/*************************************************************************/ /* rasterizer_storage_gles3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ //#define OPENGL_DISABLE_RENDER_TARGETS #include "rasterizer_storage_gles3.h" #ifdef GLES3_BACKEND_ENABLED #include "core/config/project_settings.h" #include "core/math/transform_3d.h" #include "drivers/gles3/rasterizer_storage_common.h" #include "rasterizer_canvas_gles3.h" #include "rasterizer_scene_gles3.h" #include "servers/rendering/shader_language.h" GLuint RasterizerStorageGLES3::system_fbo = 0; /* TEXTURE API */ #define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB #define _EXT_COMPRESSED_RED_RGTC1 0x8DBB #define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define _EXT_COMPRESSED_RG_RGTC2 0x8DBD #define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC #define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD #define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE #define _EXT_ETC1_RGB8_OES 0x8D64 #define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54 #define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57 #define _EXT_COMPRESSED_RGBA_BPTC_UNORM 0x8E8C #define _EXT_COMPRESSED_SRGB_ALPHA_BPTC_UNORM 0x8E8D #define _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT 0x8E8E #define _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 0x8E8F #define _GL_TEXTURE_EXTERNAL_OES 0x8D65 #ifdef GLES_OVER_GL #define _GL_HALF_FLOAT_OES 0x140B #else #define _GL_HALF_FLOAT_OES 0x8D61 #endif #define _EXT_TEXTURE_CUBE_MAP_SEAMLESS 0x884F #define _RED_OES 0x1903 #define _DEPTH_COMPONENT24_OES 0x81A6 #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif //!GLES_OVER_GL void RasterizerStorageGLES3::bind_quad_array() const { //glBindBuffer(GL_ARRAY_BUFFER, resources.quadie); //glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0); //glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); //glEnableVertexAttribArray(RS::ARRAY_VERTEX); //glEnableVertexAttribArray(RS::ARRAY_TEX_UV); } bool RasterizerStorageGLES3::can_create_resources_async() const { return false; } Ref<Image> RasterizerStorageGLES3::_get_gl_image_and_format(const Ref<Image> &p_image, Image::Format p_format, uint32_t p_flags, Image::Format &r_real_format, GLenum &r_gl_format, GLenum &r_gl_internal_format, GLenum &r_gl_type, bool &r_compressed, bool p_force_decompress) const { r_gl_format = 0; Ref<Image> image = p_image; r_compressed = false; r_real_format = p_format; bool need_decompress = false; switch (p_format) { case Image::FORMAT_L8: { #ifdef GLES_OVER_GL r_gl_internal_format = GL_R8; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; #else r_gl_internal_format = GL_LUMINANCE; r_gl_format = GL_LUMINANCE; r_gl_type = GL_UNSIGNED_BYTE; #endif } break; case Image::FORMAT_LA8: { #ifdef GLES_OVER_GL r_gl_internal_format = GL_RG8; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; #else r_gl_internal_format = GL_LUMINANCE_ALPHA; r_gl_format = GL_LUMINANCE_ALPHA; r_gl_type = GL_UNSIGNED_BYTE; #endif } break; case Image::FORMAT_R8: { r_gl_internal_format = GL_R8; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; } break; case Image::FORMAT_RG8: { r_gl_internal_format = GL_RG8; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; } break; case Image::FORMAT_RGB8: { r_gl_internal_format = GL_RGB8; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_BYTE; //r_srgb = true; } break; case Image::FORMAT_RGBA8: { r_gl_format = GL_RGBA; r_gl_internal_format = GL_RGBA8; r_gl_type = GL_UNSIGNED_BYTE; //r_srgb = true; } break; case Image::FORMAT_RGBA4444: { r_gl_internal_format = GL_RGBA4; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_SHORT_4_4_4_4; } break; //case Image::FORMAT_RGBA5551: { // r_gl_internal_format = GL_RGB5_A1; // r_gl_format = GL_RGBA; // r_gl_type = GL_UNSIGNED_SHORT_5_5_5_1; // //} break; case Image::FORMAT_RF: { r_gl_internal_format = GL_R32F; r_gl_format = GL_RED; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGF: { r_gl_internal_format = GL_RG32F; r_gl_format = GL_RG; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGBF: { r_gl_internal_format = GL_RGB32F; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RGBAF: { r_gl_internal_format = GL_RGBA32F; r_gl_format = GL_RGBA; r_gl_type = GL_FLOAT; } break; case Image::FORMAT_RH: { r_gl_internal_format = GL_R16F; r_gl_format = GL_RED; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGH: { r_gl_internal_format = GL_RG16F; r_gl_format = GL_RG; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBH: { r_gl_internal_format = GL_RGB16F; r_gl_format = GL_RGB; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBAH: { r_gl_internal_format = GL_RGBA16F; r_gl_format = GL_RGBA; r_gl_type = GL_HALF_FLOAT; } break; case Image::FORMAT_RGBE9995: { r_gl_internal_format = GL_RGB9_E5; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_INT_5_9_9_9_REV; } break; case Image::FORMAT_DXT1: { if (config.s3tc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_DXT3: { if (config.s3tc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_DXT5: { if (config.s3tc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_RGTC_R: { if (config.rgtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RED_RGTC1_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_RGTC_RG: { if (config.rgtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBA: { if (config.bptc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_BPTC_UNORM; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBF: { if (config.bptc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_SIGNED_FLOAT; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_BPTC_RGBFU: { if (config.bptc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT; r_gl_format = GL_RGB; r_gl_type = GL_FLOAT; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC1_2: { if (config.pvrtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC1_2A: { if (config.pvrtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC1_4: { if (config.pvrtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_PVRTC1_4A: { if (config.pvrtc_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC: { if (config.etc_supported) { r_gl_internal_format = _EXT_ETC1_RGB8_OES; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; /* case Image::FORMAT_ETC2_R11: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_R11_EAC; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_R11S: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_SIGNED_R11_EAC; r_gl_format = GL_RED; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RG11: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_RG11_EAC; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RG11S: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_SIGNED_RG11_EAC; r_gl_format = GL_RG; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGB8: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB8_ETC2; r_gl_format = GL_RGB; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGBA8: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGBA8_ETC2_EAC; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; case Image::FORMAT_ETC2_RGB8A1: { if (config.etc2_supported) { r_gl_internal_format = _EXT_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2; r_gl_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_compressed = true; //r_srgb = true; } else { need_decompress = true; } } break; */ default: { ERR_FAIL_V(Ref<Image>()); } } if (need_decompress || p_force_decompress) { if (!image.is_null()) { image = image->duplicate(); image->decompress(); ERR_FAIL_COND_V(image->is_compressed(), image); switch (image->get_format()) { case Image::FORMAT_RGB8: { r_gl_format = GL_RGB; r_gl_internal_format = GL_RGB; r_gl_type = GL_UNSIGNED_BYTE; r_real_format = Image::FORMAT_RGB8; r_compressed = false; } break; case Image::FORMAT_RGBA8: { r_gl_format = GL_RGBA; r_gl_internal_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_real_format = Image::FORMAT_RGBA8; r_compressed = false; } break; default: { image->convert(Image::FORMAT_RGBA8); r_gl_format = GL_RGBA; r_gl_internal_format = GL_RGBA; r_gl_type = GL_UNSIGNED_BYTE; r_real_format = Image::FORMAT_RGBA8; r_compressed = false; } break; } } return image; } return p_image; } static const GLenum _cube_side_enum[6] = { GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, }; RID RasterizerStorageGLES3::texture_allocate() { RID id = texture_create(); ERR_FAIL_COND_V(id == RID(), id); return id; } void RasterizerStorageGLES3::texture_2d_initialize(RID p_texture, const Ref<Image> &p_image) { Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!tex); int w = p_image->get_width(); int h = p_image->get_height(); _texture_allocate_internal(p_texture, w, h, 1, p_image->get_format(), RenderingDevice::TEXTURE_TYPE_2D, 0); texture_set_data(p_texture, p_image); } void RasterizerStorageGLES3::texture_2d_layered_initialize(RID p_texture, const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) { } void RasterizerStorageGLES3::texture_3d_initialize(RID p_texture, Image::Format, int p_width, int p_height, int p_depth, bool p_mipmaps, const Vector<Ref<Image>> &p_data) { } void RasterizerStorageGLES3::texture_proxy_initialize(RID p_texture, RID p_base) { texture_set_proxy(p_texture, p_base); } //RID RasterizerStorageGLES3::texture_2d_create(const Ref<Image> &p_image) { // RID id = texture_create(); // ERR_FAIL_COND_V(id == RID(), id); // int w = p_image->get_width(); // int h = p_image->get_height(); // texture_allocate(id, w, h, 