_METHOD("get_travel"), &KinematicCollision::get_travel); ClassDB::bind_method(D_METHOD("get_remainder"), &KinematicCollision::get_remainder); ClassDB::bind_method(D_METHOD("get_angle", "up_direction"), &KinematicCollision::get_angle, DEFVAL(Vector3(0.0, 1.0, 0.0))); ClassDB::bind_method(D_METHOD("get_local_shape"), &KinematicCollision::get_local_shape); ClassDB::bind_method(D_METHOD("get_collider"), &KinematicCollision::get_collider); ClassDB::bind_method(D_METHOD("get_collider_id"), &KinematicCollision::get_collider_id); ClassDB::bind_method(D_METHOD("get_collider_rid"), &KinematicCollision::get_collider_rid); ClassDB::bind_method(D_METHOD("get_collider_shape"), &KinematicCollision::get_collider_shape); ClassDB::bind_method(D_METHOD("get_collider_shape_index"), &KinematicCollision::get_collider_shape_index); ClassDB::bind_method(D_METHOD("get_collider_velocity"), &KinematicCollision::get_collider_velocity); ClassDB::bind_method(D_METHOD("get_collider_metadata"), &KinematicCollision::get_collider_metadata); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "position"), "", "get_position"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "normal"), "", "get_normal"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "travel"), "", "get_travel"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "remainder"), "", "get_remainder"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "local_shape"), "", "get_local_shape"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider"), "", "get_collider"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_id"), "", "get_collider_id"); ADD_PROPERTY(PropertyInfo(Variant::_RID, "collider_rid"), "", "get_collider_rid"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "collider_shape"), "", "get_collider_shape"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collider_shape_index"), "", "get_collider_shape_index"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "collider_velocity"), "", "get_collider_velocity"); ADD_PROPERTY(PropertyInfo(Variant::NIL, "collider_metadata", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NIL_IS_VARIANT), "", "get_collider_metadata"); } KinematicCollision::KinematicCollision() { collision.collider = 0; collision.collider_shape = 0; collision.local_shape = 0; owner = nullptr; } /////////////////////////////////////// bool PhysicalBone::JointData::_set(const StringName &p_name, const Variant &p_value, RID j) { return false; } bool PhysicalBone::JointData::_get(const StringName &p_name, Variant &r_ret) const { return false; } void PhysicalBone::JointData::_get_property_list(List *p_list) const { } void PhysicalBone::apply_central_impulse(const Vector3 &p_impulse) { PhysicsServer::get_singleton()->body_apply_central_impulse(get_rid(), p_impulse); } void PhysicalBone::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) { PhysicsServer::get_singleton()->body_apply_impulse(get_rid(), p_pos, p_impulse); } bool PhysicalBone::PinJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/bias" == p_name) { bias = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_BIAS, bias); } } else if ("joint_constraints/damping" == p_name) { damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_DAMPING, damping); } } else if ("joint_constraints/impulse_clamp" == p_name) { impulse_clamp = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->pin_joint_set_param(j, PhysicsServer::PIN_JOINT_IMPULSE_CLAMP, impulse_clamp); } } else { return false; } return true; } bool PhysicalBone::PinJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/bias" == p_name) { r_ret = bias; } else if ("joint_constraints/damping" == p_name) { r_ret = damping; } else if ("joint_constraints/impulse_clamp" == p_name) { r_ret = impulse_clamp; } else { return false; } return true; } void PhysicalBone::PinJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/damping", PROPERTY_HINT_RANGE, "0.01,8.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/impulse_clamp", PROPERTY_HINT_RANGE, "0.0,64.0,0.01")); } bool PhysicalBone::ConeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/swing_span" == p_name) { swing_span = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_SWING_SPAN, swing_span); } } else if ("joint_constraints/twist_span" == p_name) { twist_span = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_TWIST_SPAN, twist_span); } } else if ("joint_constraints/bias" == p_name) { bias = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_BIAS, bias); } } else if ("joint_constraints/softness" == p_name) { softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_SOFTNESS, softness); } } else if ("joint_constraints/relaxation" == p_name) { relaxation = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->cone_twist_joint_set_param(j, PhysicsServer::CONE_TWIST_JOINT_RELAXATION, relaxation); } } else { return false; } return true; } bool PhysicalBone::ConeJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/swing_span" == p_name) { r_ret = Math::rad2deg(swing_span); } else if ("joint_constraints/twist_span" == p_name) { r_ret = Math::rad2deg(twist_span); } else if ("joint_constraints/bias" == p_name) { r_ret = bias; } else if ("joint_constraints/softness" == p_name) { r_ret = softness; } else if ("joint_constraints/relaxation" == p_name) { r_ret = relaxation; } else { return false; } return true; } void PhysicalBone::ConeJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/swing_span", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/twist_span", PROPERTY_HINT_RANGE, "-40000,40000,0.1,or_lesser,or_greater")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/bias", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/relaxation", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); } bool PhysicalBone::HingeJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/angular_limit_enabled" == p_name) { angular_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_flag(j, PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT, angular_limit_enabled); } } else if ("joint_constraints/angular_limit_upper" == p_name) { angular_limit_upper = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_UPPER, angular_limit_upper); } } else if ("joint_constraints/angular_limit_lower" == p_name) { angular_limit_lower = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_LOWER, angular_limit_lower); } } else if ("joint_constraints/angular_limit_bias" == p_name) { angular_limit_bias = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_BIAS, angular_limit_bias); } } else if ("joint_constraints/angular_limit_softness" == p_name) { angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_relaxation" == p_name) { angular_limit_relaxation = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->hinge_joint_set_param(j, PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION, angular_limit_relaxation); } } else { return false; } return true; } bool PhysicalBone::HingeJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/angular_limit_enabled" == p_name) { r_ret = angular_limit_enabled; } else if ("joint_constraints/angular_limit_upper" == p_name) { r_ret = Math::rad2deg(angular_limit_upper); } else if ("joint_constraints/angular_limit_lower" == p_name) { r_ret = Math::rad2deg(angular_limit_lower); } else if ("joint_constraints/angular_limit_bias" == p_name) { r_ret = angular_limit_bias; } else if ("joint_constraints/angular_limit_softness" == p_name) { r_ret = angular_limit_softness; } else if ("joint_constraints/angular_limit_relaxation" == p_name) { r_ret = angular_limit_relaxation; } else { return false; } return true; } void PhysicalBone::HingeJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/angular_limit_enabled")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_bias", PROPERTY_HINT_RANGE, "0.01,0.99,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_relaxation", PROPERTY_HINT_RANGE, "0.01,16,0.01")); } bool PhysicalBone::SliderJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } if ("joint_constraints/linear_limit_upper" == p_name) { linear_limit_upper = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER, linear_limit_upper); } } else if ("joint_constraints/linear_limit_lower" == p_name) { linear_limit_lower = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER, linear_limit_lower); } } else if ("joint_constraints/linear_limit_softness" == p_name) { linear_limit_softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, linear_limit_softness); } } else if ("joint_constraints/linear_limit_restitution" == p_name) { linear_limit_restitution = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, linear_limit_restitution); } } else if ("joint_constraints/linear_limit_damping" == p_name) { linear_limit_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, linear_limit_restitution); } } else if ("joint_constraints/angular_limit_upper" == p_name) { angular_limit_upper = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, angular_limit_upper); } } else if ("joint_constraints/angular_limit_lower" == p_name) { angular_limit_lower = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, angular_limit_lower); } } else if ("joint_constraints/angular_limit_softness" == p_name) { angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_restitution" == p_name) { angular_limit_restitution = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, angular_limit_softness); } } else if ("joint_constraints/angular_limit_damping" == p_name) { angular_limit_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->slider_joint_set_param(j, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, angular_limit_damping); } } else { return false; } return true; } bool PhysicalBone::SliderJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } if ("joint_constraints/linear_limit_upper" == p_name) { r_ret = linear_limit_upper; } else if ("joint_constraints/linear_limit_lower" == p_name) { r_ret = linear_limit_lower; } else if ("joint_constraints/linear_limit_softness" == p_name) { r_ret = linear_limit_softness; } else if ("joint_constraints/linear_limit_restitution" == p_name) { r_ret = linear_limit_restitution; } else if ("joint_constraints/linear_limit_damping" == p_name) { r_ret = linear_limit_damping; } else if ("joint_constraints/angular_limit_upper" == p_name) { r_ret = Math::rad2deg(angular_limit_upper); } else if ("joint_constraints/angular_limit_lower" == p_name) { r_ret = Math::rad2deg(angular_limit_lower); } else if ("joint_constraints/angular_limit_softness" == p_name) { r_ret = angular_limit_softness; } else if ("joint_constraints/angular_limit_restitution" == p_name) { r_ret = angular_limit_restitution; } else if ("joint_constraints/angular_limit_damping" == p_name) { r_ret = angular_limit_damping; } else { return false; } return true; } void PhysicalBone::SliderJointData::_get_property_list(List *p_list) const { JointData::_get_property_list(p_list); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_upper")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_lower")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/linear_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_restitution", PROPERTY_HINT_RANGE, "0.01,16.0,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/angular_limit_damping", PROPERTY_HINT_RANGE, "0,16.0,0.01")); } bool PhysicalBone::SixDOFJointData::_set(const StringName &p_name, const Variant &p_value, RID j) { if (JointData::_set(p_name, p_value, j)) { return true; } String path = p_name; if (!path.begins_with("joint_constraints/")) { return false; } Vector3::Axis axis; { const String axis_s = path.get_slicec('/', 1); if ("x" == axis_s) { axis = Vector3::AXIS_X; } else if ("y" == axis_s) { axis = Vector3::AXIS_Y; } else if ("z" == axis_s) { axis = Vector3::AXIS_Z; } else { return false; } } String var_name = path.get_slicec('/', 2); if ("linear_limit_enabled" == var_name) { axis_data[axis].linear_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, axis_data[axis].linear_limit_enabled); } } else if ("linear_limit_upper" == var_name) { axis_data[axis].linear_limit_upper = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT, axis_data[axis].linear_limit_upper); } } else if ("linear_limit_lower" == var_name) { axis_data[axis].linear_limit_lower = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT, axis_data[axis].linear_limit_lower); } } else if ("linear_limit_softness" == var_name) { axis_data[axis].linear_limit_softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, axis_data[axis].linear_limit_softness); } } else if ("linear_spring_enabled" == var_name) { axis_data[axis].linear_spring_enabled = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, axis_data[axis].linear_spring_enabled); } } else if ("linear_spring_stiffness" == var_name) { axis_data[axis].linear_spring_stiffness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, axis_data[axis].linear_spring_stiffness); } } else if ("linear_spring_damping" == var_name) { axis_data[axis].linear_spring_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_DAMPING, axis_data[axis].linear_spring_damping); } } else if ("linear_equilibrium_point" == var_name) { axis_data[axis].linear_equilibrium_point = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].linear_equilibrium_point); } } else if ("linear_restitution" == var_name) { axis_data[axis].linear_restitution = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION, axis_data[axis].linear_restitution); } } else if ("linear_damping" == var_name) { axis_data[axis].linear_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING, axis_data[axis].linear_damping); } } else if ("angular_limit_enabled" == var_name) { axis_data[axis].angular_limit_enabled = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, axis_data[axis].angular_limit_enabled); } } else if ("angular_limit_upper" == var_name) { axis_data[axis].angular_limit_upper = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, axis_data[axis].angular_limit_upper); } } else if ("angular_limit_lower" == var_name) { axis_data[axis].angular_limit_lower = Math::deg2rad(real_t(p_value)); if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, axis_data[axis].angular_limit_lower); } } else if ("angular_limit_softness" == var_name) { axis_data[axis].angular_limit_softness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, axis_data[axis].angular_limit_softness); } } else if ("angular_restitution" == var_name) { axis_data[axis].angular_restitution = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION, axis_data[axis].angular_restitution); } } else if ("angular_damping" == var_name) { axis_data[axis].angular_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING, axis_data[axis].angular_damping); } } else if ("erp" == var_name) { axis_data[axis].erp = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_ERP, axis_data[axis].erp); } } else if ("angular_spring_enabled" == var_name) { axis_data[axis].angular_spring_enabled = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(j, axis, PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, axis_data[axis].angular_spring_enabled); } } else