/*************************************************************************/ /* spatial_editor_gizmos.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "spatial_editor_gizmos.h" #include "core/math/convex_hull.h" #include "core/math/geometry.h" #include "scene/3d/audio_stream_player_3d.h" #include "scene/3d/baked_lightmap.h" #include "scene/3d/collision_polygon.h" #include "scene/3d/collision_shape.h" #include "scene/3d/cpu_particles.h" #include "scene/3d/gi_probe.h" #include "scene/3d/light.h" #include "scene/3d/listener.h" #include "scene/3d/mesh_instance.h" #include "scene/3d/navigation_mesh_instance.h" #include "scene/3d/occluder.h" #include "scene/3d/particles.h" #include "scene/3d/physics_joint.h" #include "scene/3d/portal.h" #include "scene/3d/position_3d.h" #include "scene/3d/ray_cast.h" #include "scene/3d/reflection_probe.h" #include "scene/3d/room.h" #include "scene/3d/soft_body.h" #include "scene/3d/spring_arm.h" #include "scene/3d/sprite_3d.h" #include "scene/3d/vehicle_body.h" #include "scene/3d/visibility_notifier.h" #include "scene/resources/box_shape.h" #include "scene/resources/capsule_shape.h" #include "scene/resources/concave_polygon_shape.h" #include "scene/resources/convex_polygon_shape.h" #include "scene/resources/cylinder_shape.h" #include "scene/resources/height_map_shape.h" #include "scene/resources/occluder_shape.h" #include "scene/resources/occluder_shape_polygon.h" #include "scene/resources/plane_shape.h" #include "scene/resources/primitive_meshes.h" #include "scene/resources/ray_shape.h" #include "scene/resources/sphere_shape.h" #include "scene/resources/surface_tool.h" #define HANDLE_HALF_SIZE 9.5 bool EditorSpatialGizmo::is_editable() const { ERR_FAIL_COND_V(!spatial_node, false); Node *edited_root = spatial_node->get_tree()->get_edited_scene_root(); if (spatial_node == edited_root) { return true; } if (spatial_node->get_owner() == edited_root) { return true; } if (edited_root->is_editable_instance(spatial_node->get_owner())) { return true; } return false; } void EditorSpatialGizmo::clear() { for (int i = 0; i < instances.size(); i++) { if (instances[i].instance.is_valid()) { VS::get_singleton()->free(instances[i].instance); instances.write[i].instance = RID(); } } billboard_handle = false; collision_segments.clear(); collision_mesh = Ref(); instances.clear(); handles.clear(); secondary_handles.clear(); } void EditorSpatialGizmo::redraw() { if (get_script_instance() && get_script_instance()->has_method("redraw")) { get_script_instance()->call("redraw"); return; } ERR_FAIL_COND(!gizmo_plugin); gizmo_plugin->redraw(this); } String EditorSpatialGizmo::get_handle_name(int p_idx) const { if (get_script_instance() && get_script_instance()->has_method("get_handle_name")) { return get_script_instance()->call("get_handle_name", p_idx); } ERR_FAIL_COND_V(!gizmo_plugin, ""); return gizmo_plugin->get_handle_name(this, p_idx); } bool EditorSpatialGizmo::is_handle_highlighted(int p_idx) const { if (get_script_instance() && get_script_instance()->has_method("is_handle_highlighted")) { return get_script_instance()->call("is_handle_highlighted", p_idx); } ERR_FAIL_COND_V(!gizmo_plugin, false); return gizmo_plugin->is_handle_highlighted(this, p_idx); } Variant EditorSpatialGizmo::get_handle_value(int p_idx) { if (get_script_instance() && get_script_instance()->has_method("get_handle_value")) { return get_script_instance()->call("get_handle_value", p_idx); } ERR_FAIL_COND_V(!gizmo_plugin, Variant()); return gizmo_plugin->get_handle_value(this, p_idx); } void EditorSpatialGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) { if (get_script_instance() && get_script_instance()->has_method("set_handle")) { get_script_instance()->call("set_handle", p_idx, p_camera, p_point); return; } ERR_FAIL_COND(!gizmo_plugin); gizmo_plugin->set_handle(this, p_idx, p_camera, p_point); } void EditorSpatialGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) { if (get_script_instance() && get_script_instance()->has_method("commit_handle")) { get_script_instance()->call("commit_handle", p_idx, p_restore, p_cancel); return; } ERR_FAIL_COND(!gizmo_plugin); gizmo_plugin->commit_handle(this, p_idx, p_restore, p_cancel); } void EditorSpatialGizmo::set_spatial_node(Spatial *p_node) { ERR_FAIL_NULL(p_node); spatial_node = p_node; } void EditorSpatialGizmo::Instance::create_instance(Spatial *p_base, bool p_hidden) { instance = VS::get_singleton()->instance_create2(mesh->get_rid(), p_base->get_world()->get_scenario()); VS::get_singleton()->instance_set_portal_mode(instance, VisualServer::INSTANCE_PORTAL_MODE_GLOBAL); VS::get_singleton()->instance_attach_object_instance_id(instance, p_base->get_instance_id()); if (skin_reference.is_valid()) { VS::get_singleton()->instance_attach_skeleton(instance, skin_reference->get_skeleton()); } if (extra_margin) { VS::get_singleton()->instance_set_extra_visibility_margin(instance, 1); } VS::get_singleton()->instance_geometry_set_cast_shadows_setting(instance, VS::SHADOW_CASTING_SETTING_OFF); int layer = p_hidden ? 0 : 1 << SpatialEditorViewport::GIZMO_EDIT_LAYER; VS::get_singleton()->instance_set_layer_mask(instance, layer); //gizmos are 26 } void EditorSpatialGizmo::add_mesh(const Ref &p_mesh, bool p_billboard, const Ref &p_skin_reference, const Ref &p_material) { ERR_FAIL_COND(!spatial_node); ERR_FAIL_COND_MSG(!p_mesh.is_valid(), "EditorSpatialGizmo.add_mesh() requires a valid Mesh resource."); Instance ins; ins.billboard = p_billboard; ins.mesh = p_mesh; ins.skin_reference = p_skin_reference; ins.material = p_material; if (valid) { ins.create_instance(spatial_node, hidden); VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform()); if (ins.material.is_valid()) { VS::get_singleton()->instance_geometry_set_material_override(ins.instance, p_material->get_rid()); } } instances.push_back(ins); } void EditorSpatialGizmo::add_lines(const Vector &p_lines, const Ref &p_material, bool p_billboard, const Color &p_modulate) { if (p_lines.empty()) { return; } ERR_FAIL_COND(!spatial_node); Instance ins; Ref mesh = memnew(ArrayMesh); Array a; a.resize(Mesh::ARRAY_MAX); a[Mesh::ARRAY_VERTEX] = p_lines; PoolVector color; color.resize(p_lines.size()); { PoolVector::Write w = color.write(); for (int i = 0; i < p_lines.size(); i++) { if (is_selected()) { w[i] = Color(1, 1, 1, 0.8) * p_modulate; } else { w[i] = Color(1, 1, 1, 0.2) * p_modulate; } } } a[Mesh::ARRAY_COLOR] = color; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, a); mesh->surface_set_material(0, p_material); if (p_billboard) { float md = 0; for (int i = 0; i < p_lines.size(); i++) { md = MAX(0, p_lines[i].length()); } if (md) { mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0)); } } ins.billboard = p_billboard; ins.mesh = mesh; if (valid) { ins.create_instance(spatial_node, hidden); VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform()); } instances.push_back(ins); } void EditorSpatialGizmo::add_vertices(const Vector &p_vertices, const Ref &p_material, Mesh::PrimitiveType p_primitive_type, bool p_billboard, const Color &p_modulate) { if (p_vertices.empty()) { return; } ERR_FAIL_COND(!spatial_node); Instance ins; Ref mesh = memnew(ArrayMesh); Array a; a.resize(Mesh::ARRAY_MAX); a[Mesh::ARRAY_VERTEX] = p_vertices; PoolVector color; color.resize(p_vertices.size()); { PoolVector::Write w = color.write(); for (int i = 0; i < p_vertices.size(); i++) { if (is_selected()) { w[i] = Color(1, 1, 1, 0.8) * p_modulate; } else { w[i] = Color(1, 1, 1, 0.2) * p_modulate; } } } a[Mesh::ARRAY_COLOR] = color; mesh->add_surface_from_arrays(p_primitive_type, a); mesh->surface_set_material(0, p_material); if (p_billboard) { float md = 0; for (int i = 0; i < p_vertices.size(); i++) { md = MAX(0, p_vertices[i].length()); } if (md) { mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0)); } } ins.billboard = p_billboard; ins.mesh = mesh; if (valid) { ins.create_instance(spatial_node, hidden); VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform()); } instances.push_back(ins); } void EditorSpatialGizmo::add_unscaled_billboard(const Ref &p_material, float p_scale, const Color &p_modulate) { ERR_FAIL_COND(!spatial_node); Instance ins; Vector vs; Vector uv; Vector colors; vs.push_back(Vector3(-p_scale, p_scale, 0)); vs.push_back(Vector3(p_scale, p_scale, 0)); vs.push_back(Vector3(p_scale, -p_scale, 0)); vs.push_back(Vector3(-p_scale, -p_scale, 0)); uv.push_back(Vector2(0, 0)); uv.push_back(Vector2(1, 0)); uv.push_back(Vector2(1, 1)); uv.push_back(Vector2(0, 1)); colors.push_back(p_modulate); colors.push_back(p_modulate); colors.push_back(p_modulate); colors.push_back(p_modulate); Ref mesh = memnew(ArrayMesh); Array a; a.resize(Mesh::ARRAY_MAX); a[Mesh::ARRAY_VERTEX] = vs; a[Mesh::ARRAY_TEX_UV] = uv; a[Mesh::ARRAY_COLOR] = colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLE_FAN, a); mesh->surface_set_material(0, p_material); float md = 0; for (int i = 0; i < vs.size(); i++) { md = MAX(0, vs[i].length()); } if (md) { mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0)); } selectable_icon_size = p_scale; mesh->set_custom_aabb(AABB(Vector3(-selectable_icon_size, -selectable_icon_size, -selectable_icon_size) * 100.0f, Vector3(selectable_icon_size, selectable_icon_size, selectable_icon_size) * 200.0f)); ins.mesh = mesh; ins.unscaled = true; ins.billboard = true; if (valid) { ins.create_instance(spatial_node, hidden); VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform()); } selectable_icon_size = p_scale; instances.push_back(ins); } void EditorSpatialGizmo::add_collision_triangles(const Ref &p_tmesh) { collision_mesh = p_tmesh; } void EditorSpatialGizmo::add_collision_segments(const Vector &p_lines) { int from = collision_segments.size(); collision_segments.resize(from + p_lines.size()); for (int i = 0; i < p_lines.size(); i++) { collision_segments.write[from + i] = p_lines[i]; } } void EditorSpatialGizmo::add_handles(const Vector &p_handles, const Ref &p_material, bool p_billboard, bool p_secondary) { billboard_handle = p_billboard; if (!is_selected() || !is_editable()) { return; } ERR_FAIL_COND(!spatial_node); Instance ins; Ref mesh = memnew(ArrayMesh); Array a; a.resize(VS::ARRAY_MAX); a[VS::ARRAY_VERTEX] = p_handles; PoolVector colors; { colors.resize(p_handles.size()); PoolVector::Write w = colors.write(); for (int i = 0; i < p_handles.size(); i++) { Color col(1, 1, 1, 1); if (is_handle_highlighted(i)) { col = Color(0, 0, 1, 0.9); } if (SpatialEditor::get_singleton()->get_over_gizmo_handle() != i) { col.a = 0.8; } w[i] = col; } } a[VS::ARRAY_COLOR] = colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_POINTS, a); mesh->surface_set_material(0, p_material); if (p_billboard) { float md = 0; for (int i = 0; i < p_handles.size(); i++) { md = MAX(0, p_handles[i].length()); } if (md) { mesh->set_custom_aabb(AABB(Vector3(-md, -md, -md), Vector3(md, md, md) * 2.0)); } } ins.mesh = mesh; ins.billboard = p_billboard; ins.extra_margin = true; if (valid) { ins.create_instance(spatial_node, hidden); VS::get_singleton()->instance_set_transform(ins.instance, spatial_node->get_global_transform()); } instances.push_back(ins); if (!p_secondary) { int chs = handles.size(); handles.resize(chs + p_handles.size()); for (int i = 0; i < p_handles.size(); i++) { handles.write[i + chs] = p_handles[i]; } } else { int chs = secondary_handles.size(); secondary_handles.resize(chs + p_handles.size()); for (int i = 0; i < p_handles.size(); i++) { secondary_handles.write[i + chs] = p_handles[i]; } } } void EditorSpatialGizmo::add_solid_box(Ref &p_material, Vector3 p_size, Vector3 p_position) { ERR_FAIL_COND(!spatial_node); CubeMesh cubem; cubem.set_size(p_size); Array arrays = cubem.surface_get_arrays(0); PoolVector3Array vertex = arrays[VS::ARRAY_VERTEX]; PoolVector3Array::Write w = vertex.write(); for (int i = 0; i < vertex.size(); ++i) { w[i] += p_position; } arrays[VS::ARRAY_VERTEX] = vertex; Ref m = memnew(ArrayMesh); m->add_surface_from_arrays(cubem.surface_get_primitive_type(0), arrays); m->surface_set_material(0, p_material); add_mesh(m); } bool EditorSpatialGizmo::intersect_frustum(const Camera *p_camera, const Vector &p_frustum) { ERR_FAIL_COND_V(!spatial_node, false); ERR_FAIL_COND_V(!valid, false); if (hidden && !gizmo_plugin->is_selectable_when_hidden()) { return false; } if (selectable_icon_size > 0.0f) { Vector3 origin = spatial_node->get_global_transform().get_origin(); const Plane *p = p_frustum.ptr(); int fc = p_frustum.size(); bool any_out = false; for (int j = 0; j < fc; j++) { if (p[j].is_point_over(origin)) { any_out = true; break; } } return !any_out; } if (collision_segments.size()) { const Plane *p = p_frustum.ptr(); int fc = p_frustum.size(); int vc = collision_segments.size(); const Vector3 *vptr = collision_segments.ptr(); Transform t = spatial_node->get_global_transform(); bool any_out = false; for (int j = 0; j < fc; j++) { for (int i = 0; i < vc; i++) { Vector3 v = t.xform(vptr[i]); if (p[j].is_point_over(v)) { any_out = true; break; } } if (any_out) { break; } } if (!any_out) { return true; } } if (collision_mesh.is_valid()) { Transform t = spatial_node->get_global_transform(); Vector3 mesh_scale = t.get_basis().get_scale(); t.orthonormalize(); Transform it = t.affine_inverse(); Vector transformed_frustum; for (int i = 0; i < p_frustum.size(); i++) { transformed_frustum.push_back(it.xform(p_frustum[i])); } Vector convex_points = Geometry::compute_convex_mesh_points(p_frustum.ptr(), p_frustum.size()); if (collision_mesh->inside_convex_shape(transformed_frustum.ptr(), transformed_frustum.size(), convex_points.ptr(), convex_points.size(), mesh_scale)) { return true; } } return false; } bool EditorSpatialGizmo::intersect_ray(Camera *p_camera, const Point2 &p_point, Vector3 &r_pos, Vector3 &r_normal, int *r_gizmo_handle, bool p_sec_first) { ERR_FAIL_COND_V(!spatial_node, false); ERR_FAIL_COND_V(!valid, false); if (hidden && !gizmo_plugin->is_selectable_when_hidden()) { return false; } if (r_gizmo_handle && !hidden) { Transform t = spatial_node->get_global_transform(); if (billboard_handle) { t.set_look_at(t.origin, t.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1)); } float min_d = 1e20; int idx = -1; for (int i = 0; i < secondary_handles.size(); i++) { Vector3 hpos = t.xform(secondary_handles[i]); Vector2 p = p_camera->unproject_position(hpos); if (p.distance_to(p_point) < HANDLE_HALF_SIZE) { real_t dp = p_camera->get_transform().origin.distance_to(hpos); if (dp < min_d) { r_pos = t.xform(hpos); r_normal = p_camera->get_transform().basis.get_axis(2); min_d = dp; idx = i + handles.size(); } } } if (p_sec_first && idx != -1) { *r_gizmo_handle = idx; return true; } min_d = 1e20; for (int i = 0; i < handles.size(); i++) { Vector3 hpos = t.xform(handles[i]); Vector2 p = p_camera->unproject_position(hpos); if (p.distance_to(p_point) < HANDLE_HALF_SIZE) { real_t dp = p_camera->get_transform().origin.distance_to(hpos); if (dp < min_d) { r_pos = t.xform(hpos); r_normal = p_camera->get_transform().basis.get_axis(2); min_d = dp; idx = i; } } } if (idx >= 0) { *r_gizmo_handle = idx; return true; } } if (selectable_icon_size > 0.0f) { Transform t = spatial_node->get_global_transform(); Vector3 camera_position = p_camera->get_camera_transform().origin; if (camera_position.distance_squared_to(t.origin) > 0.01) { t.set_look_at(t.origin, camera_position, Vector3(0, 1, 0)); } float scale = t.origin.distance_to(p_camera->get_camera_transform().origin); if (p_camera->get_projection() == Camera::PROJECTION_ORTHOGONAL) { float aspect = p_camera->get_viewport()->get_visible_rect().size.aspect(); float size = p_camera->get_size(); scale = size / aspect; } Point2 center = p_camera->unproject_position(t.origin); Transform orig_camera_transform = p_camera->get_camera_transform(); if (orig_camera_transform.origin.distance_squared_to(t.origin) > 0.01 && ABS(orig_camera_transform.basis.get_axis(Vector3::AXIS_Z).dot(Vector3(0, 1, 0))) < 0.99) { p_camera->look_at(t.origin, Vector3(0, 1, 0)); } Vector3 c0 = t.xform(Vector3(selectable_icon_size, selectable_icon_size, 0) * scale); Vector3 c1 = t.xform(Vector3(-selectable_icon_size, -selectable_icon_size, 0) * scale); Point2 p0 = p_camera->unproject_position(c0); Point2 p1 = p_camera->unproject_position(c1); p_camera->set_global_transform(orig_camera_transform); Rect2 rect(p0, (p1 - p0).abs()); rect.set_position(center - rect.get_size() / 2.0); if (rect.has_point(p_point)) { r_pos = t.origin; r_normal = -p_camera->project_ray_normal(p_point); return true; } } if (collision_segments.size()) { Plane camp(p_camera->get_transform().origin, (-p_camera->get_transform().basis.get_axis(2)).normalized()); int vc = collision_segments.size(); const Vector3 *vptr = collision_segments.ptr(); Transform t = spatial_node->get_global_transform(); if (billboard_handle) { t.set_look_at(t.origin, t.