/*************************************************************************/ /* mesh_storage.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef GLES3_ENABLED #include "mesh_storage.h" #include "material_storage.h" using namespace GLES3; MeshStorage *MeshStorage::singleton = nullptr; MeshStorage *MeshStorage::get_singleton() { return singleton; } MeshStorage::MeshStorage() { singleton = this; } MeshStorage::~MeshStorage() { singleton = nullptr; } /* MESH API */ RID MeshStorage::mesh_allocate() { return mesh_owner.allocate_rid(); } void MeshStorage::mesh_initialize(RID p_rid) { mesh_owner.initialize_rid(p_rid, Mesh()); } void MeshStorage::mesh_free(RID p_rid) { mesh_clear(p_rid); mesh_set_shadow_mesh(p_rid, RID()); Mesh *mesh = mesh_owner.get_or_null(p_rid); mesh->dependency.deleted_notify(p_rid); if (mesh->instances.size()) { ERR_PRINT("deleting mesh with active instances"); } if (mesh->shadow_owners.size()) { for (Set::Element *E = mesh->shadow_owners.front(); E; E = E->next()) { Mesh *shadow_owner = E->get(); shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); } } mesh_owner.free(p_rid); } void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) { ERR_FAIL_COND(p_blend_shape_count < 0); Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist WARN_PRINT_ONCE("blend shapes not supported by GLES3 renderer yet"); mesh->blend_shape_count = p_blend_shape_count; } bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, false); return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton); } void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES); #ifdef DEBUG_ENABLED //do a validation, to catch errors first { uint32_t stride = 0; uint32_t attrib_stride = 0; uint32_t skin_stride = 0; // TODO: I think this should be <=, but it is copied from RendererRD, will have to verify later for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) { if ((p_surface.format & (1 << i))) { switch (i) { case RS::ARRAY_VERTEX: { if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) { stride += sizeof(float) * 2; } else { stride += sizeof(float) * 3; } } break; case RS::ARRAY_NORMAL: { stride += sizeof(int32_t); } break; case RS::ARRAY_TANGENT: { stride += sizeof(int32_t); } break; case RS::ARRAY_COLOR: { attrib_stride += sizeof(uint32_t); } break; case RS::ARRAY_TEX_UV: { attrib_stride += sizeof(float) * 2; } break; case RS::ARRAY_TEX_UV2: { attrib_stride += sizeof(float) * 2; } break; case RS::ARRAY_CUSTOM0: case RS::ARRAY_CUSTOM1: case RS::ARRAY_CUSTOM2: case RS::ARRAY_CUSTOM3: { int idx = i - RS::ARRAY_CUSTOM0; uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT }; uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK; uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 }; attrib_stride += fmtsize[fmt]; } break; case RS::ARRAY_WEIGHTS: case RS::ARRAY_BONES: { //uses a separate array bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS; skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8); } break; } } } int expected_size = stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")"); int bs_expected_size = expected_size * mesh->blend_shape_count; ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")"); int expected_attrib_size = attrib_stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")"); if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) { expected_size = skin_stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")"); } } #endif Mesh::Surface *s = memnew(Mesh::Surface); s->format = p_surface.format; s->primitive = p_surface.primitive; glGenBuffers(1, &s->vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer); glBufferData(GL_ARRAY_BUFFER, p_surface.vertex_data.size(), p_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind s->vertex_buffer_size = p_surface.vertex_data.size(); if (p_surface.attribute_data.size()) { glGenBuffers(1, &s->attribute_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer); glBufferData(GL_ARRAY_BUFFER, p_surface.attribute_data.size(), p_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } if (p_surface.skin_data.size()) { glGenBuffers(1, &s->skin_buffer); glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer); glBufferData(GL_ARRAY_BUFFER, p_surface.skin_data.size(), p_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind s->skin_buffer_size = p_surface.skin_data.size(); } s->vertex_count = p_surface.vertex_count; if (p_surface.format & RS::ARRAY_FORMAT_BONES) { mesh->has_bone_weights = true; } if (p_surface.index_count) { bool is_index_16 = p_surface.vertex_count <= 65536; glGenBuffers(1, &s->index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.index_data.size(), p_surface.index_data.