if ("angular_spring_stiffness" == var_name) { axis_data[axis].angular_spring_stiffness = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, axis_data[axis].angular_spring_stiffness); } } else if ("angular_spring_damping" == var_name) { axis_data[axis].angular_spring_damping = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, axis_data[axis].angular_spring_damping); } } else if ("angular_equilibrium_point" == var_name) { axis_data[axis].angular_equilibrium_point = p_value; if (j.is_valid()) { PhysicsServer::get_singleton()->generic_6dof_joint_set_param(j, axis, PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, axis_data[axis].angular_equilibrium_point); } } else { return false; } return true; } bool PhysicalBone::SixDOFJointData::_get(const StringName &p_name, Variant &r_ret) const { if (JointData::_get(p_name, r_ret)) { return true; } String path = p_name; if (!path.begins_with("joint_constraints/")) { return false; } int axis; { const String axis_s = path.get_slicec('/', 1); if ("x" == axis_s) { axis = 0; } else if ("y" == axis_s) { axis = 1; } else if ("z" == axis_s) { axis = 2; } else { return false; } } String var_name = path.get_slicec('/', 2); if ("linear_limit_enabled" == var_name) { r_ret = axis_data[axis].linear_limit_enabled; } else if ("linear_limit_upper" == var_name) { r_ret = axis_data[axis].linear_limit_upper; } else if ("linear_limit_lower" == var_name) { r_ret = axis_data[axis].linear_limit_lower; } else if ("linear_limit_softness" == var_name) { r_ret = axis_data[axis].linear_limit_softness; } else if ("linear_spring_enabled" == var_name) { r_ret = axis_data[axis].linear_spring_enabled; } else if ("linear_spring_stiffness" == var_name) { r_ret = axis_data[axis].linear_spring_stiffness; } else if ("linear_spring_damping" == var_name) { r_ret = axis_data[axis].linear_spring_damping; } else if ("linear_equilibrium_point" == var_name) { r_ret = axis_data[axis].linear_equilibrium_point; } else if ("linear_restitution" == var_name) { r_ret = axis_data[axis].linear_restitution; } else if ("linear_damping" == var_name) { r_ret = axis_data[axis].linear_damping; } else if ("angular_limit_enabled" == var_name) { r_ret = axis_data[axis].angular_limit_enabled; } else if ("angular_limit_upper" == var_name) { r_ret = Math::rad2deg(axis_data[axis].angular_limit_upper); } else if ("angular_limit_lower" == var_name) { r_ret = Math::rad2deg(axis_data[axis].angular_limit_lower); } else if ("angular_limit_softness" == var_name) { r_ret = axis_data[axis].angular_limit_softness; } else if ("angular_restitution" == var_name) { r_ret = axis_data[axis].angular_restitution; } else if ("angular_damping" == var_name) { r_ret = axis_data[axis].angular_damping; } else if ("erp" == var_name) { r_ret = axis_data[axis].erp; } else if ("angular_spring_enabled" == var_name) { r_ret = axis_data[axis].angular_spring_enabled; } else if ("angular_spring_stiffness" == var_name) { r_ret = axis_data[axis].angular_spring_stiffness; } else if ("angular_spring_damping" == var_name) { r_ret = axis_data[axis].angular_spring_damping; } else if ("angular_equilibrium_point" == var_name) { r_ret = axis_data[axis].angular_equilibrium_point; } else { return false; } return true; } void PhysicalBone::SixDOFJointData::_get_property_list(List *p_list) const { const StringName axis_names[] = { "x", "y", "z" }; for (int i = 0; i < 3; ++i) { p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/linear_limit_enabled")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_upper")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_lower")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/linear_spring_enabled")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_spring_stiffness")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_spring_damping")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_equilibrium_point")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/linear_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/angular_limit_enabled")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_upper", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_lower", PROPERTY_HINT_RANGE, "-180,180,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_limit_softness", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_restitution", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_damping", PROPERTY_HINT_RANGE, "0.01,16,0.01")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/erp")); p_list->push_back(PropertyInfo(Variant::BOOL, "joint_constraints/" + axis_names[i] + "/angular_spring_enabled")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_spring_stiffness")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_spring_damping")); p_list->push_back(PropertyInfo(Variant::REAL, "joint_constraints/" + axis_names[i] + "/angular_equilibrium_point")); } } bool PhysicalBone::_set(const StringName &p_name, const Variant &p_value) { if (p_name == "bone_name") { set_bone_name(p_value); return true; } if (joint_data) { if (joint_data->_set(p_name, p_value, joint)) { #ifdef TOOLS_ENABLED if (get_gizmo().is_valid()) { get_gizmo()->redraw(); } #endif return true; } } return false; } bool PhysicalBone::_get(const StringName &p_name, Variant &r_ret) const { if (p_name == "bone_name") { r_ret = get_bone_name(); return true; } if (joint_data) { return joint_data->_get(p_name, r_ret); } return false; } void PhysicalBone::_get_property_list(List *p_list) const { Skeleton *parent = find_skeleton_parent(get_parent()); if (parent) { String names; for (int i = 0; i < parent->get_bone_count(); i++) { if (i > 0) { names += ","; } names += parent->get_bone_name(i); } p_list->push_back(PropertyInfo(Variant::STRING, "bone_name", PROPERTY_HINT_ENUM, names)); } else { p_list->push_back(PropertyInfo(Variant::STRING, "bone_name")); } if (joint_data) { joint_data->_get_property_list(p_list); } } void PhysicalBone::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: parent_skeleton = find_skeleton_parent(get_parent()); update_bone_id(); reset_to_rest_position(); _reset_physics_simulation_state(); if (!joint.is_valid() && joint_data) { _reload_joint(); } break; case NOTIFICATION_EXIT_TREE: if (parent_skeleton) { if (-1 != bone_id) { parent_skeleton->unbind_physical_bone_from_bone(bone_id); parent_skeleton->unbind_child_node_from_bone(bone_id, this); bone_id = -1; } } parent_skeleton = nullptr; if (joint.is_valid()) { PhysicsServer::get_singleton()->free(joint); joint = RID(); } break; case NOTIFICATION_TRANSFORM_CHANGED: if (Engine::get_singleton()->is_editor_hint()) { update_offset(); } break; } } void PhysicalBone::_direct_state_changed(Object *p_state) { if (!simulate_physics || !_internal_simulate_physics) { return; } /// Update bone transform PhysicsDirectBodyState *state = Object::cast_to(p_state); ERR_FAIL_COND_MSG(!state, "Method '_direct_state_changed' must receive a valid PhysicsDirectBodyState object as argument"); Transform global_transform(state->get_transform()); set_ignore_transform_notification(true); set_global_transform(global_transform); set_ignore_transform_notification(false); _on_transform_changed(); // Update skeleton if (parent_skeleton) { if (-1 != bone_id) { parent_skeleton->set_bone_global_pose_override(bone_id, parent_skeleton->get_global_transform().affine_inverse() * (global_transform * body_offset_inverse), 1.0, true); } } } void PhysicalBone::_bind_methods() { ClassDB::bind_method(D_METHOD("apply_central_impulse", "impulse"), &PhysicalBone::apply_central_impulse); ClassDB::bind_method(D_METHOD("apply_impulse", "position", "impulse"), &PhysicalBone::apply_impulse); ClassDB::bind_method(D_METHOD("_direct_state_changed"), &PhysicalBone::_direct_state_changed); ClassDB::bind_method(D_METHOD("set_joint_type", "joint_type"), &PhysicalBone::set_joint_type); ClassDB::bind_method(D_METHOD("get_joint_type"), &PhysicalBone::get_joint_type); ClassDB::bind_method(D_METHOD("set_joint_offset", "offset"), &PhysicalBone::set_joint_offset); ClassDB::bind_method(D_METHOD("get_joint_offset"), &PhysicalBone::get_joint_offset); ClassDB::bind_method(D_METHOD("set_body_offset", "offset"), &PhysicalBone::set_body_offset); ClassDB::bind_method(D_METHOD("get_body_offset"), &PhysicalBone::get_body_offset); ClassDB::bind_method(D_METHOD("is_static_body"), &PhysicalBone::is_static_body); ClassDB::bind_method(D_METHOD("get_simulate_physics"), &PhysicalBone::get_simulate_physics); ClassDB::bind_method(D_METHOD("is_simulating_physics"), &PhysicalBone::is_simulating_physics); ClassDB::bind_method(D_METHOD("get_bone_id"), &PhysicalBone::get_bone_id); ClassDB::bind_method(D_METHOD("set_mass", "mass"), &PhysicalBone::set_mass); ClassDB::bind_method(D_METHOD("get_mass"), &PhysicalBone::get_mass); ClassDB::bind_method(D_METHOD("set_weight", "weight"), &PhysicalBone::set_weight); ClassDB::bind_method(D_METHOD("get_weight"), &PhysicalBone::get_weight); ClassDB::bind_method(D_METHOD("set_friction", "friction"), &PhysicalBone::set_friction); ClassDB::bind_method(D_METHOD("get_friction"), &PhysicalBone::get_friction); ClassDB::bind_method(D_METHOD("set_bounce", "bounce"), &PhysicalBone::set_bounce); ClassDB::bind_method(D_METHOD("get_bounce"), &PhysicalBone::get_bounce); ClassDB::bind_method(D_METHOD("set_gravity_scale", "gravity_scale"), &PhysicalBone::set_gravity_scale); ClassDB::bind_method(D_METHOD("get_gravity_scale"), &PhysicalBone::get_gravity_scale); ADD_GROUP("Joint", "joint_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "joint_type", PROPERTY_HINT_ENUM, "None,PinJoint,ConeJoint,HingeJoint,SliderJoint,6DOFJoint"), "set_joint_type", "get_joint_type"); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "joint_offset"), "set_joint_offset", "get_joint_offset"); ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "body_offset"), "set_body_offset", "get_body_offset"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "mass", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_mass", "get_mass"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "weight", PROPERTY_HINT_EXP_RANGE, "0.01,65535,0.01"), "set_weight", "get_weight"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "friction", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_friction", "get_friction"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bounce", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_bounce", "get_bounce"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity_scale", PROPERTY_HINT_RANGE, "-10,10,0.01"), "set_gravity_scale", "get_gravity_scale"); BIND_ENUM_CONSTANT(JOINT_TYPE_NONE); BIND_ENUM_CONSTANT(JOINT_TYPE_PIN); BIND_ENUM_CONSTANT(JOINT_TYPE_CONE); BIND_ENUM_CONSTANT(JOINT_TYPE_HINGE); BIND_ENUM_CONSTANT(JOINT_TYPE_SLIDER); BIND_ENUM_CONSTANT(JOINT_TYPE_6DOF); } Skeleton *PhysicalBone::find_skeleton_parent(Node *p_parent) { if (!p_parent) { return nullptr; } Skeleton *s = Object::cast_to(p_parent); return s ? s : find_skeleton_parent(p_parent->get_parent()); } void PhysicalBone::_fix_joint_offset() { // Clamp joint origin to bone origin if (parent_skeleton) { joint_offset.origin = body_offset.affine_inverse().origin; } } void PhysicalBone::_reload_joint() { if (joint.is_valid()) { PhysicsServer::get_singleton()->free(joint); joint = RID(); } if (!parent_skeleton) { return; } PhysicalBone *body_a = parent_skeleton->get_physical_bone_parent(bone_id); if (!body_a) { return; } Transform joint_transf = get_global_transform() * joint_offset; Transform local_a = body_a->get_global_transform().affine_inverse() * joint_transf; local_a.orthonormalize(); switch (get_joint_type()) { case JOINT_TYPE_PIN: { joint = PhysicsServer::get_singleton()->joint_create_pin(body_a->get_rid(), local_a.origin, get_rid(), joint_offset.origin); const PinJointData *pjd(static_cast(joint_data)); PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_BIAS, pjd->bias); PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_DAMPING, pjd->damping); PhysicsServer::get_singleton()->pin_joint_set_param(joint, PhysicsServer::PIN_JOINT_IMPULSE_CLAMP, pjd->impulse_clamp); } break; case JOINT_TYPE_CONE: { joint = PhysicsServer::get_singleton()->joint_create_cone_twist(body_a->get_rid(), local_a, get_rid(), joint_offset); const ConeJointData *cjd(static_cast(joint_data)); PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_SWING_SPAN, cjd->swing_span); PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_TWIST_SPAN, cjd->twist_span); PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_BIAS, cjd->bias); PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_SOFTNESS, cjd->softness); PhysicsServer::get_singleton()->cone_twist_joint_set_param(joint, PhysicsServer::CONE_TWIST_JOINT_RELAXATION, cjd->relaxation); } break; case JOINT_TYPE_HINGE: { joint = PhysicsServer::get_singleton()->joint_create_hinge(body_a->get_rid(), local_a, get_rid(), joint_offset); const HingeJointData *hjd(static_cast(joint_data)); PhysicsServer::get_singleton()->hinge_joint_set_flag(joint, PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT, hjd->angular_limit_enabled); PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_UPPER, hjd->angular_limit_upper); PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_LOWER, hjd->angular_limit_lower); PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_BIAS, hjd->angular_limit_bias); PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS, hjd->angular_limit_softness); PhysicsServer::get_singleton()->hinge_joint_set_param(joint, PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION, hjd->angular_limit_relaxation); } break; case JOINT_TYPE_SLIDER: { joint = PhysicsServer::get_singleton()->joint_create_slider(body_a->get_rid(), local_a, get_rid(), joint_offset); const SliderJointData *sjd(static_cast(joint_data)); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_UPPER, sjd->linear_limit_upper); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_LOWER, sjd->linear_limit_lower); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS, sjd->linear_limit_softness); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION, sjd->linear_limit_restitution); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_LINEAR_LIMIT_DAMPING, sjd->linear_limit_restitution); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_UPPER, sjd->angular_limit_upper); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_LOWER, sjd->angular_limit_lower); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS, sjd->angular_limit_softness); PhysicsServer::get_singleton()->slider_joint_set_param(joint, PhysicsServer::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING, sjd->angular_limit_damping); } break; case JOINT_TYPE_6DOF: { joint = PhysicsServer::get_singleton()->joint_create_generic_6dof(body_a->get_rid(), local_a, get_rid(), joint_offset); const SixDOFJointData *g6dofjd(static_cast(joint_data)); for (int axis = 0; axis < 