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1)); } Vector3 cp; float cpd = 1e20; for (int i = 0; i < vc / 2; i++) { Vector3 a = t.xform(vptr[i * 2 + 0]); Vector3 b = t.xform(vptr[i * 2 + 1]); Vector2 s[2]; s[0] = p_camera->unproject_position(a); s[1] = p_camera->unproject_position(b); Vector2 p = Geometry::get_closest_point_to_segment_2d(p_point, s); float pd = p.distance_to(p_point); if (pd < cpd) { float d = s[0].distance_to(s[1]); Vector3 tcp; if (d > 0) { float d2 = s[0].distance_to(p) / d; tcp = a + (b - a) * d2; } else { tcp = a; } if (camp.distance_to(tcp) < p_camera->get_znear()) { continue; } cp = tcp; cpd = pd; } } if (cpd < 8) { r_pos = cp; r_normal = -p_camera->project_ray_normal(p_point); return true; } } if (collision_mesh.is_valid()) { Transform gt = spatial_node->get_global_transform(); if (billboard_handle) { gt.set_look_at(gt.origin, gt.origin - p_camera->get_transform().basis.get_axis(2), p_camera->get_transform().basis.get_axis(1)); } Transform ai = gt.affine_inverse(); Vector3 ray_from = ai.xform(p_camera->project_ray_origin(p_point)); Vector3 ray_dir = ai.basis.xform(p_camera->project_ray_normal(p_point)).normalized(); Vector3 rpos, rnorm; if (collision_mesh->intersect_ray(ray_from, ray_dir, rpos, rnorm)) { r_pos = gt.xform(rpos); r_normal = gt.basis.xform(rnorm).normalized(); return true; } } return false; } void EditorSpatialGizmo::create() { ERR_FAIL_COND(!spatial_node); ERR_FAIL_COND(valid); valid = true; for (int i = 0; i < instances.size(); i++) { instances.write[i].create_instance(spatial_node, hidden); } transform(); } void EditorSpatialGizmo::transform() { ERR_FAIL_COND(!spatial_node); ERR_FAIL_COND(!valid); for (int i = 0; i < instances.size(); i++) { VS::get_singleton()->instance_set_transform(instances[i].instance, spatial_node->get_global_transform()); } } void EditorSpatialGizmo::free() { ERR_FAIL_COND(!spatial_node); ERR_FAIL_COND(!valid); for (int i = 0; i < instances.size(); i++) { if (instances[i].instance.is_valid()) { VS::get_singleton()->free(instances[i].instance); instances.write[i].instance = RID(); } } clear(); valid = false; } void EditorSpatialGizmo::set_hidden(bool p_hidden) { hidden = p_hidden; int layer = hidden ? 0 : 1 << SpatialEditorViewport::GIZMO_EDIT_LAYER; for (int i = 0; i < instances.size(); ++i) { VS::get_singleton()->instance_set_layer_mask(instances[i].instance, layer); } } void EditorSpatialGizmo::set_plugin(EditorSpatialGizmoPlugin *p_plugin) { gizmo_plugin = p_plugin; } void EditorSpatialGizmo::_bind_methods() { ClassDB::bind_method(D_METHOD("add_lines", "lines", "material", "billboard", "modulate"), &EditorSpatialGizmo::add_lines, DEFVAL(false), DEFVAL(Color(1, 1, 1))); ClassDB::bind_method(D_METHOD("add_mesh", "mesh", "billboard", "skeleton", "material"), &EditorSpatialGizmo::add_mesh, DEFVAL(false), DEFVAL(Ref()), DEFVAL(Variant())); ClassDB::bind_method(D_METHOD("add_collision_segments", "segments"), &EditorSpatialGizmo::add_collision_segments); ClassDB::bind_method(D_METHOD("add_collision_triangles", "triangles"), &EditorSpatialGizmo::add_collision_triangles); ClassDB::bind_method(D_METHOD("add_unscaled_billboard", "material", "default_scale", "modulate"), &EditorSpatialGizmo::add_unscaled_billboard, DEFVAL(1), DEFVAL(Color(1, 1, 1))); ClassDB::bind_method(D_METHOD("add_handles", "handles", "material", "billboard", "secondary"), &EditorSpatialGizmo::add_handles, DEFVAL(false), DEFVAL(false)); ClassDB::bind_method(D_METHOD("set_spatial_node", "node"), &EditorSpatialGizmo::_set_spatial_node); ClassDB::bind_method(D_METHOD("get_spatial_node"), &EditorSpatialGizmo::get_spatial_node); ClassDB::bind_method(D_METHOD("get_plugin"), &EditorSpatialGizmo::get_plugin); ClassDB::bind_method(D_METHOD("clear"), &EditorSpatialGizmo::clear); ClassDB::bind_method(D_METHOD("set_hidden", "hidden"), &EditorSpatialGizmo::set_hidden); BIND_VMETHOD(MethodInfo("redraw")); BIND_VMETHOD(MethodInfo(Variant::STRING, "get_handle_name", PropertyInfo(Variant::INT, "index"))); BIND_VMETHOD(MethodInfo(Variant::BOOL, "is_handle_highlighted", PropertyInfo(Variant::INT, "index"))); MethodInfo hvget(Variant::NIL, "get_handle_value", PropertyInfo(Variant::INT, "index")); hvget.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT; BIND_VMETHOD(hvget); BIND_VMETHOD(MethodInfo("set_handle", PropertyInfo(Variant::INT, "index"), PropertyInfo(Variant::OBJECT, "camera", PROPERTY_HINT_RESOURCE_TYPE, "Camera"), PropertyInfo(Variant::VECTOR2, "point"))); MethodInfo cm = MethodInfo("commit_handle", PropertyInfo(Variant::INT, "index"), PropertyInfo(Variant::NIL, "restore"), PropertyInfo(Variant::BOOL, "cancel")); cm.default_arguments.push_back(false); BIND_VMETHOD(cm); } EditorSpatialGizmo::EditorSpatialGizmo() { valid = false; billboard_handle = false; hidden = false; base = nullptr; selected = false; instanced = false; spatial_node = nullptr; gizmo_plugin = nullptr; selectable_icon_size = -1.0f; } EditorSpatialGizmo::~EditorSpatialGizmo() { if (gizmo_plugin != nullptr) { gizmo_plugin->unregister_gizmo(this); } clear(); } Vector3 EditorSpatialGizmo::get_handle_pos(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, handles.size(), Vector3()); return handles[p_idx]; } //// light gizmo LightSpatialGizmoPlugin::LightSpatialGizmoPlugin() { // Enable vertex colors for the materials below as the gizmo color depends on the light color. create_material("lines_primary", Color(1, 1, 1), false, false, true); create_material("lines_secondary", Color(1, 1, 1, 0.35), false, false, true); create_material("lines_billboard", Color(1, 1, 1), true, false, true); create_icon_material("light_directional_icon", SpatialEditor::get_singleton()->get_icon("GizmoDirectionalLight", "EditorIcons")); create_icon_material("light_omni_icon", SpatialEditor::get_singleton()->get_icon("GizmoLight", "EditorIcons")); create_icon_material("light_spot_icon", SpatialEditor::get_singleton()->get_icon("GizmoSpotLight", "EditorIcons")); create_handle_material("handles"); create_handle_material("handles_billboard", true); } bool LightSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String LightSpatialGizmoPlugin::get_name() const { return "Lights"; } int LightSpatialGizmoPlugin::get_priority() const { return -1; } String LightSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { if (p_idx == 0) { return "Radius"; } else { return "Aperture"; } } Variant LightSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { Light *light = Object::cast_to(p_gizmo->get_spatial_node()); if (p_idx == 0) { return light->get_param(Light::PARAM_RANGE); } if (p_idx == 1) { return light->get_param(Light::PARAM_SPOT_ANGLE); } return Variant(); } static float _find_closest_angle_to_half_pi_arc(const Vector3 &p_from, const Vector3 &p_to, float p_arc_radius, const Transform &p_arc_xform) { //bleh, discrete is simpler static const int arc_test_points = 64; float min_d = 1e20; Vector3 min_p; for (int i = 0; i < arc_test_points; i++) { float a = i * Math_PI * 0.5 / arc_test_points; float an = (i + 1) * Math_PI * 0.5 / arc_test_points; Vector3 p = Vector3(Math::cos(a), 0, -Math::sin(a)) * p_arc_radius; Vector3 n = Vector3(Math::cos(an), 0, -Math::sin(an)) * p_arc_radius; Vector3 ra, rb; Geometry::get_closest_points_between_segments(p, n, p_from, p_to, ra, rb); float d = ra.distance_to(rb); if (d < min_d) { min_d = d; min_p = ra; } } //min_p = p_arc_xform.affine_inverse().xform(min_p); float a = (Math_PI * 0.5) - Vector2(min_p.x, -min_p.z).angle(); return a * 180.0 / Math_PI; } void LightSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { Light *light = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = light->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 s[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) }; if (p_idx == 0) { if (Object::cast_to(light)) { Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), Vector3(0, 0, -4096), s[0], s[1], ra, rb); float d = -ra.z; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d <= 0) { // Equal is here for negative zero. d = 0; } light->set_param(Light::PARAM_RANGE, d); } else if (Object::cast_to(light)) { Plane cp = Plane(gt.origin, p_camera->get_transform().basis.get_axis(2)); Vector3 inters; if (cp.intersects_ray(ray_from, ray_dir, &inters)) { float r = inters.distance_to(gt.origin); if (SpatialEditor::get_singleton()->is_snap_enabled()) { r = Math::stepify(r, SpatialEditor::get_singleton()->get_translate_snap()); } light->set_param(Light::PARAM_RANGE, r); } } } else if (p_idx == 1) { float a = _find_closest_angle_to_half_pi_arc(s[0], s[1], light->get_param(Light::PARAM_RANGE), gt); light->set_param(Light::PARAM_SPOT_ANGLE, CLAMP(a, 0.01, 89.99)); } } void LightSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { Light *light = Object::cast_to(p_gizmo->get_spatial_node()); if (p_cancel) { light->set_param(p_idx == 0 ? Light::PARAM_RANGE : Light::PARAM_SPOT_ANGLE, p_restore); } else if (p_idx == 0) { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Light Radius")); ur->add_do_method(light, "set_param", Light::PARAM_RANGE, light->get_param(Light::PARAM_RANGE)); ur->add_undo_method(light, "set_param", Light::PARAM_RANGE, p_restore); ur->commit_action(); } else if (p_idx == 1) { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Light Radius")); ur->add_do_method(light, "set_param", Light::PARAM_SPOT_ANGLE, light->get_param(Light::PARAM_SPOT_ANGLE)); ur->add_undo_method(light, "set_param", Light::PARAM_SPOT_ANGLE, p_restore); ur->commit_action(); } } void LightSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Light *light = Object::cast_to(p_gizmo->get_spatial_node()); Color color = light->get_color(); // Make the gizmo color as bright as possible for better visibility color.set_hsv(color.get_h(), color.get_s(), 1); p_gizmo->clear(); if (Object::cast_to(light)) { Ref material = get_material("lines_primary", p_gizmo); Ref icon = get_material("light_directional_icon", p_gizmo); const int arrow_points = 7; const float arrow_length = 1.5; Vector3 arrow[arrow_points] = { Vector3(0, 0, -1), Vector3(0, 0.8, 0), Vector3(0, 0.3, 0), Vector3(0, 0.3, arrow_length), Vector3(0, -0.3, arrow_length), Vector3(0, -0.3, 0), Vector3(0, -0.8, 0) }; int arrow_sides = 2; Vector lines; for (int i = 0; i < arrow_sides; i++) { for (int j = 0; j < arrow_points; j++) { Basis ma(Vector3(0, 0, 1), Math_PI * i / arrow_sides); Vector3 v1 = arrow[j] - Vector3(0, 0, arrow_length); Vector3 v2 = arrow[(j + 1) % arrow_points] - Vector3(0, 0, arrow_length); lines.push_back(ma.xform(v1)); lines.push_back(ma.xform(v2)); } } p_gizmo->add_lines(lines, material, false, color); p_gizmo->add_unscaled_billboard(icon, 0.05, color); } if (Object::cast_to(light)) { // Use both a billboard circle and 3 non-billboard circles for a better sphere-like representation const Ref lines_material = get_material("lines_secondary", p_gizmo); const Ref lines_billboard_material = get_material("lines_billboard", p_gizmo); const Ref icon = get_material("light_omni_icon", p_gizmo); OmniLight *on = Object::cast_to(light); const float r = on->get_param(Light::PARAM_RANGE); Vector points; Vector points_billboard; for (int i = 0; i < 120; i++) { // Create a circle const float ra = Math::deg2rad((float)(i * 3)); const float rb = Math::deg2rad((float)((i + 1) * 3)); const Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r; const Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r; // Draw axis-aligned circles points.push_back(Vector3(a.x, 0, a.y)); points.push_back(Vector3(b.x, 0, b.y)); points.push_back(Vector3(0, a.x, a.y)); points.push_back(Vector3(0, b.x, b.y)); points.push_back(Vector3(a.x, a.y, 0)); points.push_back(Vector3(b.x, b.y, 0)); // Draw a billboarded circle points_billboard.push_back(Vector3(a.x, a.y, 0)); points_billboard.push_back(Vector3(b.x, b.y, 0)); } p_gizmo->add_lines(points, lines_material, true, color); p_gizmo->add_lines(points_billboard, lines_billboard_material, true, color); p_gizmo->add_unscaled_billboard(icon, 0.05, color); Vector handles; handles.push_back(Vector3(r, 0, 0)); p_gizmo->add_handles(handles, get_material("handles_billboard"), true); } if (Object::cast_to(light)) { const Ref material_primary = get_material("lines_primary", p_gizmo); const Ref material_secondary = get_material("lines_secondary", p_gizmo); const Ref icon = get_material("light_spot_icon", p_gizmo); Vector points_primary; Vector points_secondary; SpotLight *sl = Object::cast_to(light); float r = sl->get_param(Light::PARAM_RANGE); float w = r * Math::sin(Math::deg2rad(sl->get_param(Light::PARAM_SPOT_ANGLE))); float d = r * Math::cos(Math::deg2rad(sl->get_param(Light::PARAM_SPOT_ANGLE))); for (int i = 0; i < 120; i++) { // Draw a circle const float ra = Math::deg2rad((float)(i * 3)); const float rb = Math::deg2rad((float)((i + 1) * 3)); const Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w; const Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w; points_primary.push_back(Vector3(a.x, a.y, -d)); points_primary.push_back(Vector3(b.x, b.y, -d)); if (i % 15 == 0) { // Draw 8 lines from the cone origin to the sides of the circle points_secondary.push_back(Vector3(a.x, a.y, -d)); points_secondary.push_back(Vector3()); } } points_primary.push_back(Vector3(0, 0, -r)); points_primary.push_back(Vector3()); p_gizmo->add_lines(points_primary, material_primary, false, color); p_gizmo->add_lines(points_secondary, material_secondary, false, color); const float ra = 16 * Math_PI * 2.0 / 64.0; const Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w; Vector handles; handles.push_back(Vector3(0, 0, -r)); handles.push_back(Vector3(a.x, a.y, -d)); p_gizmo->add_handles(handles, get_material("handles")); p_gizmo->add_unscaled_billboard(icon, 0.05, color); } } ////// //// player gizmo AudioStreamPlayer3DSpatialGizmoPlugin::AudioStreamPlayer3DSpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/stream_player_3d", Color(0.4, 0.8, 1)); create_icon_material("stream_player_3d_icon", SpatialEditor::get_singleton()->get_icon("GizmoSpatialSamplePlayer", "EditorIcons")); create_material("stream_player_3d_material_primary", gizmo_color); create_material("stream_player_3d_material_secondary", gizmo_color * Color(1, 1, 1, 0.35)); create_handle_material("handles"); } bool AudioStreamPlayer3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String AudioStreamPlayer3DSpatialGizmoPlugin::get_name() const { return "AudioStreamPlayer3D"; } int AudioStreamPlayer3DSpatialGizmoPlugin::get_priority() const { return -1; } String AudioStreamPlayer3DSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { return "Emission Radius"; } Variant AudioStreamPlayer3DSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { AudioStreamPlayer3D *player = Object::cast_to(p_gizmo->get_spatial_node()); return player->get_emission_angle(); } void AudioStreamPlayer3DSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { AudioStreamPlayer3D *player = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = player->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 ray_to = ray_from + ray_dir * 4096; ray_from = gi.xform(ray_from); ray_to = gi.xform(ray_to); float closest_dist = 1e20; float closest_angle = 1e20; for (int i = 0; i < 180; i++) { float a = i * Math_PI / 180.0; float an = (i + 1) * Math_PI / 180.0; Vector3 from(Math::sin(a), 0, -Math::cos(a)); Vector3 to(Math::sin(an), 0, -Math::cos(an)); Vector3 r1, r2; Geometry::get_closest_points_between_segments(from, to, ray_from, ray_to, r1, r2); float d = r1.distance_to(r2); if (d < closest_dist) { closest_dist = d; closest_angle = i; } } if (closest_angle < 91) { player->set_emission_angle(closest_angle); } } void AudioStreamPlayer3DSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { AudioStreamPlayer3D *player = Object::cast_to(p_gizmo->get_spatial_node()); if (p_cancel) { player->set_emission_angle(p_restore); } else { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change AudioStreamPlayer3D Emission Angle")); ur->add_do_method(player, "set_emission_angle", player->get_emission_angle()); ur->add_undo_method(player, "set_emission_angle", p_restore); ur->commit_action(); } } void AudioStreamPlayer3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { const AudioStreamPlayer3D *player = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); const Ref icon = get_material("stream_player_3d_icon", p_gizmo); if (player->is_emission_angle_enabled()) { const float pc = player->get_emission_angle(); const float ofs = -Math::cos(Math::deg2rad(pc)); const float radius = Math::sin(Math::deg2rad(pc)); Vector points_primary; points_primary.resize(200); for (int i = 0; i < 100; i++) { const float a = i * 2.0 * Math_PI / 100.0; const float an = (i + 1) * 2.0 * Math_PI / 100.0; const Vector3 from(Math::sin(a) * radius, Math::cos(a) * radius, ofs); const Vector3 to(Math::sin(an) * radius, Math::cos(an) * radius, ofs); points_primary.write[i * 2 + 0] = from; points_primary.write[i * 2 + 1] = to; } const Ref material_primary = get_material("stream_player_3d_material_primary", p_gizmo); p_gizmo->add_lines(points_primary, material_primary); Vector points_secondary; points_secondary.resize(16); for (int i = 0; i < 8; i++) { const float a = i * 2.0 * Math_PI / 8.0; const Vector3 from(Math::sin(a) * radius, Math::cos(a) * radius, ofs); points_secondary.write[i * 2 + 0] = from; points_secondary.write[i * 2 + 1] = Vector3(); } const Ref material_secondary = get_material("stream_player_3d_material_secondary", p_gizmo); p_gizmo->add_lines(points_secondary, material_secondary); Vector handles; const float ha = Math::deg2rad(player->get_emission_angle()); handles.push_back(Vector3(Math::sin(ha), 0, -Math::cos(ha))); p_gizmo->add_handles(handles, get_material("handles")); } p_gizmo->add_unscaled_billboard(icon, 0.05); } ////// ListenerSpatialGizmoPlugin::ListenerSpatialGizmoPlugin() { create_icon_material("listener_icon", SpatialEditor::get_singleton()->get_icon("GizmoListener", "EditorIcons")); } bool ListenerSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String ListenerSpatialGizmoPlugin::get_name() const { return "Listener"; } int ListenerSpatialGizmoPlugin::get_priority() const { return -1; } void ListenerSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { const Ref icon = get_material("listener_icon", p_gizmo); p_gizmo->add_unscaled_billboard(icon, 0.05); } ////// CameraSpatialGizmoPlugin::CameraSpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/camera", Color(0.8, 0.4, 0.8)); create_material("camera_material", gizmo_color); create_handle_material("handles"); } bool CameraSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String