1, p_image->get_format(), RenderingDevice::TEXTURE_TYPE_2D, 0); // texture_set_data(id, p_image); // return id; //} //RID RasterizerStorageGLES3::texture_2d_layered_create(const Vector<Ref<Image>> &p_layers, RS::TextureLayeredType p_layered_type) { // return RID(); //} //void RasterizerStorageGLES3::texture_2d_update_immediate(RID p_texture, const Ref<Image> &p_image, int p_layer) { // // only 1 layer so far // texture_set_data(p_texture, p_image); //} void RasterizerStorageGLES3::texture_2d_update(RID p_texture, const Ref<Image> &p_image, int p_layer) { // only 1 layer so far texture_set_data(p_texture, p_image); } void RasterizerStorageGLES3::texture_2d_placeholder_initialize(RID p_texture) { } void RasterizerStorageGLES3::texture_2d_layered_placeholder_initialize(RID p_texture, RenderingServer::TextureLayeredType p_layered_type) { } void RasterizerStorageGLES3::texture_3d_placeholder_initialize(RID p_texture) { } Ref<Image> RasterizerStorageGLES3::texture_2d_get(RID p_texture) const { Texture *tex = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!tex, Ref<Image>()); /* #ifdef TOOLS_ENABLED if (tex->image_cache_2d.is_valid()) { return tex->image_cache_2d; } #endif Vector<uint8_t> data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0); ERR_FAIL_COND_V(data.size() == 0, Ref<Image>()); Ref<Image> image; image.instance(); image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data); ERR_FAIL_COND_V(image->empty(), Ref<Image>()); if (tex->format != tex->validated_format) { image->convert(tex->format); } #ifdef TOOLS_ENABLED if (Engine::get_singleton()->is_editor_hint()) { tex->image_cache_2d = image; } #endif */ ERR_FAIL_COND_V(!tex->images.size(), Ref<Image>()); return tex->images[0]; // return image; // return Ref<Image>(); } void RasterizerStorageGLES3::texture_replace(RID p_texture, RID p_by_texture) { Texture *tex_to = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!tex_to); Texture *tex_from = texture_owner.get_or_null(p_by_texture); ERR_FAIL_COND(!tex_from); tex_to->destroy(); tex_to->copy_from(*tex_from); // copy image data and upload to GL tex_to->images.resize(tex_from->images.size()); for (int n = 0; n < tex_from->images.size(); n++) { texture_set_data(p_texture, tex_from->images[n], n); } free(p_by_texture); } bool RasterizerStorageGLES3::_is_main_thread() { //#if defined DEBUG_ENABLED && defined TOOLS_ENABLED // must be called from main thread in OpenGL bool is_main_thread = _main_thread_id == Thread::get_caller_id(); //#endif return is_main_thread; } RID RasterizerStorageGLES3::texture_create() { ERR_FAIL_COND_V(!_is_main_thread(), RID()); Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture, RID()); glGenTextures(1, &texture->tex_id); texture->active = false; texture->total_data_size = 0; return texture_owner.make_rid(texture); } void RasterizerStorageGLES3::_texture_allocate_internal(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, RenderingDevice::TextureType p_type, uint32_t p_flags) { // GLenum format; // GLenum internal_format; // GLenum type; // bool compressed = false; if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) { p_flags &= ~TEXTURE_FLAG_MIPMAPS; // no mipies for video } Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->width = p_width; texture->height = p_height; texture->format = p_format; texture->flags = p_flags; texture->stored_cube_sides = 0; texture->type = p_type; switch (p_type) { case RenderingDevice::TEXTURE_TYPE_2D: { texture->target = GL_TEXTURE_2D; texture->images.resize(1); } break; // case RenderingDevice::TEXTURE_TYPE_EXTERNAL: { //#ifdef ANDROID_ENABLED // texture->target = _GL_TEXTURE_EXTERNAL_OES; //#else // texture->target = GL_TEXTURE_2D; //#endif // texture->images.resize(0); // } break; case RenderingDevice::TEXTURE_TYPE_CUBE: { texture->target = GL_TEXTURE_CUBE_MAP; texture->images.resize(6); } break; case RenderingDevice::TEXTURE_TYPE_2D_ARRAY: case RenderingDevice::TEXTURE_TYPE_3D: { texture->target = GL_TEXTURE_3D; ERR_PRINT("3D textures and Texture Arrays are not supported in OpenGL. Please switch to the Vulkan backend."); return; } break; default: { ERR_PRINT("Unknown texture type!"); return; } } #if 0 // if (p_type != RS::TEXTURE_TYPE_EXTERNAL) { if (p_type == RenderingDevice::TEXTURE_TYPE_2D) { texture->alloc_width = texture->width; texture->alloc_height = texture->height; texture->resize_to_po2 = false; if (!config.support_npot_repeat_mipmap) { int po2_width = next_power_of_2(p_width); int po2_height = next_power_of_2(p_height); bool is_po2 = p_width == po2_width && p_height == po2_height; if (!is_po2 && (p_flags & TEXTURE_FLAG_REPEAT || p_flags & TEXTURE_FLAG_MIPMAPS)) { if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) { //not supported ERR_PRINT("Streaming texture for non power of 2 or has