3; ++axis) { PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT, g6dofjd->axis_data[axis].linear_limit_enabled); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT, g6dofjd->axis_data[axis].linear_limit_upper); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT, g6dofjd->axis_data[axis].linear_limit_lower); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].linear_limit_softness); PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_SPRING, g6dofjd->axis_data[axis].linear_spring_enabled); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].linear_spring_stiffness); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_DAMPING, g6dofjd->axis_data[axis].linear_spring_damping); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].linear_equilibrium_point); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION, g6dofjd->axis_data[axis].linear_restitution); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING, g6dofjd->axis_data[axis].linear_damping); PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT, g6dofjd->axis_data[axis].angular_limit_enabled); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT, g6dofjd->axis_data[axis].angular_limit_upper); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT, g6dofjd->axis_data[axis].angular_limit_lower); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS, g6dofjd->axis_data[axis].angular_limit_softness); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION, g6dofjd->axis_data[axis].angular_restitution); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING, g6dofjd->axis_data[axis].angular_damping); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_ERP, g6dofjd->axis_data[axis].erp); PhysicsServer::get_singleton()->generic_6dof_joint_set_flag(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_SPRING, g6dofjd->axis_data[axis].angular_spring_enabled); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_STIFFNESS, g6dofjd->axis_data[axis].angular_spring_stiffness); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_DAMPING, g6dofjd->axis_data[axis].angular_spring_damping); PhysicsServer::get_singleton()->generic_6dof_joint_set_param(joint, static_cast(axis), PhysicsServer::G6DOF_JOINT_ANGULAR_SPRING_EQUILIBRIUM_POINT, g6dofjd->axis_data[axis].angular_equilibrium_point); } } break; case JOINT_TYPE_NONE: { } break; } } void PhysicalBone::_on_bone_parent_changed() { _reload_joint(); } void PhysicalBone::_set_gizmo_move_joint(bool p_move_joint) { #ifdef TOOLS_ENABLED gizmo_move_joint = p_move_joint; SpatialEditor::get_singleton()->update_transform_gizmo(); #endif } #ifdef TOOLS_ENABLED Transform PhysicalBone::get_global_gizmo_transform() const { return gizmo_move_joint ? get_global_transform() * joint_offset : get_global_transform(); } Transform PhysicalBone::get_local_gizmo_transform() const { return gizmo_move_joint ? get_transform() * joint_offset : get_transform(); } #endif const PhysicalBone::JointData *PhysicalBone::get_joint_data() const { return joint_data; } Skeleton *PhysicalBone::find_skeleton_parent() { return find_skeleton_parent(this); } void PhysicalBone::set_joint_type(JointType p_joint_type) { if (p_joint_type == get_joint_type()) { return; } if (joint_data) { memdelete(joint_data); } joint_data = nullptr; switch (p_joint_type) { case JOINT_TYPE_PIN: joint_data = memnew(PinJointData); break; case JOINT_TYPE_CONE: joint_data = memnew(ConeJointData); break; case JOINT_TYPE_HINGE: joint_data = memnew(HingeJointData); break; case JOINT_TYPE_SLIDER: joint_data = memnew(SliderJointData); break; case JOINT_TYPE_6DOF: joint_data = memnew(SixDOFJointData); break; case JOINT_TYPE_NONE: break; } _reload_joint(); #ifdef TOOLS_ENABLED _change_notify(); if (get_gizmo().is_valid()) { get_gizmo()->redraw(); } #endif } PhysicalBone::JointType PhysicalBone::get_joint_type() const { return joint_data ? joint_data->get_joint_type() : JOINT_TYPE_NONE; } void PhysicalBone::set_joint_offset(const Transform &p_offset) { joint_offset = p_offset; _fix_joint_offset(); set_ignore_transform_notification(true); reset_to_rest_position(); set_ignore_transform_notification(false); #ifdef TOOLS_ENABLED if (get_gizmo().is_valid()) { get_gizmo()->redraw(); } #endif } const Transform &PhysicalBone::get_body_offset() const { return body_offset; } void PhysicalBone::set_body_offset(const Transform &p_offset) { body_offset = p_offset; body_offset_inverse = body_offset.affine_inverse(); _fix_joint_offset(); set_ignore_transform_notification(true); reset_to_rest_position(); set_ignore_transform_notification(false); #ifdef TOOLS_ENABLED if (get_gizmo().is_valid()) { get_gizmo()->redraw(); } #endif } const Transform &PhysicalBone::get_joint_offset() const { return joint_offset; } void PhysicalBone::set_static_body(bool p_static) { static_body = p_static; set_as_toplevel(!static_body); _reset_physics_simulation_state(); } bool PhysicalBone::is_static_body() { return static_body; } void PhysicalBone::set_simulate_physics(bool p_simulate) { if (simulate_physics == p_simulate) { return; } simulate_physics = p_simulate; _reset_physics_simulation_state(); } bool PhysicalBone::get_simulate_physics() { return simulate_physics; } bool PhysicalBone::is_simulating_physics() { return _internal_simulate_physics && !