CameraSpatialGizmoPlugin::get_name() const { return "Camera"; } int CameraSpatialGizmoPlugin::get_priority() const { return -1; } String CameraSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { Camera *camera = Object::cast_to(p_gizmo->get_spatial_node()); if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) { return "FOV"; } else { return "Size"; } } Variant CameraSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { Camera *camera = Object::cast_to(p_gizmo->get_spatial_node()); if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) { return camera->get_fov(); } else { return camera->get_size(); } } void CameraSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { Camera *camera = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = camera->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 s[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) }; if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) { Transform gt2 = camera->get_global_transform(); float a = _find_closest_angle_to_half_pi_arc(s[0], s[1], 1.0, gt2); camera->set("fov", CLAMP(a * 2.0, 1, 179)); } else { Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(0, 0, -1), Vector3(4096, 0, -1), s[0], s[1], ra, rb); float d = ra.x * 2.0; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } d = CLAMP(d, 0.1, 16384); camera->set("size", d); } } void CameraSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { Camera *camera = Object::cast_to(p_gizmo->get_spatial_node()); if (camera->get_projection() == Camera::PROJECTION_PERSPECTIVE) { if (p_cancel) { camera->set("fov", p_restore); } else { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Camera FOV")); ur->add_do_property(camera, "fov", camera->get_fov()); ur->add_undo_property(camera, "fov", p_restore); ur->commit_action(); } } else { if (p_cancel) { camera->set("size", p_restore); } else { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Camera Size")); ur->add_do_property(camera, "size", camera->get_size()); ur->add_undo_property(camera, "size", p_restore); ur->commit_action(); } } } void CameraSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Camera *camera = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector lines; Vector handles; Ref material = get_material("camera_material", p_gizmo); #define ADD_TRIANGLE(m_a, m_b, m_c) \ { \ lines.push_back(m_a); \ lines.push_back(m_b); \ lines.push_back(m_b); \ lines.push_back(m_c); \ lines.push_back(m_c); \ lines.push_back(m_a); \ } #define ADD_QUAD(m_a, m_b, m_c, m_d) \ { \ lines.push_back(m_a); \ lines.push_back(m_b); \ lines.push_back(m_b); \ lines.push_back(m_c); \ lines.push_back(m_c); \ lines.push_back(m_d); \ lines.push_back(m_d); \ lines.push_back(m_a); \ } switch (camera->get_projection()) { case Camera::PROJECTION_PERSPECTIVE: { // The real FOV is halved for accurate representation float fov = camera->get_fov() / 2.0; Vector3 side = Vector3(Math::sin(Math::deg2rad(fov)), 0, -Math::cos(Math::deg2rad(fov))); Vector3 nside = side; nside.x = -nside.x; Vector3 up = Vector3(0, side.x, 0); ADD_TRIANGLE(Vector3(), side + up, side - up); ADD_TRIANGLE(Vector3(), nside + up, nside - up); ADD_TRIANGLE(Vector3(), side + up, nside + up); ADD_TRIANGLE(Vector3(), side - up, nside - up); handles.push_back(side); side.x *= 0.25; nside.x *= 0.25; Vector3 tup(0, up.y * 3 / 2, side.z); ADD_TRIANGLE(tup, side + up, nside + up); } break; case Camera::PROJECTION_ORTHOGONAL: { float size = camera->get_size(); float hsize = size * 0.5; Vector3 right(hsize, 0, 0); Vector3 up(0, hsize, 0); Vector3 back(0, 0, -1.0); Vector3 front(0, 0, 0); ADD_QUAD(-up - right, -up + right, up + right, up - right); ADD_QUAD(-up - right + back, -up + right + back, up + right + back, up - right + back); ADD_QUAD(up + right, up + right + back, up - right + back, up - right); ADD_QUAD(-up + right, -up + right + back, -up - right + back, -up - right); handles.push_back(right + back); right.x *= 0.25; Vector3 tup(0, up.y * 3 / 2, back.z); ADD_TRIANGLE(tup, right + up + back, -right + up + back); } break; case Camera::PROJECTION_FRUSTUM: { float hsize = camera->get_size() / 2.0; Vector3 side = Vector3(hsize, 0, -camera->get_znear()).normalized(); Vector3 nside = side; nside.x = -nside.x; Vector3 up = Vector3(0, side.x, 0); Vector3 offset = Vector3(camera->get_frustum_offset().x, camera->get_frustum_offset().y, 0.0); ADD_TRIANGLE(Vector3(), side + up + offset, side - up + offset); ADD_TRIANGLE(Vector3(), nside + up + offset, nside - up + offset); ADD_TRIANGLE(Vector3(), side + up + offset, nside + up + offset); ADD_TRIANGLE(Vector3(), side - up + offset, nside - up + offset); side.x *= 0.25; nside.x *= 0.25; Vector3 tup(0, up.y * 3 / 2, side.z); ADD_TRIANGLE(tup + offset, side + up + offset, nside + up + offset); } } #undef ADD_TRIANGLE #undef ADD_QUAD p_gizmo->add_lines(lines, material); p_gizmo->add_handles(handles, get_material("handles")); ClippedCamera *clipcam = Object::cast_to(camera); if (clipcam) { Spatial *parent = Object::cast_to(camera->get_parent()); if (!parent) { return; } Vector3 cam_normal = -camera->get_global_transform().basis.get_axis(Vector3::AXIS_Z).normalized(); Vector3 cam_x = camera->get_global_transform().basis.get_axis(Vector3::AXIS_X).normalized(); Vector3 cam_y = camera->get_global_transform().basis.get_axis(Vector3::AXIS_Y).normalized(); Vector3 cam_pos = camera->get_global_transform().origin; Vector3 parent_pos = parent->get_global_transform().origin; Plane parent_plane(parent_pos, cam_normal); Vector3 ray_from = parent_plane.project(cam_pos); lines.clear(); lines.push_back(ray_from + cam_x * 0.5 + cam_y * 0.5); lines.push_back(ray_from + cam_x * 0.5 + cam_y * -0.5); lines.push_back(ray_from + cam_x * 0.5 + cam_y * -0.5); lines.push_back(ray_from + cam_x * -0.5 + cam_y * -0.5); lines.push_back(ray_from + cam_x * -0.5 + cam_y * -0.5); lines.push_back(ray_from + cam_x * -0.5 + cam_y * 0.5); lines.push_back(ray_from + cam_x * -0.5 + cam_y * 0.5); lines.push_back(ray_from + cam_x * 0.5 + cam_y * 0.5); if (parent_plane.distance_to(cam_pos) < 0) { lines.push_back(ray_from); lines.push_back(cam_pos); } Transform local = camera->get_global_transform().affine_inverse(); for (int i = 0; i < lines.size(); i++) { lines.write[i] = local.xform(lines[i]); } p_gizmo->add_lines(lines, material); } } ////// MeshInstanceSpatialGizmoPlugin::MeshInstanceSpatialGizmoPlugin() { } bool MeshInstanceSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr && Object::cast_to(p_spatial) == nullptr; } String MeshInstanceSpatialGizmoPlugin::get_name() const { return "MeshInstance"; } int MeshInstanceSpatialGizmoPlugin::get_priority() const { return -1; } bool MeshInstanceSpatialGizmoPlugin::can_be_hidden() const { return false; } void MeshInstanceSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { MeshInstance *mesh = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Ref m = mesh->get_mesh(); if (!m.is_valid()) { return; //none } Ref tm = m->generate_triangle_mesh(); if (tm.is_valid()) { p_gizmo->add_collision_triangles(tm); } } ///// Sprite3DSpatialGizmoPlugin::Sprite3DSpatialGizmoPlugin() { } bool Sprite3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String Sprite3DSpatialGizmoPlugin::get_name() const { return "Sprite3D"; } int Sprite3DSpatialGizmoPlugin::get_priority() const { return -1; } bool Sprite3DSpatialGizmoPlugin::can_be_hidden() const { return false; } void Sprite3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Sprite3D *sprite = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Ref tm = sprite->generate_triangle_mesh(); if (tm.is_valid()) { p_gizmo->add_collision_triangles(tm); } } /// Position3DSpatialGizmoPlugin::Position3DSpatialGizmoPlugin() { pos3d_mesh = Ref(memnew(ArrayMesh)); cursor_points = Vector(); PoolVector cursor_colors; const float cs = 0.25; // Add more points to create a "hard stop" in the color gradient. cursor_points.push_back(Vector3(+cs, 0, 0)); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3(-cs, 0, 0)); cursor_points.push_back(Vector3(0, +cs, 0)); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3(0, -cs, 0)); cursor_points.push_back(Vector3(0, 0, +cs)); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3()); cursor_points.push_back(Vector3(0, 0, -cs)); // Use the axis color which is brighter for the positive axis. // Use a darkened axis color for the negative axis. // This makes it possible to see in which direction the Position3D node is rotated // (which can be important depending on how it's used). const Color color_x = EditorNode::get_singleton()->get_gui_base()->get_color("axis_x_color", "Editor"); cursor_colors.push_back(color_x); cursor_colors.push_back(color_x); // FIXME: Use less strong darkening factor once GH-48573 is fixed. // The current darkening factor compensates for lines being too bright in the 3D editor. cursor_colors.push_back(color_x.linear_interpolate(Color(0, 0, 0), 0.75)); cursor_colors.push_back(color_x.linear_interpolate(Color(0, 0, 0), 0.75)); const Color color_y = EditorNode::get_singleton()->get_gui_base()->get_color("axis_y_color", "Editor"); cursor_colors.push_back(color_y); cursor_colors.push_back(color_y); cursor_colors.push_back(color_y.linear_interpolate(Color(0, 0, 0), 0.75)); cursor_colors.push_back(color_y.linear_interpolate(Color(0, 0, 0), 0.75)); const Color color_z = EditorNode::get_singleton()->get_gui_base()->get_color("axis_z_color", "Editor"); cursor_colors.push_back(color_z); cursor_colors.push_back(color_z); cursor_colors.push_back(color_z.linear_interpolate(Color(0, 0, 0), 0.75)); cursor_colors.push_back(color_z.linear_interpolate(Color(0, 0, 0), 0.75)); Ref mat = memnew(SpatialMaterial); mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true); mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_line_width(3); Array d; d.resize(VS::ARRAY_MAX); d[Mesh::ARRAY_VERTEX] = cursor_points; d[Mesh::ARRAY_COLOR] = cursor_colors; pos3d_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, d); pos3d_mesh->surface_set_material(0, mat); } bool Position3DSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String Position3DSpatialGizmoPlugin::get_name() const { return "Position3D"; } int Position3DSpatialGizmoPlugin::get_priority() const { return -1; } void Position3DSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { p_gizmo->clear(); p_gizmo->add_mesh(pos3d_mesh); p_gizmo->add_collision_segments(cursor_points); } ///// SkeletonSpatialGizmoPlugin::SkeletonSpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/skeleton", Color(1, 0.8, 0.4)); create_material("skeleton_material", gizmo_color); } bool SkeletonSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String SkeletonSpatialGizmoPlugin::get_name() const { return "Skeleton"; } int SkeletonSpatialGizmoPlugin::get_priority() const { return -1; } void SkeletonSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Skeleton *skel = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Ref material = get_material("skeleton_material", p_gizmo); Ref surface_tool(memnew(SurfaceTool)); surface_tool->begin(Mesh::PRIMITIVE_LINES); surface_tool->set_material(material); Vector grests; grests.resize(skel->get_bone_count()); Vector bones; Vector weights; bones.resize(4); weights.resize(4); for (int i = 0; i < 4; i++) { bones.write[i] = 0; weights.write[i] = 0; } weights.write[0] = 1; AABB aabb; Color bonecolor = Color(1.0, 0.4, 0.4, 0.3); Color rootcolor = Color(0.4, 1.0, 0.4, 0.1); for (int i_bone = 0; i_bone < skel->get_bone_count(); i_bone++) { int i = skel->get_process_order(i_bone); int parent = skel->get_bone_parent(i); if (parent >= 0) { grests.write[i] = grests[parent] * skel->get_bone_rest(i); Vector3 v0 = grests[parent].origin; Vector3 v1 = grests[i].origin; Vector3 d = (v1 - v0).normalized(); float dist = v0.distance_to(v1); //find closest axis int closest = -1; float closest_d = 0.0; for (int j = 0; j < 3; j++) { float dp = Math::abs(grests[parent].basis[j].normalized().dot(d)); if (j == 0 || dp > closest_d) { closest = j; } } //find closest other Vector3 first; Vector3 points[4]; int pointidx = 0; for (int j = 0; j < 3; j++) { bones.write[0] = parent; surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(rootcolor); surface_tool->add_vertex(v0 - grests[parent].basis[j].normalized() * dist * 0.05); surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(rootcolor); surface_tool->add_vertex(v0 + grests[parent].basis[j].normalized() * dist * 0.05); if (j == closest) { continue; } Vector3 axis; if (first == Vector3()) { axis = d.cross(d.cross(grests[parent].basis[j])).normalized(); first = axis; } else { axis = d.cross(first).normalized(); } for (int k = 0; k < 2; k++) { if (k == 1) { axis = -axis; } Vector3 point = v0 + d * dist * 0.2; point += axis * dist * 0.1; bones.write[0] = parent; surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(v0); surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(point); bones.write[0] = parent; surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(point); bones.write[0] = i; surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(v1); points[pointidx++] = point; } } SWAP(points[1], points[2]); for (int j = 0; j < 4; j++) { bones.write[0] = parent; surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(points[j]); surface_tool->add_bones(bones); surface_tool->add_weights(weights); surface_tool->add_color(bonecolor); surface_tool->add_vertex(points[(j + 1) % 4]); } } else { grests.write[i] = skel->get_bone_rest(i); bones.write[0] = i; } } Ref m = surface_tool->commit(); p_gizmo->add_mesh(m, false, skel->register_skin(Ref())); } //// PhysicalBoneSpatialGizmoPlugin::PhysicalBoneSpatialGizmoPlugin() { create_material("joint_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint", Color(0.5, 0.8, 1))); } bool PhysicalBoneSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String PhysicalBoneSpatialGizmoPlugin::get_name() const { return "PhysicalBones"; } int PhysicalBoneSpatialGizmoPlugin::get_priority() const { return -1; } void PhysicalBoneSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { p_gizmo->clear(); PhysicalBone *physical_bone = Object::cast_to(p_gizmo->get_spatial_node()); if (!physical_bone) { return; } Skeleton *sk(physical_bone->find_skeleton_parent()); if (!sk) { return; } PhysicalBone *pb(sk->get_physical_bone(physical_bone->get_bone_id())); if (!pb) { return; } PhysicalBone *pbp(sk->get_physical_bone_parent(physical_bone->get_bone_id())); if (!pbp) { return; } Vector points; switch (physical_bone->get_joint_type()) { case PhysicalBone::JOINT_TYPE_PIN: { JointSpatialGizmoPlugin::CreatePinJointGizmo(physical_bone->get_joint_offset(), points); } break; case PhysicalBone::JOINT_TYPE_CONE: { const PhysicalBone::ConeJointData *cjd(static_cast(physical_bone->get_joint_data())); JointSpatialGizmoPlugin::CreateConeTwistJointGizmo( physical_bone->get_joint_offset(), physical_bone->get_global_transform() * physical_bone->get_joint_offset(), pb->get_global_transform(), pbp->get_global_transform(), cjd->swing_span, cjd->twist_span, &points, &points); } break; case PhysicalBone::JOINT_TYPE_HINGE: { const PhysicalBone::HingeJointData *hjd(static_cast(physical_bone->get_joint_data())); JointSpatialGizmoPlugin::CreateHingeJointGizmo( physical_bone->get_joint_offset(), physical_bone->get_global_transform() * physical_bone->get_joint_offset(), pb->get_global_transform(), pbp->get_global_transform(), hjd->angular_limit_lower, hjd->angular_limit_upper, hjd->angular_limit_enabled, points, &points, &points); } break; case PhysicalBone::JOINT_TYPE_SLIDER: { const PhysicalBone::SliderJointData *sjd(static_cast(physical_bone->get_joint_data())); JointSpatialGizmoPlugin::CreateSliderJointGizmo( physical_bone->get_joint_offset(), physical_bone->get_global_transform() * physical_bone->get_joint_offset(), pb->get_global_transform(), pbp->get_global_transform(), sjd->angular_limit_lower, sjd->angular_limit_upper, sjd->linear_limit_lower, sjd->linear_limit_upper, points, &points, &points); } break; case PhysicalBone::JOINT_TYPE_6DOF: { const PhysicalBone::SixDOFJointData *sdofjd(static_cast(physical_bone->get_joint_data())); JointSpatialGizmoPlugin::CreateGeneric6DOFJointGizmo( physical_bone->get_joint_offset(), physical_bone->get_global_transform() * physical_bone->get_joint_offset(), pb->get_global_transform(), pbp->get_global_transform(), sdofjd->axis_data[0].angular_limit_lower, sdofjd->axis_data[0].angular_limit_upper, sdofjd->axis_data[0].linear_limit_lower, sdofjd->axis_data[0].linear_limit_upper, sdofjd->axis_data[0].angular_limit_enabled, sdofjd->axis_data[0].linear_limit_enabled, sdofjd->axis_data[1].angular_limit_lower, sdofjd->axis_data[1].angular_limit_upper, sdofjd->axis_data[1].linear_limit_lower, sdofjd->axis_data[1].linear_limit_upper, sdofjd->axis_data[1].angular_limit_enabled, sdofjd->axis_data[1].linear_limit_enabled, sdofjd->axis_data[2].angular_limit_lower, sdofjd->axis_data[2].angular_limit_upper, sdofjd->axis_data[2].linear_limit_lower, sdofjd->axis_data[2].linear_limit_upper, sdofjd->axis_data[2].angular_limit_enabled, sdofjd->axis_data[2].linear_limit_enabled, points, &points, &points); } break; default: return; } Ref material = get_material("joint_material", p_gizmo); p_gizmo->add_collision_segments(points); p_gizmo->add_lines(points, material); } ///// RayCastSpatialGizmoPlugin::RayCastSpatialGizmoPlugin() { const Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); const float gizmo_value = gizmo_color.get_v(); const Color gizmo_color_disabled = Color(gizmo_value, gizmo_value, gizmo_value, 0.65); create_material("shape_material_disabled", gizmo_color_disabled); } bool RayCastSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String RayCastSpatialGizmoPlugin::get_name() const { return "RayCast"; } int RayCastSpatialGizmoPlugin::get_priority() const { return -1; } void RayCastSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { RayCast *raycast = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); const Ref material = raycast->is_enabled() ? raycast->get_debug_material() : get_material("shape_material_disabled"); p_gizmo->add_lines(raycast->get_debug_line_vertices(), material); if (raycast->get_debug_shape_thickness() > 1) { p_gizmo->add_vertices(raycast->get_debug_shape_vertices(), material, Mesh::PRIMITIVE_TRIANGLE_STRIP); } p_gizmo->add_collision_segments(raycast->get_debug_line_vertices()); } ///// void SpringArmSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { SpringArm *spring_arm = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector lines; lines.push_back(Vector3()); lines.push_back(Vector3(0, 0, 1.0) * spring_arm->get_length()); Ref material = get_material("shape_material", p_gizmo); p_gizmo->add_lines(lines, material); p_gizmo->add_collision_segments(lines); } SpringArmSpatialGizmoPlugin::SpringArmSpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); } bool SpringArmSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String SpringArmSpatialGizmoPlugin::get_name() const { return "SpringArm"; } int SpringArmSpatialGizmoPlugin::get_priority() const { return -1; } ///// VehicleWheelSpatialGizmoPlugin::VehicleWheelSpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); } bool VehicleWheelSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String VehicleWheelSpatialGizmoPlugin::get_name() const { return "VehicleWheel"; } int VehicleWheelSpatialGizmoPlugin::get_priority() const { return -1; } void VehicleWheelSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { VehicleWheel *car_wheel = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector points; float r = car_wheel->get_radius(); const int skip = 10; for (int i = 0; i <= 360; i += skip) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + skip); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r; points.push_back(Vector3(0, a.x, a.y)); points.push_back(Vector3(0, b.x, b.y)); const int springsec = 4; for (int j = 0; j < springsec; j++) { float t = car_wheel->get_suspension_rest_length() * 5; points.push_back(Vector3(a.x, i / 360.0 * t / springsec + j * (t / springsec), a.y) * 0.2); points.push_back(Vector3(b.x, (i + skip) / 360.0 * t / springsec + j * (t / springsec), b.y) * 0.2); } } //travel points.push_back(Vector3(0, 0, 0)); points.push_back(Vector3(0, car_wheel->get_suspension_rest_length(), 0)); //axis points.push_back(Vector3(r * 0.2, car_wheel->get_suspension_rest_length(), 0)); points.push_back(Vector3(-r * 0.2, car_wheel->get_suspension_rest_length(), 0)); //axis points.push_back(Vector3(r * 0.2, 0, 0)); points.push_back(Vector3(-r * 0.2, 0, 0)); //forward line points.push_back(Vector3(0, -r, 0)); points.push_back(Vector3(0, -r, r * 2)); points.push_back(Vector3(0, -r, r * 2)); points.push_back(Vector3(r * 2 * 0.2, -r, r * 2 * 0.8)); points.push_back(Vector3(0, -r, r * 2)); points.push_back(Vector3(-r * 2 * 0.2, -r, r * 2 * 0.8)); Ref material = get_material("shape_material", p_gizmo); p_gizmo->add_lines(points, material); p_gizmo->add_collision_segments(points); } /////////// SoftBodySpatialGizmoPlugin::SoftBodySpatialGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); create_handle_material("handles"); } bool SoftBodySpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String SoftBodySpatialGizmoPlugin::get_name() const { return "SoftBody"; } int SoftBodySpatialGizmoPlugin::get_priority() const { return -1; } bool SoftBodySpatialGizmoPlugin::is_selectable_when_hidden() const { return true; } void SoftBodySpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { SoftBody *soft_body = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); if (!soft_body || soft_body->get_mesh().is_null()) { return; } // find mesh Vector lines; soft_body->get_mesh()->generate_debug_mesh_lines(lines); if (!lines.size()) { return; } Ref tm = soft_body->get_mesh()->generate_triangle_mesh(); Vector points; for (int i = 0; i < soft_body->get_mesh()->get_surface_count(); i++) { Array arrays = soft_body->get_mesh()->surface_get_arrays(i); ERR_CONTINUE(arrays.empty()); const PoolVector &vertices = arrays[Mesh::ARRAY_VERTEX]; PoolVector::Read vertices_read = vertices.read(); int vertex_count = vertices.size(); for (int index = 0; index < vertex_count; ++index) { points.push_back(vertices_read[index]); } } Ref material = get_material("shape_material", p_gizmo); p_gizmo->add_lines(lines, material); p_gizmo->add_handles(points, get_material("handles")); p_gizmo->add_collision_triangles(tm); } String SoftBodySpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { return "SoftBody pin point"; } Variant SoftBodySpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { SoftBody *soft_body = Object::cast_to(p_gizmo->get_spatial_node()); return Variant(soft_body->is_point_pinned(p_idx)); } void SoftBodySpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { SoftBody *soft_body = Object::cast_to(p_gizmo->get_spatial_node()); soft_body->pin_point_toggle(p_idx); } bool SoftBodySpatialGizmoPlugin::is_handle_highlighted(const EditorSpatialGizmo *p_gizmo, int idx) const { SoftBody *soft_body = Object::cast_to(p_gizmo->get_spatial_node()); return soft_body->is_point_pinned(idx); } /////////// VisibilityNotifierGizmoPlugin::VisibilityNotifierGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/visibility_notifier", Color(0.8, 0.5, 0.7)); create_material("visibility_notifier_material", gizmo_color); gizmo_color.a = 0.1; create_material("visibility_notifier_solid_material", gizmo_color); create_handle_material("handles"); } bool VisibilityNotifierGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String VisibilityNotifierGizmoPlugin::get_name() const { return "VisibilityNotifier"; } int VisibilityNotifierGizmoPlugin::get_priority() const { return -1; } String VisibilityNotifierGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { switch (p_idx) { case 0: return "Size X"; case 1: return "Size Y"; case 2: return "Size Z"; case 3: return "Pos X"; case 4: return "Pos Y"; case 5: return "Pos Z"; } return ""; } Variant VisibilityNotifierGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { VisibilityNotifier *notifier = Object::cast_to(p_gizmo->get_spatial_node()); return notifier->get_aabb(); } void VisibilityNotifierGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { VisibilityNotifier *notifier = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = notifier->get_global_transform(); Transform gi = gt.affine_inverse(); bool move = p_idx >= 3; p_idx = p_idx % 3; AABB aabb = notifier->get_aabb(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) }; Vector3 ofs = aabb.position + aabb.size * 0.5; Vector3 axis; axis[p_idx] = 1.0; if (move) { Vector3 ra, rb; Geometry::get_closest_points_between_segments(ofs - axis * 4096, ofs + axis * 4096, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } aabb.position[p_idx] = d - 1.0 - aabb.size[p_idx] * 0.5; notifier->set_aabb(aabb); } else { Vector3 ra, rb; Geometry::get_closest_points_between_segments(ofs, ofs + axis * 4096, sg[0], sg[1], ra, rb); float d = ra[p_idx] - ofs[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } //resize aabb.position[p_idx] = (aabb.position[p_idx] + aabb.size[p_idx] * 0.5) - d; aabb.size[p_idx] = d * 2; notifier->set_aabb(aabb); } } void VisibilityNotifierGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { VisibilityNotifier *notifier = Object::cast_to(p_gizmo->get_spatial_node()); if (p_cancel) { notifier->set_aabb(p_restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Notifier AABB")); ur->add_do_method(notifier, "set_aabb", notifier->get_aabb()); ur->add_undo_method(notifier, "set_aabb", p_restore); ur->commit_action(); } void VisibilityNotifierGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { VisibilityNotifier *notifier = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector lines; AABB aabb = notifier->get_aabb(); for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = aabb.position[i] + aabb.size[i]; ax[(i + 1) % 3] = aabb.position[(i + 1) % 3] + aabb.size[(i + 1) % 3] * 0.5; ax[(i + 2) % 3] = aabb.position[(i + 2) % 3] + aabb.size[(i + 2) % 3] * 0.5; handles.push_back(ax); } Vector3 center = aabb.position + aabb.size * 0.5; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = 1.0; handles.push_back(center + ax); lines.push_back(center); lines.push_back(center + ax); } Ref material = get_material("visibility_notifier_material", p_gizmo); p_gizmo->add_lines(lines, material); p_gizmo->add_collision_segments(lines); if (p_gizmo->is_selected()) { Ref solid_material = get_material("visibility_notifier_solid_material", p_gizmo); p_gizmo->add_solid_box(solid_material, aabb.get_size(), aabb.get_position() + aabb.get_size() / 2.0); } p_gizmo->add_handles(handles, get_material("handles")); } //// CPUParticlesGizmoPlugin::CPUParticlesGizmoPlugin() { create_icon_material("particles_icon", SpatialEditor::get_singleton()->get_icon("GizmoCPUParticles", "EditorIcons")); } bool CPUParticlesGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String CPUParticlesGizmoPlugin::get_name() const { return "CPUParticles"; } int CPUParticlesGizmoPlugin::get_priority() const { return -1; } bool CPUParticlesGizmoPlugin::is_selectable_when_hidden() const { return true; } void CPUParticlesGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Ref icon = get_material("particles_icon", p_gizmo); p_gizmo->add_unscaled_billboard(icon, 0.05); } //// ParticlesGizmoPlugin::ParticlesGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/particles", Color(0.8, 0.7, 0.4)); create_material("particles_material", gizmo_color); gizmo_color.a = 0.1; create_material("particles_solid_material", gizmo_color); create_icon_material("particles_icon", SpatialEditor::get_singleton()->get_icon("GizmoParticles", "EditorIcons")); create_handle_material("handles"); } bool ParticlesGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String ParticlesGizmoPlugin::get_name() const { return "Particles"; } int ParticlesGizmoPlugin::get_priority() const { return -1; } bool ParticlesGizmoPlugin::is_selectable_when_hidden() const { return true; } String ParticlesGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { switch (p_idx) { case 0: return "Size X"; case 1: return "Size Y"; case 2: return "Size Z"; case 3: return "Pos X"; case 4: return "Pos Y"; case 5: return "Pos Z"; } return ""; } Variant ParticlesGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { Particles *particles = Object::cast_to(p_gizmo->get_spatial_node()); return particles->get_visibility_aabb(); } void ParticlesGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { Particles *particles = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = particles->get_global_transform(); Transform gi = gt.affine_inverse(); bool move = p_idx >= 3; p_idx = p_idx % 3; AABB aabb = particles->get_visibility_aabb(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) }; Vector3 ofs = aabb.position + aabb.size * 0.5; Vector3 axis; axis[p_idx] = 1.0; if (move) { Vector3 ra, rb; Geometry::get_closest_points_between_segments(ofs - axis * 4096, ofs + axis * 4096, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } aabb.position[p_idx] = d - 1.0 - aabb.size[p_idx] * 0.5; particles->set_visibility_aabb(aabb); } else { Vector3 ra, rb; Geometry::get_closest_points_between_segments(ofs, ofs + axis * 4096, sg[0], sg[1], ra, rb); float d = ra[p_idx] - ofs[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } //resize aabb.position[p_idx] = (aabb.position[p_idx] + aabb.size[p_idx] * 0.5) - d; aabb.size[p_idx] = d * 2; particles->set_visibility_aabb(aabb); } } void ParticlesGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { Particles *particles = Object::cast_to(p_gizmo->get_spatial_node()); if (p_cancel) { particles->set_visibility_aabb(p_restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Particles AABB")); ur->add_do_method(particles, "set_visibility_aabb", particles->get_visibility_aabb()); ur->add_undo_method(particles, "set_visibility_aabb", p_restore); ur->commit_action(); } void ParticlesGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Particles *particles = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector lines; AABB aabb = particles->get_visibility_aabb(); for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = aabb.position[i] + aabb.size[i]; ax[(i + 1) % 3] = aabb.position[(i + 1) % 3] + aabb.size[(i + 1) % 3] * 0.5; ax[(i + 2) % 3] = aabb.position[(i + 2) % 3] + aabb.size[(i + 2) % 3] * 0.5; handles.push_back(ax); } Vector3 center = aabb.position + aabb.size * 0.5; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = 1.0; handles.push_back(center + ax); lines.push_back(center); lines.push_back(center + ax); } Ref material = get_material("particles_material", p_gizmo); Ref icon = get_material("particles_icon", p_gizmo); p_gizmo->add_lines(lines, material); if (p_gizmo->is_selected()) { Ref solid_material = get_material("particles_solid_material", p_gizmo); p_gizmo->add_solid_box(solid_material, aabb.get_size(), aabb.get_position() + aabb.get_size() / 2.0); } p_gizmo->add_handles(handles, get_material("handles")); p_gizmo->add_unscaled_billboard(icon, 0.05); } //// ReflectionProbeGizmoPlugin::ReflectionProbeGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/reflection_probe", Color(0.6, 1, 0.5)); create_material("reflection_probe_material", gizmo_color); gizmo_color.a = 0.5; create_material("reflection_internal_material", gizmo_color); gizmo_color.a = 0.1; create_material("reflection_probe_solid_material", gizmo_color); create_icon_material("reflection_probe_icon", SpatialEditor::get_singleton()->get_icon("GizmoReflectionProbe", "EditorIcons")); create_handle_material("handles"); } bool ReflectionProbeGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String ReflectionProbeGizmoPlugin::get_name() const { return "ReflectionProbe"; } int ReflectionProbeGizmoPlugin::get_priority() const { return -1; } String ReflectionProbeGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { switch (p_idx) { case 0: return "Extents X"; case 1: return "Extents Y"; case 2: return "Extents Z"; case 3: return "Origin X"; case 4: return "Origin Y"; case 5: return "Origin Z"; } return ""; } Variant ReflectionProbeGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { ReflectionProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); return AABB(probe->get_extents(), probe->get_origin_offset()); } void ReflectionProbeGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { ReflectionProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = probe->get_global_transform(); Transform gi = gt.affine_inverse(); if (p_idx < 3) { Vector3 extents = probe->get_extents(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) }; Vector3 axis; axis[p_idx] = 1.0; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } extents[p_idx] = d; probe->set_extents(extents); } else { p_idx -= 3; Vector3 origin = probe->get_origin_offset(); origin[p_idx] = 0; Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) }; Vector3 axis; axis[p_idx] = 1.0; Vector3 ra, rb; Geometry::get_closest_points_between_segments(origin - axis * 16384, origin + axis * 16384, sg[0], sg[1], ra, rb); // Adjust the actual position to account for the gizmo handle position float d = ra[p_idx] + 0.25; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } origin[p_idx] = d; probe->set_origin_offset(origin); } } void ReflectionProbeGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { ReflectionProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); AABB restore = p_restore; if (p_cancel) { probe->set_extents(restore.position); probe->set_origin_offset(restore.size); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Probe Extents")); ur->add_do_method(probe, "set_extents", probe->get_extents()); ur->add_do_method(probe, "set_origin_offset", probe->get_origin_offset()); ur->add_undo_method(probe, "set_extents", restore.position); ur->add_undo_method(probe, "set_origin_offset", restore.size); ur->commit_action(); } void ReflectionProbeGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { ReflectionProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector lines; Vector internal_lines; Vector3 extents = probe->get_extents(); AABB aabb; aabb.position = -extents; aabb.size = extents * 2; for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } for (int i = 0; i < 8; i++) { Vector3 ep = aabb.get_endpoint(i); internal_lines.push_back(probe->get_origin_offset()); internal_lines.push_back(ep); } Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = aabb.position[i] + aabb.size[i]; handles.push_back(ax); } for (int i = 0; i < 3; i++) { Vector3 orig_handle = probe->get_origin_offset(); orig_handle[i] -= 0.25; lines.push_back(orig_handle); handles.push_back(orig_handle); orig_handle[i] += 0.5; lines.push_back(orig_handle); } Ref material = get_material("reflection_probe_material", p_gizmo); Ref material_internal = get_material("reflection_internal_material", p_gizmo); Ref icon = get_material("reflection_probe_icon", p_gizmo); p_gizmo->add_lines(lines, material); p_gizmo->add_lines(internal_lines, material_internal); if (p_gizmo->is_selected()) { Ref solid_material = get_material("reflection_probe_solid_material", p_gizmo); p_gizmo->add_solid_box(solid_material, probe->get_extents() * 2.0); } p_gizmo->add_unscaled_billboard(icon, 0.05); p_gizmo->add_handles(handles, get_material("handles")); } GIProbeGizmoPlugin::GIProbeGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/gi_probe", Color(0.5, 1, 