mipmaps on this hardware: " + texture->path + "'. Mipmaps and repeat disabled."); texture->flags &= ~(TEXTURE_FLAG_REPEAT | TEXTURE_FLAG_MIPMAPS); } else { texture->alloc_height = po2_height; texture->alloc_width = po2_width; texture->resize_to_po2 = true; } } } GLenum format; GLenum internal_format; GLenum type; bool compressed = false; Image::Format real_format; _get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, format, internal_format, type, compressed, texture->resize_to_po2); texture->gl_format_cache = format; texture->gl_type_cache = type; texture->gl_internal_format_cache = internal_format; texture->data_size = 0; texture->mipmaps = 1; texture->compressed = compressed; } #endif glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); // if (p_type == RS::TEXTURE_TYPE_EXTERNAL) { // glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // glTexParameteri(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // glTexParameteri(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // } else if (p_flags & TEXTURE_FLAG_USED_FOR_STREAMING) { // //prealloc if video // glTexImage2D(texture->target, 0, internal_format, texture->alloc_width, texture->alloc_height, 0, format, type, NULL); // } texture->active = true; } void RasterizerStorageGLES3::texture_set_data(RID p_texture, const Ref<Image> &p_image, int p_layer) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!_is_main_thread()); ERR_FAIL_COND(!texture); if (texture->target == GL_TEXTURE_3D) { // Target is set to a 3D texture or array texture, exit early to avoid spamming errors return; } ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(p_image.is_null()); ERR_FAIL_COND(texture->format != p_image->get_format()); ERR_FAIL_COND(!p_image->get_width()); ERR_FAIL_COND(!p_image->get_height()); // ERR_FAIL_COND(texture->type == RS::TEXTURE_TYPE_EXTERNAL); GLenum type; GLenum format; GLenum internal_format; bool compressed = false; if (config.keep_original_textures && !(texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING)) { texture->images.write[p_layer] = p_image; } // print_line("texture_set_data width " + itos (p_image->get_width()) + " height " + itos(p_image->get_height())); Image::Format real_format; Ref<Image> img = _get_gl_image_and_format(p_image, p_image->get_format(), texture->flags, real_format, format, internal_format, type, compressed, texture->resize_to_po2); if (texture->resize_to_po2) { if (p_image->is_compressed()) { ERR_PRINT("Texture '" + texture->path + "' is required to be a power of 2 because it uses either mipmaps or repeat, so it was decompressed. This will hurt performance and memory usage."); } if (img == p_image) { img = img->duplicate(); } img->resize_to_po2(false); } if (config.shrink_textures_x2 && (p_image->has_mipmaps() || !p_image->is_compressed()) && !(texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING)) { texture->alloc_height = MAX(1, texture->alloc_height / 2); texture->alloc_width = MAX(1, texture->alloc_width / 2); if (texture->alloc_width == img->get_width() / 2 && texture->alloc_height == img->get_height() / 2) { img->shrink_x2(); } else if (img->get_format() <= Image::FORMAT_RGBA8) { img->resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR); } } GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP) ? _cube_side_enum[p_layer] : GL_TEXTURE_2D; texture->data_size = img->get_data().size(); Vector<uint8_t> read = img->get_data(); glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); texture->ignore_mipmaps = compressed && !img->has_mipmaps(); // set filtering and repeat state _texture_set_state_from_flags(texture); //set swizle for older format compatibility #ifdef GLES_OVER_GL switch (texture->format) { case Image::FORMAT_L8: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ONE); } break; case Image::FORMAT_LA8: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_GREEN); } break; default: { glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_G, GL_GREEN); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_B, GL_BLUE); glTexParameteri(texture->target, GL_TEXTURE_SWIZZLE_A, GL_ALPHA); } break; } #endif int mipmaps = ((texture->flags & TEXTURE_FLAG_MIPMAPS) && img->has_mipmaps()) ? img->get_mipmap_count() + 1 : 1; int w = img->get_width(); int h = img->get_height(); int tsize = 0; for (int i = 0; i < mipmaps; i++) { int size, ofs; img->get_mipmap_offset_and_size(i, ofs, size); if (compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); int bw = w; int bh = h; glCompressedTexImage2D(blit_target, i, internal_format, bw, bh, 0, size, &read[ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); if (texture->flags & TEXTURE_FLAG_USED_FOR_STREAMING) { glTexSubImage2D(blit_target, i, 0, 0, w, h, format, type, &read[ofs]); } else { glTexImage2D(blit_target, i, internal_format, w, h, 0, format, type, &read[ofs]); } } tsize += size; w = MAX(1, w >> 1); h = MAX(1, h >> 1); } info.texture_mem -= texture->total_data_size; texture->total_data_size = tsize; info.texture_mem += texture->total_data_size; // printf("texture: %i x %i - size: %i - total: %i\n", texture->width, texture->height, tsize, info.texture_mem); texture->stored_cube_sides |= (1 << p_layer); if ((texture->flags & TEXTURE_FLAG_MIPMAPS) && mipmaps == 1 && !texture->ignore_mipmaps && (texture->type != RenderingDevice::TEXTURE_TYPE_CUBE || texture->stored_cube_sides == (1 << 6) - 1)) { //generate mipmaps if they were requested and the image does not contain them glGenerateMipmap(texture->target); } texture->mipmaps = mipmaps; } void RasterizerStorageGLES3::texture_set_data_partial(RID p_texture, const Ref<Image> &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_layer) { // TODO ERR_PRINT("Not implemented (ask Karroffel to do it :p)"); } /* Ref<Image> RasterizerStorageGLES3::texture_get_data(RID p_texture, int p_layer) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, Ref<Image>()); ERR_FAIL_COND_V(!texture->active, Ref<Image>()); ERR_FAIL_COND_V(texture->data_size == 0 && !texture->render_target, Ref<Image>()); if (texture->type == RS::TEXTURE_TYPE_CUBEMAP && p_layer < 6 && p_layer >= 0 && !texture->images[p_layer].is_null()) { return texture->images[p_layer]; } #ifdef GLES_OVER_GL Image::Format real_format; GLenum gl_format; GLenum gl_internal_format; GLenum gl_type; bool compressed; _get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, false); PoolVector<uint8_t> data; int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, real_format, texture->mipmaps > 1); data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers PoolVector<uint8_t>::Write wb = data.write(); glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); for (int i = 0; i < texture->mipmaps; i++) { int ofs = Image::get_image_mipmap_offset(texture->alloc_width, texture->alloc_height, real_format, i); if (texture->compressed) { glPixelStorei(GL_PACK_ALIGNMENT, 4); glGetCompressedTexImage(texture->target, i, &wb[ofs]); } else { glPixelStorei(GL_PACK_ALIGNMENT, 1); glGetTexImage(texture->target, i, texture->gl_format_cache, texture->gl_type_cache, &wb[ofs]); } } wb.release(); data.resize(data_size); Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, texture->mipmaps > 1, real_format, data)); return Ref<Image>(img); #else Image::Format real_format; GLenum gl_format; GLenum gl_internal_format; GLenum gl_type; bool compressed; _get_gl_image_and_format(Ref<Image>(), texture->format, texture->flags, real_format, gl_format, gl_internal_format, gl_type, compressed, texture->resize_to_po2); PoolVector<uint8_t> data; int data_size = Image::get_image_data_size(texture->alloc_width, texture->alloc_height, Image::FORMAT_RGBA8, false); data.resize(data_size * 2); //add some memory at the end, just in case for buggy drivers PoolVector<uint8_t>::Write wb = data.write(); GLuint temp_framebuffer; glGenFramebuffers(1, &temp_framebuffer); GLuint temp_color_texture; glGenTextures(1, &temp_color_texture); glBindFramebuffer(GL_FRAMEBUFFER, temp_framebuffer); glBindTexture(GL_TEXTURE_2D, temp_color_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture->alloc_width, texture->alloc_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, temp_color_texture, 0); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); glViewport(0, 0, texture->alloc_width, texture->alloc_height); shaders.copy.bind(); glClearColor(0.0, 0.0, 0.0, 0.0); glClear(GL_COLOR_BUFFER_BIT); bind_quad_array(); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindBuffer(GL_ARRAY_BUFFER, 0); glReadPixels(0, 0, texture->alloc_width, texture->alloc_height, GL_RGBA, GL_UNSIGNED_BYTE, &wb[0]); glDeleteTextures(1, &temp_color_texture); glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &temp_framebuffer); wb.release(); data.resize(data_size); Image *img = memnew(Image(texture->alloc_width, texture->alloc_height, false, Image::FORMAT_RGBA8, data)); if (!texture->compressed) { img->convert(real_format); } return Ref<Image>(img); #endif } */ void RasterizerStorageGLES3::_texture_set_state_from_flags(Texture *p_tex) { if ((p_tex->flags & TEXTURE_FLAG_MIPMAPS) && !p_tex->ignore_mipmaps) if (p_tex->flags & TEXTURE_FLAG_FILTER) { // these do not exactly correspond ... p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS); //texture->glTexParam_MinFilter(texture->target, config.use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR); } else { p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS); //texture->glTexParam_MinFilter(texture->target, config.use_fast_texture_filter ? GL_NEAREST_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_LINEAR); } else { if (p_tex->flags & TEXTURE_FLAG_FILTER) { p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR); //texture->glTexParam_MinFilter(texture->target, GL_LINEAR); } else { p_tex->GLSetFilter(p_tex->target, RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST); // texture->glTexParam_MinFilter(texture->target, GL_NEAREST); } } if (((p_tex->flags & TEXTURE_FLAG_REPEAT) || (p_tex->flags & TEXTURE_FLAG_MIRRORED_REPEAT)) && p_tex->target != GL_TEXTURE_CUBE_MAP) { if (p_tex->flags & TEXTURE_FLAG_MIRRORED_REPEAT) { p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR); } else { p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); } } else { p_tex->GLSetRepeat(RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } } void RasterizerStorageGLES3::texture_set_flags(RID p_texture, uint32_t p_flags) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); bool had_mipmaps = texture->flags & TEXTURE_FLAG_MIPMAPS; texture->flags = p_flags; glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); // set filtering and repeat state _texture_set_state_from_flags(texture); if ((texture->flags & TEXTURE_FLAG_MIPMAPS) && !texture->ignore_mipmaps) { if (!had_mipmaps && texture->mipmaps == 1) { glGenerateMipmap(texture->target); } } } uint32_t RasterizerStorageGLES3::texture_get_flags(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->flags; } Image::Format RasterizerStorageGLES3::texture_get_format(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, Image::FORMAT_L8); return texture->format; } RenderingDevice::TextureType RasterizerStorageGLES3::texture_get_type(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, RenderingDevice::TEXTURE_TYPE_2D); return texture->type; } uint32_t RasterizerStorageGLES3::texture_get_texid(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->tex_id; } void RasterizerStorageGLES3::texture_bind(RID p_texture, uint32_t p_texture_no) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0 + p_texture_no); glBindTexture(texture->target, texture->tex_id); } uint32_t RasterizerStorageGLES3::texture_get_width(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->width; } uint32_t RasterizerStorageGLES3::texture_get_height(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->height; } uint32_t RasterizerStorageGLES3::texture_get_depth(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->depth; } void RasterizerStorageGLES3::texture_set_size_override(RID p_texture, int p_width, int p_height) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(p_width <= 0 || p_width > 16384); ERR_FAIL_COND(p_height <= 0 || p_height > 16384); //real texture size is in alloc width and height texture->width = p_width; texture->height = p_height; } void RasterizerStorageGLES3::texture_set_path(RID p_texture, const String &p_path) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->path = p_path; } String RasterizerStorageGLES3::texture_get_path(RID p_texture) const { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, ""); return texture->path; } void RasterizerStorageGLES3::texture_debug_usage(List<RS::TextureInfo> *r_info) { List<RID> textures; texture_owner.get_owned_list(&textures); for (List<RID>::Element *E = textures.front(); E; E = E->next()) { Texture *t = texture_owner.get_or_null(E->get()); if (!t) continue; RS::TextureInfo tinfo; tinfo.path = t->path; tinfo.format = t->format; tinfo.width = t->alloc_width; tinfo.height = t->alloc_height; tinfo.depth = 0; tinfo.bytes = t->total_data_size; r_info->push_back(tinfo); } } void RasterizerStorageGLES3::texture_set_shrink_all_x2_on_set_data(bool p_enable) { config.shrink_textures_x2 = p_enable; } void RasterizerStorageGLES3::textures_keep_original(bool p_enable) { config.keep_original_textures = p_enable; } Size2 RasterizerStorageGLES3::texture_size_with_proxy(RID p_texture) { const Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND_V(!texture, Size2()); if (texture->proxy) { return Size2(texture->proxy->width, texture->proxy->height); } else { return Size2(texture->width, texture->height); } } // example use in 3.2 // VS::get_singleton()->texture_set_proxy(default_texture->proxy, texture_rid); // p_proxy is the source (pre-existing) texture? // and p_texture is the one that is being made into a proxy? //This naming is confusing. Comments!!! // The naming of the parameters seemed to be reversed? // The p_proxy is the source texture // and p_texture is actually the proxy???? void RasterizerStorageGLES3::texture_set_proxy(RID p_texture, RID p_proxy) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); if (texture->proxy) { texture->proxy->proxy_owners.erase(texture); texture->proxy = NULL; } if (p_proxy.is_valid()) { Texture *proxy = texture_owner.get_or_null(p_proxy); ERR_FAIL_COND(!proxy); ERR_FAIL_COND(proxy == texture); proxy->proxy_owners.insert(texture); texture->proxy = proxy; } } void RasterizerStorageGLES3::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->redraw_if_visible = p_enable; } void RasterizerStorageGLES3::texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->detect_3d = p_callback; texture->detect_3d_ud = p_userdata; } void RasterizerStorageGLES3::texture_set_detect_srgb_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->detect_srgb = p_callback; texture->detect_srgb_ud = p_userdata; } void RasterizerStorageGLES3::texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) { Texture *texture = texture_owner.get_or_null(p_texture); ERR_FAIL_COND(!texture); texture->detect_normal = p_callback; texture->detect_normal_ud = p_userdata; } RID RasterizerStorageGLES3::texture_create_radiance_cubemap(RID p_source, int p_resolution) const { return RID(); } RID RasterizerStorageGLES3::canvas_texture_allocate() { return RID(); } void RasterizerStorageGLES3::canvas_texture_initialize(RID p_rid) { } void RasterizerStorageGLES3::canvas_texture_set_channel(RID p_canvas_texture, RS::CanvasTextureChannel p_channel, RID p_texture) { } void RasterizerStorageGLES3::canvas_texture_set_shading_parameters(RID p_canvas_texture, const Color &p_base_color, float p_shininess) { } void RasterizerStorageGLES3::canvas_texture_set_texture_filter(RID p_item, RS::CanvasItemTextureFilter p_filter) { } void RasterizerStorageGLES3::canvas_texture_set_texture_repeat(RID p_item, RS::CanvasItemTextureRepeat p_repeat) { } RID RasterizerStorageGLES3::sky_create() { Sky *sky = memnew(Sky); sky->radiance = 0; return sky_owner.make_rid(sky); } void RasterizerStorageGLES3::sky_set_texture(RID p_sky, RID p_panorama, int p_radiance_size) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_COND(!sky); if (sky->panorama.is_valid()) { sky->panorama = RID(); glDeleteTextures(1, &sky->radiance); sky->radiance = 0; } sky->panorama = p_panorama; if (!sky->panorama.is_valid()) { return; // the panorama was cleared } Texture *texture = texture_owner.get_or_null(sky->panorama); if (!texture) { sky->panorama = RID(); ERR_FAIL_COND(!texture); } // glBindVertexArray(0) and more { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); for (int i = 0; i < RS::ARRAY_MAX - 1; i++) { //glDisableVertexAttribArray(i); } } glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //need this for proper sampling glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // New cubemap that will hold the mipmaps with different roughness values glActiveTexture(GL_TEXTURE2); glGenTextures(1, &sky->radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance); int size = p_radiance_size / 2; //divide by two because its a cubemap (this is an approximation because GLES3 uses a dual paraboloid) GLenum internal_format = GL_RGB; GLenum format = GL_RGB; GLenum type = GL_UNSIGNED_BYTE; // Set the initial (empty) mipmaps // Mobile hardware (PowerVR specially) prefers this approach, // the previous approach with manual lod levels kills the game. for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // No filters for now glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Framebuffer bind_framebuffer(resources.mipmap_blur_fbo); int mipmaps = 6; int lod = 0; int mm_level = mipmaps; size = p_radiance_size / 2; shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, true); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, true); shaders.cubemap_filter.bind(); // third, render to the framebuffer using separate textures, then copy to mipmaps while (size >= 1) { //make framebuffer size the texture size, need to use a separate texture for compatibility glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, resources.mipmap_blur_color); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, resources.mipmap_blur_color, 0); if (lod == 1) { //bind panorama for smaller lods glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false); shaders.cubemap_filter.bind(); } glViewport(0, 0, size, size); bind_quad_array(); glActiveTexture(GL_TEXTURE2); //back to panorama for (int i = 0; i < 6; i++) { shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::FACE_ID, i); float roughness = mm_level >= 0 ? lod / (float)(mipmaps - 1) : 1; roughness = MIN(1.0, roughness); //keep max at 1 shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, roughness); shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, false); //glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size); } size >>= 1; mm_level--; lod++; } shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_SOURCE_PANORAMA, false); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false); // restore ranges