_internal_static_body; } void PhysicalBone::set_bone_name(const String &p_name) { bone_name = p_name; bone_id = -1; update_bone_id(); reset_to_rest_position(); } const String &PhysicalBone::get_bone_name() const { return bone_name; } void PhysicalBone::set_mass(real_t p_mass) { ERR_FAIL_COND(p_mass <= 0); mass = p_mass; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_MASS, mass); } real_t PhysicalBone::get_mass() const { return mass; } void PhysicalBone::set_weight(real_t p_weight) { set_mass(p_weight / real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8))); } real_t PhysicalBone::get_weight() const { return mass * real_t(GLOBAL_DEF("physics/3d/default_gravity", 9.8)); } void PhysicalBone::set_friction(real_t p_friction) { ERR_FAIL_COND(p_friction < 0 || p_friction > 1); friction = p_friction; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_FRICTION, friction); } real_t PhysicalBone::get_friction() const { return friction; } void PhysicalBone::set_bounce(real_t p_bounce) { ERR_FAIL_COND(p_bounce < 0 || p_bounce > 1); bounce = p_bounce; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_BOUNCE, bounce); } real_t PhysicalBone::get_bounce() const { return bounce; } void PhysicalBone::set_gravity_scale(real_t p_gravity_scale) { gravity_scale = p_gravity_scale; PhysicsServer::get_singleton()->body_set_param(get_rid(), PhysicsServer::BODY_PARAM_GRAVITY_SCALE, gravity_scale); } real_t PhysicalBone::get_gravity_scale() const { return gravity_scale; } PhysicalBone::PhysicalBone() : PhysicsBody(PhysicsServer::BODY_MODE_STATIC), #ifdef TOOLS_ENABLED gizmo_move_joint(false), #endif joint_data(nullptr), parent_skeleton(nullptr), static_body(false), _internal_static_body(false), simulate_physics(false), _internal_simulate_physics(false), bone_id(-1), bone_name(""), bounce(0), mass(1), friction(1), gravity_scale(1) { set_static_body(static_body); _reset_physics_simulation_state(); } PhysicalBone::~PhysicalBone() { if (joint_data) { memdelete(joint_data); } } void PhysicalBone::update_bone_id() { if (!parent_skeleton) { return; } const int new_bone_id = parent_skeleton->find_bone(bone_name); if (new_bone_id != bone_id) { if (-1 != bone_id) { // Assert the unbind from old node parent_skeleton->unbind_physical_bone_from_bone(bone_id); parent_skeleton->unbind_child_node_from_bone(bone_id, this); } bone_id = new_bone_id; parent_skeleton->bind_physical_bone_to_bone(bone_id, this); _fix_joint_offset(); _internal_static_body = !static_body; // Force staticness reset _reset_staticness_state(); } } void PhysicalBone::update_offset() { #ifdef TOOLS_ENABLED if (parent_skeleton) { Transform bone_transform(parent_skeleton->get_global_transform()); if (-1 != bone_id) { bone_transform *= parent_skeleton->get_bone_global_pose(bone_id); } if (gizmo_move_joint) { bone_transform *= body_offset; set_joint_offset(bone_transform.affine_inverse() * get_global_transform()); } else { set_body_offset(bone_transform.affine_inverse() * get_global_transform()); } } #endif } void PhysicalBone::reset_to_rest_position() { if (parent_skeleton) { if (-1 == bone_id) { set_global_transform(parent_skeleton->get_global_transform() * body_offset); } else { set_global_transform(parent_skeleton->get_global_transform() * parent_skeleton->get_bone_global_pose(bone_id) * body_offset); } } } void PhysicalBone::_reset_physics_simulation_state() { if (simulate_physics && !static_body) { _start_physics_simulation(); } else { _stop_physics_simulation(); } _reset_staticness_state(); } void PhysicalBone::_reset_staticness_state() { if (parent_skeleton && -1 != bone_id) { if (static_body && simulate_physics) { // With this check I'm sure the position of this body is updated only when it's necessary if (_internal_static_body) { return; } parent_skeleton->bind_child_node_to_bone(bone_id, this); _internal_static_body = true; } else { if (!_internal_static_body) { return; } parent_skeleton->unbind_child_node_from_bone(bone_id, this); _internal_static_body = false; } } } void PhysicalBone::_start_physics_simulation() { if (_internal_simulate_physics || !parent_skeleton) { return; } reset_to_rest_position(); PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_RIGID); PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), get_collision_layer()); PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), get_collision_mask()); PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), this, "_direct_state_changed"); _internal_simulate_physics = true; } void PhysicalBone::_stop_physics_simulation() { if (!_internal_simulate_physics || !parent_skeleton) { return; } PhysicsServer::get_singleton()->body_set_mode(get_rid(), PhysicsServer::BODY_MODE_STATIC); PhysicsServer::get_singleton()->body_set_collision_layer(get_rid(), 0); PhysicsServer::get_singleton()->body_set_collision_mask(get_rid(), 0); PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(), nullptr, ""); parent_skeleton->set_bone_global_pose_override(bone_id, Transform(), 0.0, false); _internal_simulate_physics = false; }