0.6)); create_material("gi_probe_material", gizmo_color); gizmo_color.a = 0.5; create_material("gi_probe_internal_material", gizmo_color); gizmo_color.a = 0.1; create_material("gi_probe_solid_material", gizmo_color); create_icon_material("gi_probe_icon", SpatialEditor::get_singleton()->get_icon("GizmoGIProbe", "EditorIcons")); create_handle_material("handles"); } bool GIProbeGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String GIProbeGizmoPlugin::get_name() const { return "GIProbe"; } int GIProbeGizmoPlugin::get_priority() const { return -1; } String GIProbeGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { switch (p_idx) { case 0: return "Extents X"; case 1: return "Extents Y"; case 2: return "Extents Z"; } return ""; } Variant GIProbeGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { GIProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); return probe->get_extents(); } void GIProbeGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { GIProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = probe->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 extents = probe->get_extents(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) }; Vector3 axis; axis[p_idx] = 1.0; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } extents[p_idx] = d; probe->set_extents(extents); } void GIProbeGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { GIProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); Vector3 restore = p_restore; if (p_cancel) { probe->set_extents(restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Probe Extents")); ur->add_do_method(probe, "set_extents", probe->get_extents()); ur->add_undo_method(probe, "set_extents", restore); ur->commit_action(); } void GIProbeGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { GIProbe *probe = Object::cast_to(p_gizmo->get_spatial_node()); Ref material = get_material("gi_probe_material", p_gizmo); Ref icon = get_material("gi_probe_icon", p_gizmo); Ref material_internal = get_material("gi_probe_internal_material", p_gizmo); p_gizmo->clear(); Vector lines; Vector3 extents = probe->get_extents(); static const int subdivs[GIProbe::SUBDIV_MAX] = { 64, 128, 256, 512 }; AABB aabb = AABB(-extents, extents * 2); int subdiv = subdivs[probe->get_subdiv()]; float cell_size = aabb.get_longest_axis_size() / subdiv; for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } p_gizmo->add_lines(lines, material); lines.clear(); for (int i = 1; i < subdiv; i++) { for (int j = 0; j < 3; j++) { if (cell_size * i > aabb.size[j]) { continue; } Vector2 dir; dir[j] = 1.0; Vector2 ta, tb; int j_n1 = (j + 1) % 3; int j_n2 = (j + 2) % 3; ta[j_n1] = 1.0; tb[j_n2] = 1.0; for (int k = 0; k < 4; k++) { Vector3 from = aabb.position, to = aabb.position; from[j] += cell_size * i; to[j] += cell_size * i; if (k & 1) { to[j_n1] += aabb.size[j_n1]; } else { to[j_n2] += aabb.size[j_n2]; } if (k & 2) { from[j_n1] += aabb.size[j_n1]; from[j_n2] += aabb.size[j_n2]; } lines.push_back(from); lines.push_back(to); } } } p_gizmo->add_lines(lines, material_internal); Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = aabb.position[i] + aabb.size[i]; handles.push_back(ax); } if (p_gizmo->is_selected()) { Ref solid_material = get_material("gi_probe_solid_material", p_gizmo); p_gizmo->add_solid_box(solid_material, aabb.get_size()); } p_gizmo->add_unscaled_billboard(icon, 0.05); p_gizmo->add_handles(handles, get_material("handles")); } //// BakedIndirectLightGizmoPlugin::BakedIndirectLightGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/baked_indirect_light", Color(0.5, 0.6, 1)); create_material("baked_indirect_light_material", gizmo_color); gizmo_color.a = 0.1; create_material("baked_indirect_light_internal_material", gizmo_color); create_icon_material("baked_indirect_light_icon", SpatialEditor::get_singleton()->get_icon("GizmoBakedLightmap", "EditorIcons")); create_handle_material("handles"); } String BakedIndirectLightGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { switch (p_idx) { case 0: return "Extents X"; case 1: return "Extents Y"; case 2: return "Extents Z"; } return ""; } Variant BakedIndirectLightGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { BakedLightmap *baker = Object::cast_to(p_gizmo->get_spatial_node()); return baker->get_extents(); } void BakedIndirectLightGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { BakedLightmap *baker = Object::cast_to(p_gizmo->get_spatial_node()); Transform gt = baker->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 extents = baker->get_extents(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) }; Vector3 axis; axis[p_idx] = 1.0; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } extents[p_idx] = d; baker->set_extents(extents); } void BakedIndirectLightGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { BakedLightmap *baker = Object::cast_to(p_gizmo->get_spatial_node()); Vector3 restore = p_restore; if (p_cancel) { baker->set_extents(restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Probe Extents")); ur->add_do_method(baker, "set_extents", baker->get_extents()); ur->add_undo_method(baker, "set_extents", restore); ur->commit_action(); } bool BakedIndirectLightGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String BakedIndirectLightGizmoPlugin::get_name() const { return "BakedLightmap"; } int BakedIndirectLightGizmoPlugin::get_priority() const { return -1; } void BakedIndirectLightGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { BakedLightmap *baker = Object::cast_to(p_gizmo->get_spatial_node()); Ref material = get_material("baked_indirect_light_material", p_gizmo); Ref icon = get_material("baked_indirect_light_icon", p_gizmo); Ref material_internal = get_material("baked_indirect_light_internal_material", p_gizmo); p_gizmo->clear(); Vector lines; Vector3 extents = baker->get_extents(); AABB aabb = AABB(-extents, extents * 2); for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } p_gizmo->add_lines(lines, material); Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = aabb.position[i] + aabb.size[i]; handles.push_back(ax); } if (p_gizmo->is_selected()) { p_gizmo->add_solid_box(material_internal, aabb.get_size()); } p_gizmo->add_unscaled_billboard(icon, 0.05); p_gizmo->add_handles(handles, get_material("handles")); } //// CollisionObjectGizmoPlugin::CollisionObjectGizmoPlugin() { const Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); const float gizmo_value = gizmo_color.get_v(); const Color gizmo_color_disabled = Color(gizmo_value, gizmo_value, gizmo_value, 0.65); create_material("shape_material_disabled", gizmo_color_disabled); } bool CollisionObjectGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String CollisionObjectGizmoPlugin::get_name() const { return "CollisionObject"; } int CollisionObjectGizmoPlugin::get_priority() const { return -2; } void CollisionObjectGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { CollisionObject *co = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); List owners; co->get_shape_owners(&owners); for (List::Element *E = owners.front(); E; E = E->next()) { uint32_t owner_id = E->get(); Transform xform = co->shape_owner_get_transform(owner_id); Object *owner = co->shape_owner_get_owner(owner_id); // Exclude CollisionShape and CollisionPolygon as they have their gizmo. if (!Object::cast_to(owner) && !Object::cast_to(owner)) { Ref material = get_material(!co->is_shape_owner_disabled(owner_id) ? "shape_material" : "shape_material_disabled", p_gizmo); for (int shape_id = 0; shape_id < co->shape_owner_get_shape_count(owner_id); shape_id++) { Ref s = co->shape_owner_get_shape(owner_id, shape_id); if (s.is_null()) { continue; } SurfaceTool st; st.append_from(s->get_debug_mesh(), 0, xform); p_gizmo->add_mesh(st.commit(), false, Ref(), material); p_gizmo->add_collision_segments(s->get_debug_mesh_lines()); } } } } //// CollisionShapeSpatialGizmoPlugin::CollisionShapeSpatialGizmoPlugin() { const Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); const float gizmo_value = gizmo_color.get_v(); const Color gizmo_color_disabled = Color(gizmo_value, gizmo_value, gizmo_value, 0.65); create_material("shape_material_disabled", gizmo_color_disabled); create_handle_material("handles"); } bool CollisionShapeSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String CollisionShapeSpatialGizmoPlugin::get_name() const { return "CollisionShape"; } int CollisionShapeSpatialGizmoPlugin::get_priority() const { return -1; } String CollisionShapeSpatialGizmoPlugin::get_handle_name(const EditorSpatialGizmo *p_gizmo, int p_idx) const { const CollisionShape *cs = Object::cast_to(p_gizmo->get_spatial_node()); Ref s = cs->get_shape(); if (s.is_null()) { return ""; } if (Object::cast_to(*s)) { return "Radius"; } if (Object::cast_to(*s)) { return "Extents"; } if (Object::cast_to(*s)) { return p_idx == 0 ? "Radius" : "Height"; } if (Object::cast_to(*s)) { return p_idx == 0 ? "Radius" : "Height"; } if (Object::cast_to(*s)) { return "Length"; } return ""; } Variant CollisionShapeSpatialGizmoPlugin::get_handle_value(EditorSpatialGizmo *p_gizmo, int p_idx) const { CollisionShape *cs = Object::cast_to(p_gizmo->get_spatial_node()); Ref s = cs->get_shape(); if (s.is_null()) { return Variant(); } if (Object::cast_to(*s)) { Ref ss = s; return ss->get_radius(); } if (Object::cast_to(*s)) { Ref bs = s; return bs->get_extents(); } if (Object::cast_to(*s)) { Ref cs2 = s; return p_idx == 0 ? cs2->get_radius() : cs2->get_height(); } if (Object::cast_to(*s)) { Ref cs2 = s; return p_idx == 0 ? cs2->get_radius() : cs2->get_height(); } if (Object::cast_to(*s)) { Ref cs2 = s; return cs2->get_length(); } return Variant(); } void CollisionShapeSpatialGizmoPlugin::set_handle(EditorSpatialGizmo *p_gizmo, int p_idx, Camera *p_camera, const Point2 &p_point) { CollisionShape *cs = Object::cast_to(p_gizmo->get_spatial_node()); Ref s = cs->get_shape(); if (s.is_null()) { return; } Transform gt = cs->get_global_transform(); Transform gi = gt.affine_inverse(); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 4096) }; if (Object::cast_to(*s)) { Ref ss = s; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), Vector3(4096, 0, 0), sg[0], sg[1], ra, rb); float d = ra.x; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } ss->set_radius(d); } if (Object::cast_to(*s)) { Ref rs = s; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), Vector3(0, 0, 4096), sg[0], sg[1], ra, rb); float d = ra.z; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } rs->set_length(d); } if (Object::cast_to(*s)) { Vector3 axis; axis[p_idx] = 1.0; Ref bs = s; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb); float d = ra[p_idx]; if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } Vector3 he = bs->get_extents(); he[p_idx] = d; bs->set_extents(he); } if (Object::cast_to(*s)) { Vector3 axis; axis[p_idx == 0 ? 0 : 2] = 1.0; Ref cs2 = s; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb); float d = axis.dot(ra); if (p_idx == 1) { d -= cs2->get_radius(); } if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } if (p_idx == 0) { cs2->set_radius(d); } else if (p_idx == 1) { cs2->set_height(d * 2.0); } } if (Object::cast_to(*s)) { Vector3 axis; axis[p_idx == 0 ? 0 : 1] = 1.0; Ref cs2 = s; Vector3 ra, rb; Geometry::get_closest_points_between_segments(Vector3(), axis * 4096, sg[0], sg[1], ra, rb); float d = axis.dot(ra); if (SpatialEditor::get_singleton()->is_snap_enabled()) { d = Math::stepify(d, SpatialEditor::get_singleton()->get_translate_snap()); } if (d < 0.001) { d = 0.001; } if (p_idx == 0) { cs2->set_radius(d); } else if (p_idx == 1) { cs2->set_height(d * 2.0); } } } void CollisionShapeSpatialGizmoPlugin::commit_handle(EditorSpatialGizmo *p_gizmo, int p_idx, const Variant &p_restore, bool p_cancel) { CollisionShape *cs = Object::cast_to(p_gizmo->get_spatial_node()); Ref s = cs->get_shape(); if (s.is_null()) { return; } if (Object::cast_to(*s)) { Ref ss = s; if (p_cancel) { ss->set_radius(p_restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Sphere Shape Radius")); ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius()); ur->add_undo_method(ss.ptr(), "set_radius", p_restore); ur->commit_action(); } if (Object::cast_to(*s)) { Ref ss = s; if (p_cancel) { ss->set_extents(p_restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Box Shape Extents")); ur->add_do_method(ss.ptr(), "set_extents", ss->get_extents()); ur->add_undo_method(ss.ptr(), "set_extents", p_restore); ur->commit_action(); } if (Object::cast_to(*s)) { Ref ss = s; if (p_cancel) { if (p_idx == 0) { ss->set_radius(p_restore); } else { ss->set_height(p_restore); } return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); if (p_idx == 0) { ur->create_action(TTR("Change Capsule Shape Radius")); ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius()); ur->add_undo_method(ss.ptr(), "set_radius", p_restore); } else { ur->create_action(TTR("Change Capsule Shape Height")); ur->add_do_method(ss.ptr(), "set_height", ss->get_height()); ur->add_undo_method(ss.ptr(), "set_height", p_restore); } ur->commit_action(); } if (Object::cast_to(*s)) { Ref ss = s; if (p_cancel) { if (p_idx == 0) { ss->set_radius(p_restore); } else { ss->set_height(p_restore); } return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); if (p_idx == 0) { ur->create_action(TTR("Change Cylinder Shape Radius")); ur->add_do_method(ss.ptr(), "set_radius", ss->get_radius()); ur->add_undo_method(ss.ptr(), "set_radius", p_restore); } else { ur->create_action( /// //////// TTR("Change Cylinder Shape Height")); ur->add_do_method(ss.ptr(), "set_height", ss->get_height()); ur->add_undo_method(ss.ptr(), "set_height", p_restore); } ur->commit_action(); } if (Object::cast_to(*s)) { Ref ss = s; if (p_cancel) { ss->set_length(p_restore); return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Change Ray Shape Length")); ur->add_do_method(ss.ptr(), "set_length", ss->get_length()); ur->add_undo_method(ss.ptr(), "set_length", p_restore); ur->commit_action(); } } void CollisionShapeSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { CollisionShape *cs = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Ref s = cs->get_shape(); if (s.is_null()) { return; } const Ref material = get_material(!cs->is_disabled() ? "shape_material" : "shape_material_disabled", p_gizmo); Ref handles_material = get_material("handles"); if (Object::cast_to(*s)) { Ref sp = s; float r = sp->get_radius(); Vector points; for (int i = 0; i <= 360; i++) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + 1); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r; points.push_back(Vector3(a.x, 0, a.y)); points.push_back(Vector3(b.x, 0, b.y)); points.push_back(Vector3(0, a.x, a.y)); points.push_back(Vector3(0, b.x, b.y)); points.push_back(Vector3(a.x, a.y, 0)); points.push_back(Vector3(b.x, b.y, 0)); } Vector collision_segments; for (int i = 0; i < 64; i++) { float ra = i * Math_PI * 2.0 / 64.0; float rb = (i + 1) * Math_PI * 2.0 / 64.0; Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r; collision_segments.push_back(Vector3(a.x, 0, a.y)); collision_segments.push_back(Vector3(b.x, 0, b.y)); collision_segments.push_back(Vector3(0, a.x, a.y)); collision_segments.push_back(Vector3(0, b.x, b.y)); collision_segments.push_back(Vector3(a.x, a.y, 0)); collision_segments.push_back(Vector3(b.x, b.y, 0)); } p_gizmo->add_lines(points, material); p_gizmo->add_collision_segments(collision_segments); Vector handles; handles.push_back(Vector3(r, 0, 0)); p_gizmo->add_handles(handles, handles_material); } if (Object::cast_to(*s)) { Ref bs = s; Vector lines; AABB aabb; aabb.position = -bs->get_extents(); aabb.size = aabb.position * -2; for (int i = 0; i < 12; i++) { Vector3 a, b; aabb.get_edge(i, a, b); lines.push_back(a); lines.push_back(b); } Vector handles; for (int i = 0; i < 3; i++) { Vector3 ax; ax[i] = bs->get_extents()[i]; handles.push_back(ax); } p_gizmo->add_lines(lines, material); p_gizmo->add_collision_segments(lines); p_gizmo->add_handles(handles, handles_material); } if (Object::cast_to(*s)) { Ref cs2 = s; float radius = cs2->get_radius(); float height = cs2->get_height(); Vector points; Vector3 d(0, 0, height * 0.5); for (int i = 0; i < 360; i++) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + 1); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius; points.push_back(Vector3(a.x, a.y, 0) + d); points.push_back(Vector3(b.x, b.y, 0) + d); points.push_back(Vector3(a.x, a.y, 0) - d); points.push_back(Vector3(b.x, b.y, 0) - d); if (i % 90 == 0) { points.push_back(Vector3(a.x, a.y, 0) + d); points.push_back(Vector3(a.x, a.y, 0) - d); } Vector3 dud = i < 180 ? d : -d; points.push_back(Vector3(0, a.y, a.x) + dud); points.push_back(Vector3(0, b.y, b.x) + dud); points.push_back(Vector3(a.y, 0, a.x) + dud); points.push_back(Vector3(b.y, 0, b.x) + dud); } p_gizmo->add_lines(points, material); Vector collision_segments; for (int i = 0; i < 64; i++) { float ra = i * Math_PI * 2.0 / 64.0; float rb = (i + 1) * Math_PI * 2.0 / 64.0; Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius; collision_segments.push_back(Vector3(a.x, a.y, 0) + d); collision_segments.push_back(Vector3(b.x, b.y, 0) + d); collision_segments.push_back(Vector3(a.x, a.y, 0) - d); collision_segments.push_back(Vector3(b.x, b.y, 0) - d); if (i % 16 == 0) { collision_segments.push_back(Vector3(a.x, a.y, 0) + d); collision_segments.push_back(Vector3(a.x, a.y, 0) - d); } Vector3 dud = i < 32 ? d : -d; collision_segments.push_back(Vector3(0, a.y, a.x) + dud); collision_segments.push_back(Vector3(0, b.y, b.x) + dud); collision_segments.push_back(Vector3(a.y, 0, a.x) + dud); collision_segments.push_back(Vector3(b.y, 0, b.x) + dud); } p_gizmo->add_collision_segments(collision_segments); Vector