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind s->index_count = p_surface.index_count; if (p_surface.lods.size()) { s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size()); s->lod_count = p_surface.lods.size(); for (int i = 0; i < p_surface.lods.size(); i++) { glGenBuffers(1, &s->lods[i].index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.lods[i].index_data.size(), p_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind s->lods[i].edge_length = p_surface.lods[i].edge_length; s->lods[i].index_count = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4); } } } s->aabb = p_surface.aabb; s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them. if (mesh->blend_shape_count > 0) { //s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data); } if (mesh->surface_count == 0) { mesh->bone_aabbs = p_surface.bone_aabbs; mesh->aabb = p_surface.aabb; } else { if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) { // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone // Each surface may affect different numbers of bones. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size()); } for (int i = 0; i < p_surface.bone_aabbs.size(); i++) { mesh->bone_aabbs.write[i].merge_with(p_surface.bone_aabbs[i]); } mesh->aabb.merge_with(p_surface.aabb); } s->material = p_surface.material; mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1)); mesh->surfaces[mesh->surface_count] = s; mesh->surface_count++; for (MeshInstance *mi : mesh->instances) { _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1); } mesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); for (Set::Element *E = mesh->shadow_owners.front(); E; E = E->next()) { Mesh *shadow_owner = E->get(); shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); } mesh->material_cache.clear(); } int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const { const Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, -1); return mesh->blend_shape_count; } void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX((int)p_mode, 2); mesh->blend_shape_mode = p_mode; } RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED); return mesh->blend_shape_mode; } void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { } void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { } void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { } void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); mesh->surfaces[p_surface]->material = p_material; mesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MATERIAL); mesh->material_cache.clear(); } RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, RID()); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID()); return mesh->surfaces[p_surface]->material; } RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const { return RS::SurfaceData(); } int MeshStorage::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, 0); return mesh->surface_count; } void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); mesh->custom_aabb = p_aabb; } AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); return mesh->custom_aabb; } AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); if (mesh->custom_aabb != AABB()) { return mesh->custom_aabb; } Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton); if (!skeleton || skeleton->size == 0) { return mesh->aabb; } // Calculate AABB based on Skeleton AABB aabb; for (uint32_t i = 0; i < mesh->surface_count; i++) { AABB laabb; if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) { int bs = mesh->surfaces[i]->bone_aabbs.size(); const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr(); int sbs = skeleton->size; ERR_CONTINUE(bs > sbs); const float *baseptr = skeleton->data.ptr(); bool first = true; if (skeleton->use_2d) { for (int j = 0; j < bs; j++) { if (skbones[0].size == Vector3()) { continue; //bone is unused } const float *dataptr = baseptr + j * 8; Transform3D mtx; mtx.basis.rows[0].x = dataptr[0]; mtx.basis.rows[1].x = dataptr[1]; mtx.origin.x = dataptr[3]; mtx.basis.rows[0].y = dataptr[4]; mtx.basis.rows[1].y = dataptr[5]; mtx.origin.y = dataptr[7]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } else { for (int j = 0; j < bs; j++) { if (skbones[0].size == Vector3()) { continue; //bone is unused } const float *dataptr = baseptr + j * 12; Transform3D mtx; mtx.basis.rows[0][0] = dataptr[0]; mtx.basis.rows[0][1] = dataptr[1]; mtx.basis.rows[0][2] = dataptr[2]; mtx.origin.x = dataptr[3]; mtx.basis.rows[1][0] = dataptr[4]; mtx.basis.rows[1][1] = dataptr[5]; mtx.basis.rows[1][2] = dataptr[6]; mtx.origin.y = dataptr[7]; mtx.basis.rows[2][0] = dataptr[8]; mtx.basis.rows[2][1] = dataptr[9]; mtx.basis.rows[2][2] = dataptr[10]; mtx.origin.z = dataptr[11]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } if (laabb.size == Vector3()) { laabb = mesh->surfaces[i]->aabb; } } else { laabb = mesh->surfaces[i]->aabb; } if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } return aabb; } void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh); if (shadow_mesh) { shadow_mesh->shadow_owners.erase(mesh); } mesh->shadow_mesh = p_shadow_mesh; shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh); if (shadow_mesh) { shadow_mesh->shadow_owners.insert(mesh); } mesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); } void MeshStorage::mesh_clear(RID p_mesh) { Mesh *mesh = mesh_owner.get_or_null(p_mesh); ERR_FAIL_COND(!mesh); for (uint32_t i = 0; i < mesh->surface_count; i++) { Mesh::Surface &s = *mesh->surfaces[i]; if (s.vertex_buffer != 0) { glDeleteBuffers(1, &s.vertex_buffer); } if (s.version_count != 0) { for (uint32_t j = 0; j < s.version_count; j++) { glDeleteVertexArrays(1, &s.versions[j].vertex_array); } } if (s.attribute_buffer != 0) { glDeleteBuffers(1, &s.attribute_buffer); } if (s.skin_buffer != 0) { glDeleteBuffers(1, &s.skin_buffer); } if (s.index_buffer != 0) { glDeleteBuffers(1, &s.index_buffer); glDeleteVertexArrays(1, &s.index_array); } memdelete(mesh->surfaces[i]); } if (mesh->surfaces) { memfree(mesh->surfaces); } mesh->surfaces = nullptr; mesh->surface_count = 0; mesh->material_cache.clear(); //clear instance data for (MeshInstance *mi : mesh->instances) { _mesh_instance_clear(mi); } mesh->has_bone_weights = false; mesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); for (Set::Element *E = mesh->shadow_owners.front(); E; E = E->next()) { Mesh *shadow_owner = E->get(); shadow_owner->shadow_mesh = RID(); shadow_owner->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); } } void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) { Mesh::Surface::Attrib attribs[RS::ARRAY_MAX]; int attributes_stride = 0; int vertex_stride = 0; int skin_stride = 0; for (int i = 0; i < RS::ARRAY_INDEX; i++) { if (!(s->format & (1 << i))) { attribs[i].enabled = false; attribs[i].integer = false; continue; } attribs[i].enabled = true; attribs[i].integer = false; switch (i) { case RS::ARRAY_VERTEX: { attribs[i].offset = vertex_stride; if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) { attribs[i].size = 2; } else { attribs[i].size = 3; } attribs[i].type = GL_FLOAT; vertex_stride += attribs[i].size * sizeof(float); attribs[i].normalized = GL_FALSE; } break; case RS::ARRAY_NORMAL: { attribs[i].offset = vertex_stride; // Will need to change to accommodate octahedral compression attribs[i].size = 1; attribs[i].type = GL_UNSIGNED_INT_2_10_10_10_REV; vertex_stride += sizeof(float); attribs[i].normalized = GL_TRUE; } break; case RS::ARRAY_TANGENT: { attribs[i].offset = vertex_stride; attribs[i].size = 1; attribs[i].type = GL_UNSIGNED_INT_2_10_10_10_REV; vertex_stride += sizeof(float); attribs[i].normalized = GL_TRUE; } break; case RS::ARRAY_COLOR: { attribs[i].offset = attributes_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_BYTE; attributes_stride += 4; attribs[i].normalized = GL_TRUE; } break; case RS::ARRAY_TEX_UV: { attribs[i].offset = attributes_stride; attribs[i].size = 2; attribs[i].type = GL_FLOAT; attributes_stride += 2 * sizeof(float); attribs[i].normalized = GL_FALSE; } break; case RS::ARRAY_TEX_UV2: { attribs[i].offset = attributes_stride; attribs[i].size = 2; attribs[i].type = GL_FLOAT; attributes_stride += 2 * sizeof(float); attribs[i].normalized = GL_FALSE; } break; case RS::ARRAY_CUSTOM0: case RS::ARRAY_CUSTOM1: case RS::ARRAY_CUSTOM2: case RS::ARRAY_CUSTOM3: { attribs[i].offset = attributes_stride; int idx = i - RS::ARRAY_CUSTOM0; uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT }; uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK; uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 }; GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT }; GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE }; attribs[i].type = gl_type[fmt]; attributes_stride += fmtsize[fmt]; attribs[i].size = fmtsize[fmt] / sizeof(float); attribs[i].normalized = norm[fmt]; } break; case RS::ARRAY_BONES: { attribs[i].offset = skin_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 4 * sizeof(uint16_t); attribs[i].normalized = GL_FALSE; attribs[i].integer = true; } break; case RS::ARRAY_WEIGHTS: { attribs[i].offset = skin_stride; attribs[i].size = 4; attribs[i].type = GL_UNSIGNED_SHORT; attributes_stride += 4 * sizeof(uint16_t); attribs[i].normalized = GL_TRUE; } break; } } glGenVertexArrays(1, &v.vertex_array); glBindVertexArray(v.vertex_array); for (int i = 0; i < RS::ARRAY_INDEX; i++) { if (!attribs[i].enabled) { continue; } if (i <= RS::ARRAY_TANGENT) { if (mis) { glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer); } else { glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer); } } else if (i <= RS::ARRAY_CUSTOM3) { glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer); } else { glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer); } if (attribs[i].integer) { glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } else { glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset)); } glEnableVertexAttribArray(attribs[i].index); } // Do not bind index here as we want to switch between index buffers for LOD glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); v.input_mask = p_input_mask; } /* MESH INSTANCE API */ RID MeshStorage::mesh_instance_create(RID p_base) { Mesh *mesh = mesh_owner.get_or_null(p_base); ERR_FAIL_COND_V(!mesh, RID()); RID rid = mesh_instance_owner.make_rid(); MeshInstance *mi = mesh_instance_owner.get_or_null(rid); mi->mesh = mesh; for (uint32_t i = 0; i < mesh->surface_count; i++) { _mesh_instance_add_surface(mi, mesh, i); } mi->I = mesh->instances.push_back(mi); mi->dirty = true; return rid; } void MeshStorage::mesh_instance_free(RID p_rid) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid); _mesh_instance_clear(mi); mi->mesh->instances.erase(mi->I); mi->I = nullptr; mesh_instance_owner.free(p_rid); } void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); if (mi->skeleton == p_skeleton) { return; } mi->skeleton = p_skeleton; mi->skeleton_version = 0; mi->dirty = true; } void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); ERR_FAIL_COND(!mi); ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size()); mi->blend_weights[p_shape] = p_weight; mi->weights_dirty = true; } void MeshStorage::_mesh_instance_clear(MeshInstance *mi) { for (uint32_t i = 0; i < mi->surfaces.size(); i++) { if (mi->surfaces[i].version_count != 0) { for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) { glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array); } memfree(mi->surfaces[i].versions); } if (mi->surfaces[i].vertex_buffer != 0) { glDeleteBuffers(1, &mi->surfaces[i].vertex_buffer); } } mi->surfaces.clear(); if (mi->blend_weights_buffer != 0) { glDeleteBuffers(1, &mi->blend_weights_buffer); } mi->blend_weights.clear(); mi->weights_dirty = false; mi->skeleton_version = 0; } void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) { if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer == 0) { mi->blend_weights.resize(mesh->blend_shape_count); for (uint32_t i = 0; i < mi->blend_weights.size(); i++) { mi->blend_weights[i] = 0; } // Todo allocate buffer for blend_weights and copy data to it //mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array()); mi->weights_dirty = true; } MeshInstance::Surface s; if (mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) { //surface warrants transform //s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector(), true); } mi->surfaces.push_back(s); mi->dirty = true; } void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) { MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance); bool needs_update = mi->dirty; if (mi->weights_dirty && !mi->weight_update_list.in_list()) { dirty_mesh_instance_weights.add(&mi->weight_update_list); needs_update = true; } if (mi->array_update_list.in_list()) { return; } if (!needs_update && mi->skeleton.is_valid()) { Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton); if (sk && sk->version != mi->skeleton_version) { needs_update = true; } } if (needs_update) { dirty_mesh_instance_arrays.add(&mi->array_update_list); } } void MeshStorage::update_mesh_instances() { while (dirty_mesh_instance_weights.first()) { MeshInstance *mi = dirty_mesh_instance_weights.first()->self(); if (mi->blend_weights_buffer != 0) { //RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr()); } dirty_mesh_instance_weights.remove(&mi->weight_update_list); mi->weights_dirty = false; } if (dirty_mesh_instance_arrays.first() == nullptr) { return; //nothing to do } // Process skeletons and blend shapes using transform feedback // TODO: Implement when working on skeletons and blend shapes } /* MULTIMESH API */ RID MeshStorage::multimesh_allocate() { return multimesh_owner.allocate_rid(); } void MeshStorage::multimesh_initialize(RID p_rid) { multimesh_owner.initialize_rid(p_rid, MultiMesh()); } void MeshStorage::multimesh_free(RID p_rid) { _update_dirty_multimeshes(); multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D); MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid); multimesh->dependency.deleted_notify(p_rid); multimesh_owner.free(p_rid); } void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) { return; } if (multimesh->buffer) { glDeleteBuffers(1, &multimesh->buffer); multimesh->buffer = 0; } if (multimesh->data_cache_dirty_regions) { memdelete_arr(multimesh->data_cache_dirty_regions); multimesh->data_cache_dirty_regions = nullptr; multimesh->data_cache_used_dirty_regions = 0; } multimesh->instances = p_instances; multimesh->xform_format = p_transform_format; multimesh->uses_colors = p_use_colors; multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; multimesh->uses_custom_data = p_use_custom_data; multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0); multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0); multimesh->buffer_set = false; //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances)); multimesh->data_cache = Vector(); multimesh->aabb = AABB(); multimesh->aabb_dirty = false; multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances); if (multimesh->instances) { glGenBuffers(1, &multimesh->buffer); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } multimesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MULTIMESH); } int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, 0); return multimesh->instances; } void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->mesh == p_mesh) { return; } multimesh->mesh = p_mesh; if (multimesh->instances == 0) { return; } if (multimesh->data_cache.size()) { //we have a data cache, just mark it dirty _multimesh_mark_all_dirty(multimesh, false, true); } else if (multimesh->instances) { //need to re-create AABB unfortunately, calling this has a penalty if (multimesh->buffer_set) { // TODO add a function to RasterizerStorage to get data from a buffer //Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); //const uint8_t *r = buffer.ptr(); //const float *data = (const float *)r; //_multimesh_re_create_aabb(multimesh, data, multimesh->instances); } } multimesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MESH); } #define MULTIMESH_DIRTY_REGION_SIZE 512 void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const { if (multimesh->data_cache.size() > 0) { return; //already local } ERR_FAIL_COND(multimesh->data_cache.size() > 0); // this means that the user wants to load/save individual elements, // for this, the data must reside on CPU, so just copy it there. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache); { float *w = multimesh->data_cache.ptrw(); if (multimesh->buffer_set) { //Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); { // const uint8_t *r = buffer.ptr(); // memcpy(w, r, buffer.size()); } } else { memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float)); } } uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count); for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) { uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE; #ifdef DEBUG_ENABLED uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug #endif if (!multimesh->data_cache_dirty_regions[region_index]) { multimesh->data_cache_dirty_regions[region_index] = true; multimesh->data_cache_used_dirty_regions++; } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) { if (p_data) { uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { if (!multimesh->data_cache_dirty_regions[i]) { multimesh->data_cache_dirty_regions[i] = true; multimesh->data_cache_used_dirty_regions++; } } } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) { ERR_FAIL_COND(multimesh->mesh.is_null()); AABB aabb; AABB mesh_aabb = mesh_get_aabb(multimesh->mesh); for (int i = 0; i < p_instances; i++) { const float *data = p_data + multimesh->stride_cache * i; Transform3D t; if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) { t.basis.rows[0][0] = data[0]; t.basis.rows[0][1] = data[1]; t.basis.rows[0][2] = data[2]; t.origin.x = data[3]; t.basis.rows[1][0] = data[4]; t.basis.rows[1][1] = data[5]; t.basis.rows[1][2] = data[6]; t.origin.y = data[7]; t.basis.rows[2][0] = data[8]; t.basis.rows[2][1] = data[9]; t.basis.rows[2][2] = data[10]; t.origin.z = data[11]; } else { t.basis.rows[0].x = data[0]; t.basis.rows[1].x = data[1]; t.origin.x = data[3]; t.basis.rows[0].y = data[4]; t.basis.rows[1].y = data[5]; t.origin.y = data[7]; } if (i == 0) { aabb = t.xform(mesh_aabb); } else { aabb.merge_with(t.xform(mesh_aabb)); } } multimesh->aabb = aabb; } void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.basis.rows[0][0]; dataptr[1] = p_transform.basis.rows[0][1]; dataptr[2] = p_transform.basis.rows[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.rows[1][0]; dataptr[5] = p_transform.basis.rows[1][1]; dataptr[6] = p_transform.basis.rows[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.rows[2][0]; dataptr[9] = p_transform.basis.rows[2][1]; dataptr[10] = p_transform.basis.rows[2][2]; dataptr[11] = p_transform.origin.z; } _multimesh_mark_dirty(multimesh, p_index, true); } void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.columns[0][0]; dataptr[1] = p_transform.columns[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.columns[2][0]; dataptr[4] = p_transform.columns[0][1]; dataptr[5] = p_transform.columns[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.columns[2][1]; } _multimesh_mark_dirty(multimesh, p_index, true); } void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_colors); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache; dataptr[0] = p_color.r; dataptr[1] = p_color.g; dataptr[2] = p_color.b; dataptr[3] = p_color.a; } _multimesh_mark_dirty(multimesh, p_index, false); } void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_custom_data); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; dataptr[0] = p_color.r; dataptr[1] = p_color.g; dataptr[2] = p_color.b; dataptr[3] = p_color.a; } _multimesh_mark_dirty(multimesh, p_index, false); } RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, RID()); return multimesh->mesh; } AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, AABB()); if (multimesh->aabb_dirty) { const_cast(this)->_update_dirty_multimeshes(); } return multimesh->aabb; } Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform3D()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D()); _multimesh_make_local(multimesh); Transform3D t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.basis.rows[0][0] = dataptr[0]; t.basis.rows[0][1] = dataptr[1]; t.basis.rows[0][2] = dataptr[2]; t.origin.x = dataptr[3]; t.basis.rows[1][0] = dataptr[4]; t.basis.rows[1][1] = dataptr[5]; t.basis.rows[1][2] = dataptr[6]; t.origin.y = dataptr[7]; t.basis.rows[2][0] = dataptr[8]; t.basis.rows[2][1] = dataptr[9]; t.basis.rows[2][2] = dataptr[10]; t.origin.z = dataptr[11]; } return t; } Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform2D()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D()); _multimesh_make_local(multimesh); Transform2D t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.columns[0][0] = dataptr[0]; t.columns[1][0] = dataptr[1]; t.columns[2][0] = dataptr[3]; t.columns[0][1] = dataptr[4]; t.columns[1][1] = dataptr[5]; t.columns[2][1] = dataptr[7]; } return t; } Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_colors, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; } return c; } Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; } return c; } void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache)); { const float *r = p_buffer.ptr(); glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); multimesh->buffer_set = true; } if (multimesh->data_cache.size()) { //if we have a data cache, just update it multimesh->data_cache = p_buffer; { //clear dirty since nothing will be dirty anymore uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } _multimesh_mark_all_dirty(multimesh, false, true); //update AABB } else if (multimesh->mesh.is_valid()) { //if we have a mesh set, we need to re-generate the AABB from the new data const float *data = p_buffer.ptr(); _multimesh_re_create_aabb(multimesh, data, multimesh->instances); multimesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_AABB); } } Vector MeshStorage::multimesh_get_buffer(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, Vector()); if (multimesh->buffer == 0) { return Vector(); } else if (multimesh->data_cache.size()) { return multimesh->data_cache; } else { //get from memory //Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); Vector ret; ret.resize(multimesh->instances * multimesh->stride_cache); //{ // float *w = ret.ptrw(); // const uint8_t *r = buffer.ptr(); // memcpy(w, r, buffer.size()); //} return ret; } } void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances); if (multimesh->visible_instances == p_visible) { return; } if (multimesh->data_cache.size()) { //there is a data cache.. _multimesh_mark_all_dirty(multimesh, false, true); } multimesh->visible_instances = p_visible; multimesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES); } int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh); ERR_FAIL_COND_V(!multimesh, 0); return multimesh->visible_instances; } void MeshStorage::_update_dirty_multimeshes() { while (multimesh_dirty_list) { MultiMesh *multimesh = multimesh_dirty_list; if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists const float *data = multimesh->data_cache.ptr(); uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances; if (multimesh->data_cache_used_dirty_regions) { uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float); if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) { // If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); glBufferData(GL_ARRAY_BUFFER, MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { // Not that many regions? update them all // TODO: profile the performance cost on low end glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer); for (uint32_t i = 0; i < visible_region_count; i++) { if (multimesh->data_cache_dirty_regions[i]) { GLint offset = i * region_size; GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float); uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i; glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]); } } glBindBuffer(GL_ARRAY_BUFFER, 0); } for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } if (multimesh->aabb_dirty) { //aabb is dirty.. _multimesh_re_create_aabb(multimesh, data, visible_instances); multimesh->aabb_dirty = false; multimesh->dependency.changed_notify(RendererStorage::DEPENDENCY_CHANGED_AABB); } } multimesh_dirty_list = multimesh->dirty_list; multimesh->dirty_list = nullptr; multimesh->dirty = false; } multimesh_dirty_list = nullptr; } /* SKELETON API */ RID MeshStorage::skeleton_allocate() { return RID(); } void MeshStorage::skeleton_initialize(RID p_rid) { } void MeshStorage::skeleton_free(RID p_rid) { } void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) { } void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) { } int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const { return 0; } void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) { } Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { return Transform3D(); } void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) { } Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { return Transform2D(); } void MeshStorage::skeleton_update_dependency(RID p_base, RendererStorage::DependencyTracker *p_instance) { } #endif // GLES3_ENABLED