handles; handles.push_back(Vector3(cs2->get_radius(), 0, 0)); handles.push_back(Vector3(0, 0, cs2->get_height() * 0.5 + cs2->get_radius())); p_gizmo->add_handles(handles, handles_material); } if (Object::cast_to(*s)) { Ref cs2 = s; float radius = cs2->get_radius(); float height = cs2->get_height(); Vector points; Vector3 d(0, height * 0.5, 0); for (int i = 0; i < 360; i++) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + 1); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius; points.push_back(Vector3(a.x, 0, a.y) + d); points.push_back(Vector3(b.x, 0, b.y) + d); points.push_back(Vector3(a.x, 0, a.y) - d); points.push_back(Vector3(b.x, 0, b.y) - d); if (i % 90 == 0) { points.push_back(Vector3(a.x, 0, a.y) + d); points.push_back(Vector3(a.x, 0, a.y) - d); } } p_gizmo->add_lines(points, material); Vector collision_segments; for (int i = 0; i < 64; i++) { float ra = i * Math_PI * 2.0 / 64.0; float rb = (i + 1) * Math_PI * 2.0 / 64.0; Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * radius; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * radius; collision_segments.push_back(Vector3(a.x, 0, a.y) + d); collision_segments.push_back(Vector3(b.x, 0, b.y) + d); collision_segments.push_back(Vector3(a.x, 0, a.y) - d); collision_segments.push_back(Vector3(b.x, 0, b.y) - d); if (i % 16 == 0) { collision_segments.push_back(Vector3(a.x, 0, a.y) + d); collision_segments.push_back(Vector3(a.x, 0, a.y) - d); } } p_gizmo->add_collision_segments(collision_segments); Vector handles; handles.push_back(Vector3(cs2->get_radius(), 0, 0)); handles.push_back(Vector3(0, cs2->get_height() * 0.5, 0)); p_gizmo->add_handles(handles, handles_material); } if (Object::cast_to(*s)) { Ref ps = s; Plane p = ps->get_plane(); Vector points; Vector3 n1 = p.get_any_perpendicular_normal(); Vector3 n2 = p.normal.cross(n1).normalized(); Vector3 pface[4] = { p.normal * p.d + n1 * 10.0 + n2 * 10.0, p.normal * p.d + n1 * 10.0 + n2 * -10.0, p.normal * p.d + n1 * -10.0 + n2 * -10.0, p.normal * p.d + n1 * -10.0 + n2 * 10.0, }; points.push_back(pface[0]); points.push_back(pface[1]); points.push_back(pface[1]); points.push_back(pface[2]); points.push_back(pface[2]); points.push_back(pface[3]); points.push_back(pface[3]); points.push_back(pface[0]); points.push_back(p.normal * p.d); points.push_back(p.normal * p.d + p.normal * 3); p_gizmo->add_lines(points, material); p_gizmo->add_collision_segments(points); } if (Object::cast_to(*s)) { PoolVector points = Object::cast_to(*s)->get_points(); if (points.size() > 3) { Vector varr = Variant(points); Geometry::MeshData md; Error err = ConvexHullComputer::convex_hull(varr, md); if (err == OK) { Vector points2; points2.resize(md.edges.size() * 2); for (int i = 0; i < md.edges.size(); i++) { points2.write[i * 2 + 0] = md.vertices[md.edges[i].a]; points2.write[i * 2 + 1] = md.vertices[md.edges[i].b]; } p_gizmo->add_lines(points2, material); p_gizmo->add_collision_segments(points2); } } } if (Object::cast_to(*s)) { Ref cs2 = s; Ref mesh = cs2->get_debug_mesh(); p_gizmo->add_mesh(mesh, false, Ref(), material); p_gizmo->add_collision_segments(cs2->get_debug_mesh_lines()); } if (Object::cast_to(*s)) { Ref rs = s; Vector points; points.push_back(Vector3()); points.push_back(Vector3(0, 0, rs->get_length())); p_gizmo->add_lines(points, material); p_gizmo->add_collision_segments(points); Vector handles; handles.push_back(Vector3(0, 0, rs->get_length())); p_gizmo->add_handles(handles, handles_material); } if (Object::cast_to(*s)) { Ref hms = s; Ref mesh = hms->get_debug_mesh(); p_gizmo->add_mesh(mesh, false, Ref(), material); } } ///// CollisionPolygonSpatialGizmoPlugin::CollisionPolygonSpatialGizmoPlugin() { const Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1)); create_material("shape_material", gizmo_color); const float gizmo_value = gizmo_color.get_v(); const Color gizmo_color_disabled = Color(gizmo_value, gizmo_value, gizmo_value, 0.65); create_material("shape_material_disabled", gizmo_color_disabled); } bool CollisionPolygonSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String CollisionPolygonSpatialGizmoPlugin::get_name() const { return "CollisionPolygon"; } int CollisionPolygonSpatialGizmoPlugin::get_priority() const { return -1; } void CollisionPolygonSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { CollisionPolygon *polygon = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Vector points = polygon->get_polygon(); float depth = polygon->get_depth() * 0.5; Vector lines; for (int i = 0; i < points.size(); i++) { int n = (i + 1) % points.size(); lines.push_back(Vector3(points[i].x, points[i].y, depth)); lines.push_back(Vector3(points[n].x, points[n].y, depth)); lines.push_back(Vector3(points[i].x, points[i].y, -depth)); lines.push_back(Vector3(points[n].x, points[n].y, -depth)); lines.push_back(Vector3(points[i].x, points[i].y, depth)); lines.push_back(Vector3(points[i].x, points[i].y, -depth)); } const Ref material = get_material(!polygon->is_disabled() ? "shape_material" : "shape_material_disabled", p_gizmo); p_gizmo->add_lines(lines, material); p_gizmo->add_collision_segments(lines); } //// NavigationMeshSpatialGizmoPlugin::NavigationMeshSpatialGizmoPlugin() { create_material("navigation_edge_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_edge", Color(0.5, 1, 1))); create_material("navigation_edge_material_disabled", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_edge_disabled", Color(0.7, 0.7, 0.7))); create_material("navigation_solid_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_solid", Color(0.5, 1, 1, 0.4))); create_material("navigation_solid_material_disabled", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_solid_disabled", Color(0.7, 0.7, 0.7, 0.4))); } bool NavigationMeshSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String NavigationMeshSpatialGizmoPlugin::get_name() const { return "NavigationMeshInstance"; } int NavigationMeshSpatialGizmoPlugin::get_priority() const { return -1; } void NavigationMeshSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { NavigationMeshInstance *navmesh = Object::cast_to(p_gizmo->get_spatial_node()); Ref edge_material = get_material("navigation_edge_material", p_gizmo); Ref edge_material_disabled = get_material("navigation_edge_material_disabled", p_gizmo); Ref solid_material = get_material("navigation_solid_material", p_gizmo); Ref solid_material_disabled = get_material("navigation_solid_material_disabled", p_gizmo); p_gizmo->clear(); Ref navmeshie = navmesh->get_navigation_mesh(); if (navmeshie.is_null()) { return; } PoolVector vertices = navmeshie->get_vertices(); PoolVector::Read vr = vertices.read(); List faces; for (int i = 0; i < navmeshie->get_polygon_count(); i++) { Vector p = navmeshie->get_polygon(i); for (int j = 2; j < p.size(); j++) { Face3 f; f.vertex[0] = vr[p[0]]; f.vertex[1] = vr[p[j - 1]]; f.vertex[2] = vr[p[j]]; faces.push_back(f); } } if (faces.empty()) { return; } Map<_EdgeKey, bool> edge_map; PoolVector tmeshfaces; tmeshfaces.resize(faces.size() * 3); { PoolVector::Write tw = tmeshfaces.write(); int tidx = 0; for (List::Element *E = faces.front(); E; E = E->next()) { const Face3 &f = E->get(); for (int j = 0; j < 3; j++) { tw[tidx++] = f.vertex[j]; _EdgeKey ek; ek.from = f.vertex[j].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON)); ek.to = f.vertex[(j + 1) % 3].snapped(Vector3(CMP_EPSILON, CMP_EPSILON, CMP_EPSILON)); if (ek.from < ek.to) { SWAP(ek.from, ek.to); } Map<_EdgeKey, bool>::Element *F = edge_map.find(ek); if (F) { F->get() = false; } else { edge_map[ek] = true; } } } } Vector lines; for (Map<_EdgeKey, bool>::Element *E = edge_map.front(); E; E = E->next()) { if (E->get()) { lines.push_back(E->key().from); lines.push_back(E->key().to); } } Ref tmesh = memnew(TriangleMesh); tmesh->create(tmeshfaces); if (lines.size()) { p_gizmo->add_lines(lines, navmesh->is_enabled() ? edge_material : edge_material_disabled); } p_gizmo->add_collision_triangles(tmesh); Ref m = memnew(ArrayMesh); Array a; a.resize(Mesh::ARRAY_MAX); a[0] = tmeshfaces; m->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, a); m->surface_set_material(0, navmesh->is_enabled() ? solid_material : solid_material_disabled); p_gizmo->add_mesh(m); p_gizmo->add_collision_segments(lines); } ////// #define BODY_A_RADIUS 0.25 #define BODY_B_RADIUS 0.27 Basis JointGizmosDrawer::look_body(const Transform &p_joint_transform, const Transform &p_body_transform) { const Vector3 &p_eye(p_joint_transform.origin); const Vector3 &p_target(p_body_transform.origin); Vector3 v_x, v_y, v_z; // Look the body with X v_x = p_target - p_eye; v_x.normalize(); v_z = v_x.cross(Vector3(0, 1, 0)); v_z.normalize(); v_y = v_z.cross(v_x); v_y.normalize(); Basis base; base.set(v_x, v_y, v_z); // Absorb current joint transform base = p_joint_transform.basis.inverse() * base; return base; } Basis JointGizmosDrawer::look_body_toward(Vector3::Axis p_axis, const Transform &joint_transform, const Transform &body_transform) { switch (p_axis) { case Vector3::AXIS_X: return look_body_toward_x(joint_transform, body_transform); case Vector3::AXIS_Y: return look_body_toward_y(joint_transform, body_transform); case Vector3::AXIS_Z: return look_body_toward_z(joint_transform, body_transform); default: return Basis(); } } Basis JointGizmosDrawer::look_body_toward_x(const Transform &p_joint_transform, const Transform &p_body_transform) { const Vector3 &p_eye(p_joint_transform.origin); const Vector3 &p_target(p_body_transform.origin); const Vector3 p_front(p_joint_transform.basis.get_axis(0)); Vector3 v_x, v_y, v_z; // Look the body with X v_x = p_target - p_eye; v_x.normalize(); v_y = p_front.cross(v_x); v_y.normalize(); v_z = v_y.cross(p_front); v_z.normalize(); // Clamp X to FRONT axis v_x = p_front; v_x.normalize(); Basis base; base.set(v_x, v_y, v_z); // Absorb current joint transform base = p_joint_transform.basis.inverse() * base; return base; } Basis JointGizmosDrawer::look_body_toward_y(const Transform &p_joint_transform, const Transform &p_body_transform) { const Vector3 &p_eye(p_joint_transform.origin); const Vector3 &p_target(p_body_transform.origin); const Vector3 p_up(p_joint_transform.basis.get_axis(1)); Vector3 v_x, v_y, v_z; // Look the body with X v_x = p_target - p_eye; v_x.normalize(); v_z = v_x.cross(p_up); v_z.normalize(); v_x = p_up.cross(v_z); v_x.normalize(); // Clamp Y to UP axis v_y = p_up; v_y.normalize(); Basis base; base.set(v_x, v_y, v_z); // Absorb current joint transform base = p_joint_transform.basis.inverse() * base; return base; } Basis JointGizmosDrawer::look_body_toward_z(const Transform &p_joint_transform, const Transform &p_body_transform) { const Vector3 &p_eye(p_joint_transform.origin); const Vector3 &p_target(p_body_transform.origin); const Vector3 p_lateral(p_joint_transform.basis.get_axis(2)); Vector3 v_x, v_y, v_z; // Look the body with X v_x = p_target - p_eye; v_x.normalize(); v_z = p_lateral; v_z.normalize(); v_y = v_z.cross(v_x); v_y.normalize(); // Clamp X to Z axis v_x = v_y.cross(v_z); v_x.normalize(); Basis base; base.set(v_x, v_y, v_z); // Absorb current joint transform base = p_joint_transform.basis.inverse() * base; return base; } void JointGizmosDrawer::draw_circle(Vector3::Axis p_axis, real_t p_radius, const Transform &p_offset, const Basis &p_base, real_t p_limit_lower, real_t p_limit_upper, Vector &r_points, bool p_inverse) { if (p_limit_lower == p_limit_upper) { r_points.push_back(p_offset.translated(Vector3()).origin); r_points.push_back(p_offset.translated(p_base.xform(Vector3(0.5, 0, 0))).origin); } else { if (p_limit_lower > p_limit_upper) { p_limit_lower = -Math_PI; p_limit_upper = Math_PI; } const int points = 32; for (int i = 0; i < points; i++) { real_t s = p_limit_lower + i * (p_limit_upper - p_limit_lower) / points; real_t n = p_limit_lower + (i + 1) * (p_limit_upper - p_limit_lower) / points; Vector3 from; Vector3 to; switch (p_axis) { case Vector3::AXIS_X: if (p_inverse) { from = p_base.xform(Vector3(0, Math::sin(s), Math::cos(s))) * p_radius; to = p_base.xform(Vector3(0, Math::sin(n), Math::cos(n))) * p_radius; } else { from = p_base.xform(Vector3(0, -Math::sin(s), Math::cos(s))) * p_radius; to = p_base.xform(Vector3(0, -Math::sin(n), Math::cos(n))) * p_radius; } break; case Vector3::AXIS_Y: if (p_inverse) { from = p_base.xform(Vector3(Math::cos(s), 0, -Math::sin(s))) * p_radius; to = p_base.xform(Vector3(Math::cos(n), 0, -Math::sin(n))) * p_radius; } else { from = p_base.xform(Vector3(Math::cos(s), 0, Math::sin(s))) * p_radius; to = p_base.xform(Vector3(Math::cos(n), 0, Math::sin(n))) * p_radius; } break; case Vector3::AXIS_Z: from = p_base.xform(Vector3(Math::cos(s), Math::sin(s), 0)) * p_radius; to = p_base.xform(Vector3(Math::cos(n), Math::sin(n), 0)) * p_radius; break; } if (i == points - 1) { r_points.push_back(p_offset.translated(to).origin); r_points.push_back(p_offset.translated(Vector3()).origin); } if (i == 0) { r_points.push_back(p_offset.translated(from).origin); r_points.push_back(p_offset.translated(Vector3()).origin); } r_points.push_back(p_offset.translated(from).origin); r_points.push_back(p_offset.translated(to).origin); } r_points.push_back(p_offset.translated(Vector3(0, p_radius * 1.5, 0)).origin); r_points.push_back(p_offset.translated(Vector3()).origin); } } void JointGizmosDrawer::draw_cone(const Transform &p_offset, const Basis &p_base, real_t p_swing, real_t p_twist, Vector &r_points) { float r = 1.0; float w = r * Math::sin(p_swing); float d = r * Math::cos(p_swing); //swing for (int i = 0; i < 360; i += 10) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + 10); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w; r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, a.x, a.y))).origin); r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, b.x, b.y))).origin); if (i % 90 == 0) { r_points.push_back(p_offset.translated(p_base.xform(Vector3(d, a.x, a.y))).origin); r_points.push_back(p_offset.translated(p_base.xform(Vector3())).origin); } } r_points.push_back(p_offset.translated(p_base.xform(Vector3())).origin); r_points.push_back(p_offset.translated(p_base.xform(Vector3(1, 0, 0))).origin); /// Twist float ts = Math::rad2deg(p_twist); ts = MIN(ts, 720); for (int i = 0; i < int(ts); i += 5) { float ra = Math::deg2rad((float)i); float rb = Math::deg2rad((float)i + 5); float c = i / 720.0; float cn = (i + 5) / 720.0; Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * w * c; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * w * cn; r_points.push_back(p_offset.translated(p_base.xform(Vector3(c, a.x, a.y))).origin); r_points.push_back(p_offset.translated(p_base.xform(Vector3(cn, b.x, b.y))).origin); } } //// JointSpatialGizmoPlugin::JointSpatialGizmoPlugin() { create_material("joint_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint", Color(0.5, 0.8, 1))); create_material("joint_body_a_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint_body_a", Color(0.6, 0.8, 1))); create_material("joint_body_b_material", EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint_body_b", Color(0.6, 0.9, 1))); update_timer = memnew(Timer); update_timer->set_name("JointGizmoUpdateTimer"); update_timer->set_wait_time(1.0 / 120.0); update_timer->connect("timeout", this, "incremental_update_gizmos"); update_timer->set_autostart(true); EditorNode::get_singleton()->call_deferred("add_child", update_timer); } void JointSpatialGizmoPlugin::_bind_methods() { ClassDB::bind_method(D_METHOD("incremental_update_gizmos"), &JointSpatialGizmoPlugin::incremental_update_gizmos); } void JointSpatialGizmoPlugin::incremental_update_gizmos() { if (!current_gizmos.empty()) { update_idx++; update_idx = update_idx % current_gizmos.size(); redraw(current_gizmos[update_idx]); } } bool JointSpatialGizmoPlugin::has_gizmo(Spatial *p_spatial) { return Object::cast_to(p_spatial) != nullptr; } String JointSpatialGizmoPlugin::get_name() const { return "Joints"; } int JointSpatialGizmoPlugin::get_priority() const { return -1; } void JointSpatialGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { Joint *joint = Object::cast_to(p_gizmo->get_spatial_node()); p_gizmo->clear(); Spatial *node_body_a = nullptr; if (!joint->get_node_a().is_empty()) { node_body_a = Object::cast_to(joint->get_node(joint->get_node_a())); } Spatial *node_body_b = nullptr; if (!joint->get_node_b().is_empty()) { node_body_b = Object::cast_to(joint->get_node(joint->get_node_b())); } if (!node_body_a && !node_body_b) { return; } Ref common_material = get_material("joint_material", p_gizmo); Ref body_a_material = get_material("joint_body_a_material", p_gizmo); Ref body_b_material = get_material("joint_body_b_material", p_gizmo); Vector points; Vector body_a_points; Vector body_b_points; if (Object::cast_to(joint)) { CreatePinJointGizmo(Transform(), points); p_gizmo->add_collision_segments(points); p_gizmo->add_lines(points, common_material); } HingeJoint *hinge = Object::cast_to(joint); if (hinge) { CreateHingeJointGizmo( Transform(), hinge->get_global_transform(), node_body_a ? node_body_a->get_global_transform() : Transform(), node_body_b ? node_body_b->get_global_transform() : Transform(), hinge->get_param(HingeJoint::PARAM_LIMIT_LOWER), hinge->get_param(HingeJoint::PARAM_LIMIT_UPPER), hinge->get_flag(HingeJoint::FLAG_USE_LIMIT), points, node_body_a ? &body_a_points : nullptr, node_body_b ? &body_b_points : nullptr); p_gizmo->add_collision_segments(points); p_gizmo->add_collision_segments(body_a_points); p_gizmo->add_collision_segments(body_b_points); p_gizmo->add_lines(points, common_material); p_gizmo->add_lines(body_a_points, body_a_material); p_gizmo->add_lines(body_b_points, body_b_material); } SliderJoint *slider = Object::cast_to(joint); if (slider) { CreateSliderJointGizmo( Transform(), slider->get_global_transform(), node_body_a ? node_body_a->get_global_transform() : Transform(), node_body_b ? node_body_b->get_global_transform() : Transform(), slider->get_param(SliderJoint::PARAM_ANGULAR_LIMIT_LOWER), slider->get_param(SliderJoint::PARAM_ANGULAR_LIMIT_UPPER), slider->get_param(SliderJoint::PARAM_LINEAR_LIMIT_LOWER), slider->get_param(SliderJoint::PARAM_LINEAR_LIMIT_UPPER), points, node_body_a ? &body_a_points : nullptr, node_body_b ? &body_b_points : nullptr); p_gizmo->add_collision_segments(points); p_gizmo->add_collision_segments(body_a_points); p_gizmo->add_collision_segments(body_b_points); p_gizmo->add_lines(points, common_material); p_gizmo->add_lines(body_a_points, body_a_material); p_gizmo->add_lines(body_b_points, body_b_material); } ConeTwistJoint *cone = Object::cast_to(joint); if (cone) { CreateConeTwistJointGizmo( Transform(), cone->get_global_transform(), node_body_a ? node_body_a->get_global_transform() : Transform(), node_body_b ? node_body_b->get_global_transform() : Transform(), cone->get_param(ConeTwistJoint::PARAM_SWING_SPAN), cone->get_param(ConeTwistJoint::PARAM_TWIST_SPAN), node_body_a ? &body_a_points : nullptr, node_body_b ? &body_b_points : nullptr); p_gizmo->add_collision_segments(body_a_points); p_gizmo->add_collision_segments(body_b_points); p_gizmo->add_lines(body_a_points, body_a_material); p_gizmo->add_lines(body_b_points, body_b_material); } Generic6DOFJoint *gen = Object::cast_to(joint); if (gen) { CreateGeneric6DOFJointGizmo( Transform(), gen->get_global_transform(), node_body_a ? node_body_a->get_global_transform() : Transform(), node_body_b ? node_body_b->get_global_transform() : Transform(), gen->get_param_x(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT), gen->get_param_x(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT), gen->get_param_x(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT), gen->get_param_x(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT), gen->get_flag_x(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT), gen->get_flag_x(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT), gen->get_param_y(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT), gen->get_param_y(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT), gen->get_param_y(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT), gen->get_param_y(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT), gen->get_flag_y(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT), gen->get_flag_y(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT), gen->get_param_z(Generic6DOFJoint::PARAM_ANGULAR_LOWER_LIMIT), gen->get_param_z(Generic6DOFJoint::PARAM_ANGULAR_UPPER_LIMIT), gen->get_param_z(Generic6DOFJoint::PARAM_LINEAR_LOWER_LIMIT), gen->get_param_z(Generic6DOFJoint::PARAM_LINEAR_UPPER_LIMIT), gen->get_flag_z(Generic6DOFJoint::FLAG_ENABLE_ANGULAR_LIMIT), gen->get_flag_z(Generic6DOFJoint::FLAG_ENABLE_LINEAR_LIMIT), points, node_body_a ? &body_a_points : nullptr, node_body_a ? &body_b_points : nullptr); p_gizmo->add_collision_segments(points); p_gizmo->add_collision_segments(body_a_points); p_gizmo->add_collision_segments(body_b_points); p_gizmo->add_lines(points, common_material); p_gizmo->add_lines(body_a_points, body_a_material); p_gizmo->add_lines(body_b_points, body_b_material); } } void JointSpatialGizmoPlugin::CreatePinJointGizmo(const Transform &p_offset, Vector &r_cursor_points) { float cs = 0.25; r_cursor_points.push_back(p_offset.translated(Vector3(+cs, 0, 0)).origin); r_cursor_points.push_back(p_offset.translated(Vector3(-cs, 0, 0)).origin); r_cursor_points.push_back(p_offset.translated(Vector3(0, +cs, 0)).origin); r_cursor_points.push_back(p_offset.translated(Vector3(0, -cs, 0)).origin); r_cursor_points.push_back(p_offset.translated(Vector3(0, 0, +cs)).origin); r_cursor_points.push_back(p_offset.translated(Vector3(0, 0, -cs)).origin); } void JointSpatialGizmoPlugin::CreateHingeJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_limit_lower, real_t p_limit_upper, bool p_use_limit, Vector &r_common_points, Vector *r_body_a_points, Vector *r_body_b_points) { r_common_points.push_back(p_offset.translated(Vector3(0, 0, 0.5)).origin); r_common_points.push_back(p_offset.translated(Vector3(0, 0, -0.5)).origin); if (!p_use_limit) { p_limit_upper = -1; p_limit_lower = 0; } if (r_body_a_points) { JointGizmosDrawer::draw_circle(Vector3::AXIS_Z, BODY_A_RADIUS, p_offset, JointGizmosDrawer::look_body_toward_z(p_trs_joint, p_trs_body_a), p_limit_lower, p_limit_upper, *r_body_a_points); } if (r_body_b_points) { JointGizmosDrawer::draw_circle(Vector3::AXIS_Z, BODY_B_RADIUS, p_offset, JointGizmosDrawer::look_body_toward_z(p_trs_joint, p_trs_body_b), p_limit_lower, p_limit_upper, *r_body_b_points); } } void JointSpatialGizmoPlugin::CreateSliderJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_angular_limit_lower, real_t p_angular_limit_upper, real_t p_linear_limit_lower, real_t p_linear_limit_upper, Vector &r_points, Vector *r_body_a_points, Vector *r_body_b_points) { p_linear_limit_lower = -p_linear_limit_lower; p_linear_limit_upper = -p_linear_limit_upper; float cs = 0.25; r_points.push_back(p_offset.translated(Vector3(0, 0, 0.5)).origin); r_points.push_back(p_offset.translated(Vector3(0, 0, -0.5)).origin); if (p_linear_limit_lower >= p_linear_limit_upper) { r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, 0, 0)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, 0, 0)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_upper, -cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, cs, -cs)).origin); r_points.push_back(p_offset.translated(Vector3(p_linear_limit_lower, -cs, -cs)).origin); } else { r_points.push_back(p_offset.translated(Vector3(+cs * 2, 0, 0)).origin); r_points.push_back(p_offset.translated(Vector3(-cs * 2, 0, 0)).origin); } if (r_body_a_points) { JointGizmosDrawer::draw_circle( Vector3::AXIS_X, BODY_A_RADIUS, p_offset, JointGizmosDrawer::look_body_toward(Vector3::AXIS_X, p_trs_joint, p_trs_body_a), p_angular_limit_lower, p_angular_limit_upper, *r_body_a_points); } if (r_body_b_points) { JointGizmosDrawer::draw_circle( Vector3::AXIS_X, BODY_B_RADIUS, p_offset, JointGizmosDrawer::look_body_toward(Vector3::AXIS_X, p_trs_joint, p_trs_body_b), p_angular_limit_lower, p_angular_limit_upper, *r_body_b_points, true); } } void JointSpatialGizmoPlugin::CreateConeTwistJointGizmo(const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_swing, real_t p_twist, Vector *r_body_a_points, Vector *r_body_b_points) { if (r_body_a_points) { JointGizmosDrawer::draw_cone( p_offset, JointGizmosDrawer::look_body(p_trs_joint, p_trs_body_a), p_swing, p_twist, *r_body_a_points); } if (r_body_b_points) { JointGizmosDrawer::draw_cone( p_offset, JointGizmosDrawer::look_body(p_trs_joint, p_trs_body_b), p_swing, p_twist, *r_body_b_points); } } void JointSpatialGizmoPlugin::CreateGeneric6DOFJointGizmo( const Transform &p_offset, const Transform &p_trs_joint, const Transform &p_trs_body_a, const Transform &p_trs_body_b, real_t p_angular_limit_lower_x, real_t p_angular_limit_upper_x, real_t p_linear_limit_lower_x, real_t p_linear_limit_upper_x, bool p_enable_angular_limit_x, bool p_enable_linear_limit_x, real_t p_angular_limit_lower_y, real_t p_angular_limit_upper_y, real_t p_linear_limit_lower_y, real_t p_linear_limit_upper_y, bool p_enable_angular_limit_y, bool p_enable_linear_limit_y, real_t p_angular_limit_lower_z, real_t p_angular_limit_upper_z, real_t p_linear_limit_lower_z, real_t p_linear_limit_upper_z, bool p_enable_angular_limit_z, bool p_enable_linear_limit_z, Vector &r_points, Vector *r_body_a_points, Vector *r_body_b_points) { float cs = 0.25; for (int ax = 0; ax < 3; ax++) { float ll = 0; float ul = 0; float lll = 0; float lul = 0; int a1 = 0; int a2 = 0; int a3 = 0; bool enable_ang = false; bool enable_lin = false; switch (ax) { case 0: ll = p_angular_limit_lower_x; ul = p_angular_limit_upper_x; lll = -p_linear_limit_lower_x; lul = -p_linear_limit_upper_x; enable_ang = p_enable_angular_limit_x; enable_lin = p_enable_linear_limit_x; a1 = 0; a2 = 1; a3 = 2; break; case 1: ll = p_angular_limit_lower_y; ul = p_angular_limit_upper_y; lll = -p_linear_limit_lower_y; lul = -p_linear_limit_upper_y; enable_ang = p_enable_angular_limit_y; enable_lin = p_enable_linear_limit_y; a1 = 1; a2 = 2; a3 = 0; break; case 2: ll = p_angular_limit_lower_z; ul = p_angular_limit_upper_z; lll = -p_linear_limit_lower_z; lul = -p_linear_limit_upper_z; enable_ang = p_enable_angular_limit_z; enable_lin = p_enable_linear_limit_z; a1 = 2; a2 = 0; a3 = 1; break; } #define ADD_VTX(x, y, z) \ { \ Vector3 v; \ v[a1] = (x); \ v[a2] = (y); \ v[a3] = (z); \ r_points.push_back(p_offset.translated(v).origin); \ } if (enable_lin && lll >= lul) { ADD_VTX(lul, 0, 0); ADD_VTX(lll, 0, 0); ADD_VTX(lul, -cs, -cs); ADD_VTX(lul, -cs, cs); ADD_VTX(lul, -cs, cs); ADD_VTX(lul, cs, cs); ADD_VTX(lul, cs, cs); ADD_VTX(lul, cs, -cs); ADD_VTX(lul, cs, -cs); ADD_VTX(lul, -cs, -cs); ADD_VTX(lll, -cs, -cs); ADD_VTX(lll, -cs, cs); ADD_VTX(lll, -cs, cs); ADD_VTX(lll, cs, cs); ADD_VTX(lll, cs, cs); ADD_VTX(lll, cs, -cs); ADD_VTX(lll, cs, -cs); ADD_VTX(lll, -cs, -cs); } else { ADD_VTX(+cs * 2, 0, 0); ADD_VTX(-cs * 2, 0, 0); } if (!enable_ang) { ll = 0; ul = -1; } if (r_body_a_points) { JointGizmosDrawer::draw_circle( static_cast(ax), BODY_A_RADIUS, p_offset, JointGizmosDrawer::look_body_toward(static_cast(ax), p_trs_joint, p_trs_body_a), ll, ul, *r_body_a_points, true); } if (r_body_b_points) { JointGizmosDrawer::draw_circle( static_cast(ax), BODY_B_RADIUS, p_offset, JointGizmosDrawer::look_body_toward(static_cast(ax), p_trs_joint, p_trs_body_b), ll, ul, *r_body_b_points); } } #undef ADD_VTX } //// RoomGizmoPlugin::RoomGizmoPlugin() { Color color_room = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/room_edge", Color(0.5, 1.0, 0.0)); Color color_overlap = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/room_overlap", Color(1.0, 0.0, 0.0)); create_material("room", color_room, false, true, false); create_material("room_overlap", color_overlap, false, false, false); create_handle_material("room_handle"); } Ref RoomGizmoPlugin::create_gizmo(Spatial *p_spatial) { Ref ref; Room *room = Object::cast_to(p_spatial); if (room) { ref = Ref(memnew(RoomSpatialGizmo(room))); } return ref; } bool RoomGizmoPlugin::has_gizmo(Spatial *p_spatial) { if (Object::cast_to(p_spatial)) { return true; } return false; } String RoomGizmoPlugin::get_name() const { return "Room"; } int RoomGizmoPlugin::get_priority() const { return -1; } ////////////////////// String RoomSpatialGizmo::get_handle_name(int p_idx) const { return "Point " + itos(p_idx); } Variant RoomSpatialGizmo::get_handle_value(int p_idx) { if (!_room) { return Vector3(0, 0, 0); } int num_points = _room->_bound_pts.size(); if (p_idx >= num_points) { return Vector3(0, 0, 0); } return _room->_bound_pts[p_idx]; } void RoomSpatialGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) { if (!_room || (p_idx >= _room->_bound_pts.size())) { return; } Transform tr = _room->get_global_transform(); Transform tr_inv = tr.affine_inverse(); Vector3 pt_world = _room->_bound_pts[p_idx]; pt_world = tr.xform(pt_world); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 camera_dir = p_camera->get_transform().basis.get_axis(2); // find the smallest camera axis, we will only transform the handles on 2 axes max, // to try and make things more user friendly (it is confusing trying to change 3d position // from a 2d view) int biggest_axis = 0; real_t biggest = 0.0; for (int n = 0; n < 3; n++) { real_t val = Math::abs(camera_dir.get_axis(n)); if (val > biggest) { biggest = val; biggest_axis = n; } } { Plane plane(pt_world, camera_dir); Vector3 inters; if (plane.intersects_ray(ray_from, ray_dir, &inters)) { if (SpatialEditor::get_singleton()->is_snap_enabled()) { float snap = SpatialEditor::get_singleton()->get_translate_snap(); inters.snap(Vector3(snap, snap, snap)); } for (int n = 0; n < 3; n++) { if (n != biggest_axis) { pt_world.set_axis(n, inters.get_axis(n)); } } Vector3 pt_local = tr_inv.xform(pt_world); _room->set_point(p_idx, pt_local); } return; } } void RoomSpatialGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) { if (!_room || (p_idx >= _room->_bound_pts.size())) { return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Set Room Point Position")); ur->add_do_method(_room, "set_point", p_idx, _room->_bound_pts[p_idx]); ur->add_undo_method(_room, "set_point", p_idx, p_restore); ur->commit_action(); _room->property_list_changed_notify(); } void RoomSpatialGizmo::redraw() { clear(); if (!_room) { return; } const Geometry::MeshData &md = _room->_bound_mesh_data; if (!md.edges.size()) return; Vector lines; Transform tr = _room->get_global_transform(); Transform tr_inv = tr.affine_inverse(); Ref material = gizmo_plugin->get_material("room", this); Ref material_overlap = gizmo_plugin->get_material("room_overlap", this); Color color(1, 1, 1, 1); for (int n = 0; n < md.edges.size(); n++) { Vector3 a = md.vertices[md.edges[n].a]; Vector3 b = md.vertices[md.edges[n].b]; // xform a = tr_inv.xform(a); b = tr_inv.xform(b); lines.push_back(a); lines.push_back(b); } if (lines.size()) { add_lines(lines, material, false, color); } // overlap zones for (int z = 0; z < _room->_gizmo_overlap_zones.size(); z++) { const Geometry::MeshData &md_overlap = _room->_gizmo_overlap_zones[z]; Vector pts; for (int f = 0; f < md_overlap.faces.size(); f++) { const Geometry::MeshData::Face &face = md_overlap.faces[f]; for (int c = 0; c < face.indices.size() - 2; c++) { pts.push_back(tr_inv.xform(md_overlap.vertices[face.indices[0]])); pts.push_back(tr_inv.xform(md_overlap.vertices[face.indices[c + 1]])); pts.push_back(tr_inv.xform(md_overlap.vertices[face.indices[c + 2]])); } } Ref mesh = memnew(ArrayMesh); Array array; array.resize(Mesh::ARRAY_MAX); array[Mesh::ARRAY_VERTEX] = pts; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array); add_mesh(mesh, false, Ref(), material_overlap); } Vector handles; // draw the handles separately because these must correspond to the raw points // for editing for (int n = 0; n < _room->_bound_pts.size(); n++) { handles.push_back(_room->_bound_pts[n]); } // handles if (handles.size()) { Ref material_handle = gizmo_plugin->get_material("room_handle", this); add_handles(handles, material_handle); } } RoomSpatialGizmo::RoomSpatialGizmo(Room *p_room) { _room = p_room; set_spatial_node(p_room); } //// PortalGizmoPlugin::PortalGizmoPlugin() { Color color_portal_margin = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/portal_margin", Color(1.0, 0.1, 0.1, 0.3)); Color color_portal_edge = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/portal_edge", Color(0.0, 0.0, 0.0, 0.3)); Color color_portal_arrow = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/portal_arrow", Color(1.0, 1.0, 1.0, 1.0)); create_icon_material("portal_icon", SpatialEditor::get_singleton()->get_icon("GizmoPortal", "EditorIcons"), true); create_material("portal", Color(1.0, 1.0, 1.0, 1.0), false, false, true); create_material("portal_margin", color_portal_margin, false, false, false); create_material("portal_edge", color_portal_edge, false, false, false); create_material("portal_arrow", color_portal_arrow, false, false, false); create_handle_material("portal_handle"); } Ref PortalGizmoPlugin::create_gizmo(Spatial *p_spatial) { Ref ref; Portal *portal = Object::cast_to(p_spatial); if (portal) { ref = Ref(memnew(PortalSpatialGizmo(portal))); } return ref; } bool PortalGizmoPlugin::has_gizmo(Spatial *p_spatial) { if (Object::cast_to(p_spatial)) { return true; } return false; } String PortalGizmoPlugin::get_name() const { return "Portal"; } int PortalGizmoPlugin::get_priority() const { return -1; } ////////////////////// String PortalSpatialGizmo::get_handle_name(int p_idx) const { return "Point " + itos(p_idx); } Variant PortalSpatialGizmo::get_handle_value(int p_idx) { if (!_portal) { return Vector2(0, 0); } int num_points = _portal->_pts_local_raw.size(); if (p_idx >= num_points) { return Vector2(0, 0); } return _portal->_pts_local_raw[p_idx]; } void PortalSpatialGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) { if (!_portal || (p_idx >= _portal->_pts_local_raw.size())) { return; } Transform tr = _portal->get_global_transform(); Transform tr_inv = tr.affine_inverse(); Vector3 pt_local = Portal::_vec2to3(_portal->_pts_local_raw[p_idx]); Vector3 pt_world = tr.xform(pt_local); Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); // get a normal from the global transform Plane plane(Vector3(0, 0, 0), Vector3(0, 0, 1)); plane = tr.xform(plane); // construct the plane that the 2d portal is defined in plane = Plane(pt_world, plane.normal); Vector3 inters; if (plane.intersects_ray(ray_from, ray_dir, &inters)) { // back calculate from the 3d intersection to the 2d portal plane inters = tr_inv.xform(inters); // snapping will be in 2d for portals, and the scale may make less sense, // but better to offer at least some functionality if (SpatialEditor::get_singleton()->is_snap_enabled()) { float snap = SpatialEditor::get_singleton()->get_translate_snap(); inters.snap(Vector3(snap, snap, snap)); } _portal->set_point(p_idx, Vector2(inters.x, inters.y)); return; } } void PortalSpatialGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) { if (!_portal || (p_idx >= _portal->_pts_local_raw.size())) { return; } UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); ur->create_action(TTR("Set Portal Point Position")); ur->add_do_method(_portal, "set_point", p_idx, _portal->_pts_local_raw[p_idx]); ur->add_undo_method(_portal, "set_point", p_idx, p_restore); ur->commit_action(); _portal->property_list_changed_notify(); } void PortalSpatialGizmo::redraw() { clear(); if (!_portal) { return; } // warnings if (_portal->_warning_outside_room_aabb || _portal->_warning_facing_wrong_way || _portal->_warning_autolink_failed) { Ref icon = gizmo_plugin->get_material("portal_icon", this); add_unscaled_billboard(icon, 0.05); } Transform tr = _portal->get_global_transform(); Transform tr_inv = tr.affine_inverse(); Ref material_portal = gizmo_plugin->get_material("portal", this); Ref material_margin = gizmo_plugin->get_material("portal_margin", this); Ref material_edge = gizmo_plugin->get_material("portal_edge", this); Ref material_arrow = gizmo_plugin->get_material("portal_arrow", this); Color color(1, 1, 1, 1); // make sure world points are up to date _portal->portal_update(); int num_points = _portal->_pts_world.size(); // prevent compiler warnings later on if (num_points < 3) { return; } // margins real_t margin = _portal->get_active_portal_margin(); bool show_margins = Portal::_settings_gizmo_show_margins; if (margin < 0.05f) { show_margins = false; } PoolVector pts_portal; PoolVector cols_portal; PoolVector pts_margin; Vector edge_pts; Vector handles; Vector3 portal_normal_world_space = _portal->_plane.normal; portal_normal_world_space *= margin; // this may not be necessary, dealing with non uniform scales, // possible the affine_invert dealt with this earlier .. but it's just for // the editor so not performance critical Basis normal_basis = tr_inv.basis; Vector3 portal_normal = normal_basis.xform(portal_normal_world_space); Vector3 pt_portal_first = tr_inv.xform(_portal->_pts_world[0]); for (int n = 0; n < num_points; n++) { Vector3 pt = _portal->_pts_world[n]; pt = tr_inv.xform(pt); // CI for visual studio can't seem to get around the possibility // that this could cause a divide by zero, so using a local to preclude the // possibility of aliasing from another thread int m = (n + 1) % num_points; Vector3 pt_next = _portal->_pts_world[m]; pt_next = tr_inv.xform(pt_next); // don't need the first and last triangles if ((n != 0) && (n != (num_points - 1))) { pts_portal.push_back(pt_portal_first); pts_portal.push_back(pt); pts_portal.push_back(pt_next); cols_portal.push_back(_color_portal_front); cols_portal.push_back(_color_portal_front); cols_portal.push_back(_color_portal_front); pts_portal.push_back(pt_next); pts_portal.push_back(pt); pts_portal.push_back(pt_portal_first); cols_portal.push_back(_color_portal_back); cols_portal.push_back(_color_portal_back); cols_portal.push_back(_color_portal_back); } if (show_margins) { Vector3 pt0 = pt - portal_normal; Vector3 pt1 = pt + portal_normal; Vector3 pt2 = pt_next - portal_normal; Vector3 pt3 = pt_next + portal_normal; pts_margin.push_back(pt0); pts_margin.push_back(pt2); pts_margin.push_back(pt1); pts_margin.push_back(pt2); pts_margin.push_back(pt3); pts_margin.push_back(pt1); edge_pts.push_back(pt0); edge_pts.push_back(pt2); edge_pts.push_back(pt1); edge_pts.push_back(pt3); } } // draw the handles separately because these must correspond to the raw points // for editing for (int n = 0; n < _portal->_pts_local_raw.size(); n++) { Vector3 pt = Portal::_vec2to3(_portal->_pts_local_raw[n]); handles.push_back(pt); } // portal itself { Ref mesh = memnew(ArrayMesh); Array array; array.resize(Mesh::ARRAY_MAX); array[Mesh::ARRAY_VERTEX] = pts_portal; array[Mesh::ARRAY_COLOR] = cols_portal; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array); add_mesh(mesh, false, Ref(), material_portal); // handles Ref material_handle = gizmo_plugin->get_material("portal_handle", this); add_handles(handles, material_handle); } if (show_margins) { Ref mesh = memnew(ArrayMesh); Array array; array.resize(Mesh::ARRAY_MAX); array[Mesh::ARRAY_VERTEX] = pts_margin; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array); add_mesh(mesh, false, Ref(), material_margin); // lines around the outside of mesh add_lines(edge_pts, material_edge, false, color); } // only if the margin is sufficient to be worth drawing // arrow if (show_margins) { const int arrow_points = 7; const float arrow_length = 0.5; // 1.5 const float arrow_width = 0.1; // 0.3 const float arrow_barb = 0.27; // 0.8 Vector3 arrow[arrow_points] = { Vector3(0, 0, -1), Vector3(0, arrow_barb, 0), Vector3(0, arrow_width, 0), Vector3(0, arrow_width, arrow_length), Vector3(0, -arrow_width, arrow_length), Vector3(0, -arrow_width, 0), Vector3(0, -arrow_barb, 0) }; int arrow_sides = 2; Vector lines; for (int i = 0; i < arrow_sides; i++) { for (int j = 0; j < arrow_points; j++) { Basis ma(Vector3(0, 0, 1), Math_PI * i / arrow_sides); Vector3 v1 = arrow[j] - Vector3(0, 0, arrow_length); Vector3 v2 = arrow[(j + 1) % arrow_points] - Vector3(0, 0, arrow_length); lines.push_back(ma.xform(v1)); lines.push_back(ma.xform(v2)); } } add_lines(lines, material_arrow, false, color); } } PortalSpatialGizmo::PortalSpatialGizmo(Portal *p_portal) { _portal = p_portal; set_spatial_node(p_portal); _color_portal_front = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/portal_front", Color(0.05, 0.05, 1.0, 0.3)); _color_portal_back = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/portal_back", Color(1.0, 1.0, 0.0, 0.15)); } ///////////////////// OccluderGizmoPlugin::OccluderGizmoPlugin() { Color color_occluder = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/occluder", Color(1.0, 0.0, 1.0)); create_material("occluder", color_occluder, false, true, false); create_material("occluder_poly", Color(1, 1, 1, 1), false, false, true); create_handle_material("occluder_handle"); create_handle_material("extra_handle", false, SpatialEditor::get_singleton()->get_icon("EditorInternalHandle", "EditorIcons")); } Ref OccluderGizmoPlugin::create_gizmo(Spatial *p_spatial) { Ref ref; Occluder *occluder = Object::cast_to(p_spatial); if (occluder) { ref = Ref(memnew(OccluderSpatialGizmo(occluder))); } return ref; } bool OccluderGizmoPlugin::has_gizmo(Spatial *p_spatial) { if (Object::cast_to(p_spatial)) { return true; } return false; } String OccluderGizmoPlugin::get_name() const { return "Occluder"; } int OccluderGizmoPlugin::get_priority() const { return -1; } ////////////////////// String OccluderSpatialGizmo::get_handle_name(int p_idx) const { const OccluderShapeSphere *occ_sphere = get_occluder_shape_sphere(); if (occ_sphere) { int num_spheres = occ_sphere->get_spheres().size(); if (p_idx >= num_spheres) { p_idx -= num_spheres; return "Radius " + itos(p_idx); } else { return "Sphere " + itos(p_idx); } } const OccluderShapePolygon *occ_poly = get_occluder_shape_poly(); if (occ_poly) { if (p_idx < occ_poly->_poly_pts_local_raw.size()) { return "Poly Point " + itos(p_idx); } else { return "Hole Point " + itos(p_idx - occ_poly->_poly_pts_local_raw.size()); } } return "Unknown"; } Variant OccluderSpatialGizmo::get_handle_value(int p_idx) { const OccluderShapeSphere *occ_sphere = get_occluder_shape_sphere(); if (occ_sphere) { Vector spheres = occ_sphere->get_spheres(); int num_spheres = spheres.size(); if (p_idx >= num_spheres) { p_idx -= num_spheres; return spheres[p_idx].d; } else { return spheres[p_idx].normal; } } const OccluderShapePolygon *occ_poly = get_occluder_shape_poly(); if (occ_poly) { if (p_idx < occ_poly->_poly_pts_local_raw.size()) { return occ_poly->_poly_pts_local_raw[p_idx]; } else { p_idx -= occ_poly->_poly_pts_local_raw.size(); if (p_idx < occ_poly->_hole_pts_local_raw.size()) { return occ_poly->_hole_pts_local_raw[p_idx]; } return Vector2(0, 0); } } return 0; } void OccluderSpatialGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) { if (!_occluder) { return; } Transform tr = _occluder->get_global_transform(); Transform tr_inv = tr.affine_inverse(); // selection ray Vector3 ray_from = p_camera->project_ray_origin(p_point); Vector3 ray_dir = p_camera->project_ray_normal(p_point); Vector3 camera_dir = p_camera->get_transform().basis.get_axis(2); // find the smallest camera axis, we will only transform the handles on 2 axes max, // to try and make things more user friendly (it is confusing trying to change 3d position // from a 2d view) int biggest_axis = 0; real_t biggest = 0.0; for (int n = 0; n < 3; n++) { real_t val = Math::abs(camera_dir.get_axis(n)); if (val > biggest) { biggest = val; biggest_axis = n; } } // find world space of selected point OccluderShapeSphere *occ_sphere = get_occluder_shape_sphere(); if (occ_sphere) { Vector spheres = occ_sphere->get_spheres(); int num_spheres = spheres.size(); // radius? bool is_radius = false; if (p_idx >= num_spheres) { p_idx -= num_spheres; is_radius = true; } Vector3 pt_world = spheres[p_idx].normal; pt_world = tr.xform(pt_world); Vector3 pt_world_center = pt_world; // a plane between the radius point and the centre Plane plane; if (is_radius) { plane = Plane(Vector3(0, 0, 1), pt_world.z); } else { plane = Plane(pt_world, camera_dir); } Vector3 inters; if (plane.intersects_ray(ray_from, ray_dir, &inters)) { if (SpatialEditor::get_singleton()->is_snap_enabled()) { float snap = SpatialEditor::get_singleton()->get_translate_snap(); inters.snap(Vector3(snap, snap, snap)); } if (is_radius) { pt_world = inters; // new radius is simply the dist between this point and the centre of the sphere real_t radius = (pt_world - pt_world_center).length(); occ_sphere->set_sphere_radius(p_idx, radius); } else { for (int n = 0; n < 3; n++) { if (n != biggest_axis) { pt_world.set_axis(n, inters.get_axis(n)); } } Vector3 pt_local = tr_inv.xform(pt_world); occ_sphere->set_sphere_position(p_idx, pt_local); } return; } } OccluderShapePolygon *occ_poly = get_occluder_shape_poly(); if (occ_poly) { Vector3 pt_local; bool hole = p_idx >= occ_poly->_poly_pts_local_raw.size(); if (hole) { p_idx -= occ_poly->_poly_pts_local_raw.size(); if (p_idx >= occ_poly->_hole_pts_local_raw.size()) { return; } pt_local = OccluderShapePolygon::_vec2to3(occ_poly->_hole_pts_local_raw[p_idx]); } else { pt_local = OccluderShapePolygon::_vec2to3(occ_poly->_poly_pts_local_raw[p_idx]); } Vector3 pt_world = tr.xform(pt_local); // get a normal from the global transform Plane plane(Vector3(0, 0, 0), Vector3(0, 0, 1)); plane = tr.xform(plane); // construct the plane that the 2d portal is defined in plane = Plane(pt_world, plane.normal); Vector3 inters; if (plane.intersects_ray(ray_from, ray_dir, &inters)) { // back calculate from the 3d intersection to the 2d portal plane inters = tr_inv.xform(inters); // snapping will be in 2d for portals, and the scale may make less sense, // but better to offer at least some functionality if (SpatialEditor::get_singleton()->is_snap_enabled()) { float snap = SpatialEditor::get_singleton()->get_translate_snap(); inters.snap(Vector3(snap, snap, snap)); } if (hole) { occ_poly->set_hole_point(p_idx, Vector2(inters.x, inters.y)); } else { occ_poly->set_polygon_point(p_idx, Vector2(inters.x, inters.y)); } return; } } } void OccluderSpatialGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) { UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo(); OccluderShapeSphere *occ_sphere = get_occluder_shape_sphere(); if (occ_sphere) { Vector spheres = occ_sphere->get_spheres(); int num_spheres = spheres.size(); if (p_idx >= num_spheres) { p_idx -= num_spheres; ur->create_action(TTR("Set Occluder Sphere Radius")); ur->add_do_method(occ_sphere, "set_sphere_radius", p_idx, spheres[p_idx].d); ur->add_undo_method(occ_sphere, "set_sphere_radius", p_idx, p_restore); } else { ur->create_action(TTR("Set Occluder Sphere Position")); ur->add_do_method(occ_sphere, "set_sphere_position", p_idx, spheres[p_idx].normal); ur->add_undo_method(occ_sphere, "set_sphere_position", p_idx, p_restore); } ur->commit_action(); _occluder->property_list_changed_notify(); } OccluderShapePolygon *occ_poly = get_occluder_shape_poly(); if (occ_poly) { if (p_idx < occ_poly->_poly_pts_local_raw.size()) { ur->create_action(TTR("Set Occluder Polygon Point Position")); ur->add_do_method(occ_poly, "set_polygon_point", p_idx, occ_poly->_poly_pts_local_raw[p_idx]); ur->add_undo_method(occ_poly, "set_polygon_point", p_idx, p_restore); ur->commit_action(); _occluder->property_list_changed_notify(); } else { p_idx -= occ_poly->_poly_pts_local_raw.size(); if (p_idx < occ_poly->_hole_pts_local_raw.size()) { ur->create_action(TTR("Set Occluder Hole Point Position")); ur->add_do_method(occ_poly, "set_hole_point", p_idx, occ_poly->_hole_pts_local_raw[p_idx]); ur->add_undo_method(occ_poly, "set_hole_point", p_idx, p_restore); ur->commit_action(); _occluder->property_list_changed_notify(); } } } } OccluderShapeSphere *OccluderSpatialGizmo::get_occluder_shape_sphere() { OccluderShapeSphere *occ_sphere = Object::cast_to(get_occluder_shape()); return occ_sphere; } const OccluderShapePolygon *OccluderSpatialGizmo::get_occluder_shape_poly() const { const OccluderShapePolygon *occ_poly = Object::cast_to(get_occluder_shape()); return occ_poly; } OccluderShapePolygon *OccluderSpatialGizmo::get_occluder_shape_poly() { OccluderShapePolygon *occ_poly = Object::cast_to(get_occluder_shape()); return occ_poly; } const OccluderShapeSphere *OccluderSpatialGizmo::get_occluder_shape_sphere() const { const OccluderShapeSphere *occ_sphere = Object::cast_to(get_occluder_shape()); return occ_sphere; } const OccluderShape *OccluderSpatialGizmo::get_occluder_shape() const { if (!_occluder) { return nullptr; } Ref rshape = _occluder->get_shape(); if (rshape.is_null() || !rshape.is_valid()) { return nullptr; } return rshape.ptr(); } OccluderShape *OccluderSpatialGizmo::get_occluder_shape() { if (!_occluder) { return nullptr; } Ref rshape = _occluder->get_shape(); if (rshape.is_null() || !rshape.is_valid()) { return nullptr; } return rshape.ptr(); } void OccluderSpatialGizmo::redraw() { clear(); if (!_occluder) { return; } Ref material_occluder = gizmo_plugin->get_material("occluder", this); Color color(1, 1, 1, 1); const OccluderShapeSphere *occ_sphere = get_occluder_shape_sphere(); if (occ_sphere) { Vector spheres = occ_sphere->get_spheres(); if (!spheres.size()) { return; } Vector points; Vector handles; Vector radius_handles; for (int n = 0; n < spheres.size(); n++) { const Plane &p = spheres[n]; real_t r = p.d; Vector3 offset = p.normal; handles.push_back(offset); // add a handle for the radius radius_handles.push_back(offset + Vector3(r, 0, 0)); const int deg_change = 4; for (int i = 0; i <= 360; i += deg_change) { real_t ra = Math::deg2rad((real_t)i); real_t rb = Math::deg2rad((real_t)i + deg_change); Point2 a = Vector2(Math::sin(ra), Math::cos(ra)) * r; Point2 b = Vector2(Math::sin(rb), Math::cos(rb)) * r; points.push_back(offset + Vector3(a.x, 0, a.y)); points.push_back(offset + Vector3(b.x, 0, b.y)); points.push_back(offset + Vector3(0, a.x, a.y)); points.push_back(offset + Vector3(0, b.x, b.y)); points.push_back(offset + Vector3(a.x, a.y, 0)); points.push_back(offset + Vector3(b.x, b.y, 0)); } } // for n through spheres add_lines(points, material_occluder, false, color); // handles Ref material_handle = gizmo_plugin->get_material("occluder_handle", this); Ref material_extra_handle = gizmo_plugin->get_material("extra_handle", this); add_handles(handles, material_handle); add_handles(radius_handles, material_extra_handle, false, true); } const OccluderShapePolygon *occ_poly = get_occluder_shape_poly(); if (occ_poly) { // main poly _redraw_poly(false, occ_poly->_poly_pts_local, occ_poly->_poly_pts_local_raw); // hole _redraw_poly(true, occ_poly->_hole_pts_local, occ_poly->_hole_pts_local_raw); } } void OccluderSpatialGizmo::_redraw_poly(bool p_hole, const Vector &p_pts, const PoolVector &p_pts_raw) { PoolVector pts_edge; PoolVector cols; Color col_front = _color_poly_front; Color col_back = _color_poly_back; if (p_hole) { col_front = _color_hole; col_back = _color_hole; } if (p_pts.size() > 2) { Vector3 pt_first = OccluderShapePolygon::_vec2to3(p_pts[0]); Vector3 pt_prev = OccluderShapePolygon::_vec2to3(p_pts[p_pts.size() - 1]); for (int n = 0; n < p_pts.size(); n++) { Vector3 pt_curr = OccluderShapePolygon::_vec2to3(p_pts[n]); pts_edge.push_back(pt_first); pts_edge.push_back(pt_prev); pts_edge.push_back(pt_curr); cols.push_back(col_front); cols.push_back(col_front); cols.push_back(col_front); pts_edge.push_back(pt_first); pts_edge.push_back(pt_curr); pts_edge.push_back(pt_prev); cols.push_back(col_back); cols.push_back(col_back); cols.push_back(col_back); pt_prev = pt_curr; } } // draw the handles separately because these must correspond to the raw points // for editing Vector handles; for (int n = 0; n < p_pts_raw.size(); n++) { Vector3 pt = OccluderShapePolygon::_vec2to3(p_pts_raw[n]); handles.push_back(pt); } // poly itself { if (pts_edge.size() > 2) { Ref mesh = memnew(ArrayMesh); Array array; array.resize(Mesh::ARRAY_MAX); array[Mesh::ARRAY_VERTEX] = pts_edge; array[Mesh::ARRAY_COLOR] = cols; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array); Ref material_poly = gizmo_plugin->get_material("occluder_poly", this); add_mesh(mesh, false, Ref(), material_poly); } // handles if (!p_hole) { Ref material_handle = gizmo_plugin->get_material("occluder_handle", this); add_handles(handles, material_handle); } else { Ref material_extra_handle = gizmo_plugin->get_material("extra_handle", this); add_handles(handles, material_extra_handle, false, true); } } } OccluderSpatialGizmo::OccluderSpatialGizmo(Occluder *p_occluder) { _occluder = p_occluder; set_spatial_node(p_occluder); _color_poly_front = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/occluder_polygon_front", Color(1.0, 0.25, 0.8, 0.3)); _color_poly_back = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/occluder_polygon_back", Color(0.85, 0.1, 1.0, 0.3)); _color_hole = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/occluder_hole", Color(0.0, 1.0, 1.0, 0.3)); }