glActiveTexture(GL_TEXTURE2); //back to panorama glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE3); //back to panorama glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); //reset flags on Sky Texture that may have changed texture_set_flags(sky->panorama, texture->flags); // Framebuffer did its job. thank mr framebuffer glActiveTexture(GL_TEXTURE0); //back to panorama bind_framebuffer_system(); } /* SHADER API */ RID RasterizerStorageGLES3::shader_allocate() { Shader *shader = memnew(Shader); shader->mode = RS::SHADER_SPATIAL; shader->shader = &scene->state.scene_shader; RID rid = shader_owner.make_rid(shader); _shader_make_dirty(shader); shader->self = rid; return rid; } void RasterizerStorageGLES3::shader_initialize(RID p_rid) { // noop } //RID RasterizerStorageGLES3::shader_create() { // Shader *shader = memnew(Shader); // shader->mode = RS::SHADER_SPATIAL; // shader->shader = &scene->state.scene_shader; // RID rid = shader_owner.make_rid(shader); // _shader_make_dirty(shader); // shader->self = rid; // return rid; //} void RasterizerStorageGLES3::_shader_make_dirty(Shader *p_shader) { if (p_shader->dirty_list.in_list()) return; _shader_dirty_list.add(&p_shader->dirty_list); } void RasterizerStorageGLES3::shader_set_code(RID p_shader, const String &p_code) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->code = p_code; String mode_string = ShaderLanguage::get_shader_type(p_code); RS::ShaderMode mode; if (mode_string == "canvas_item") mode = RS::SHADER_CANVAS_ITEM; else if (mode_string == "particles") mode = RS::SHADER_PARTICLES; else mode = RS::SHADER_SPATIAL; if (shader->custom_code_id && mode != shader->mode) { shader->shader->free_custom_shader(shader->custom_code_id); shader->custom_code_id = 0; } shader->mode = mode; // TODO handle all shader types if (mode == RS::SHADER_CANVAS_ITEM) { shader->shader = &canvas->state.canvas_shader; } else if (mode == RS::SHADER_SPATIAL) { shader->shader = &scene->state.scene_shader; } else { return; } if (shader->custom_code_id == 0) { shader->custom_code_id = shader->shader->create_custom_shader(); } _shader_make_dirty(shader); } String RasterizerStorageGLES3::shader_get_code(RID p_shader) const { const Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, ""); return shader->code; } void RasterizerStorageGLES3::_update_shader(Shader *p_shader) const { _shader_dirty_list.remove(&p_shader->dirty_list); p_shader->valid = false; p_shader->uniforms.clear(); if (p_shader->code == String()) { return; //just invalid, but no error } ShaderCompilerGLES3::GeneratedCode gen_code; ShaderCompilerGLES3::IdentifierActions *actions = NULL; switch (p_shader->mode) { case RS::SHADER_CANVAS_ITEM: { p_shader->canvas_item.light_mode = Shader::CanvasItem::LIGHT_MODE_NORMAL; p_shader->canvas_item.blend_mode = Shader::CanvasItem::BLEND_MODE_MIX; p_shader->canvas_item.uses_screen_texture = false; p_shader->canvas_item.uses_screen_uv = false; p_shader->canvas_item.uses_time = false; p_shader->canvas_item.uses_modulate = false; p_shader->canvas_item.uses_color = false; p_shader->canvas_item.uses_vertex = false; p_shader->canvas_item.batch_flags = 0; p_shader->canvas_item.uses_world_matrix = false; p_shader->canvas_item.uses_extra_matrix = false; p_shader->canvas_item.uses_projection_matrix = false; p_shader->canvas_item.uses_instance_custom = false; shaders.actions_canvas.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_ADD); shaders.actions_canvas.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MIX); shaders.actions_canvas.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_SUB); shaders.actions_canvas.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_MUL); shaders.actions_canvas.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&p_shader->canvas_item.blend_mode, Shader::CanvasItem::BLEND_MODE_PMALPHA); shaders.actions_canvas.render_mode_values["unshaded"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_UNSHADED); shaders.actions_canvas.render_mode_values["light_only"] = Pair<int *, int>(&p_shader->canvas_item.light_mode, Shader::CanvasItem::LIGHT_MODE_LIGHT_ONLY); shaders.actions_canvas.usage_flag_pointers["SCREEN_UV"] = &p_shader->canvas_item.uses_screen_uv; shaders.actions_canvas.usage_flag_pointers["SCREEN_PIXEL_SIZE"] = &p_shader->canvas_item.uses_screen_uv; shaders.actions_canvas.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->canvas_item.uses_screen_texture; shaders.actions_canvas.usage_flag_pointers["TIME"] = &p_shader->canvas_item.uses_time; shaders.actions_canvas.usage_flag_pointers["MODULATE"] = &p_shader->canvas_item.uses_modulate; shaders.actions_canvas.usage_flag_pointers["COLOR"] = &p_shader->canvas_item.uses_color; shaders.actions_canvas.usage_flag_pointers["VERTEX"] = &p_shader->canvas_item.uses_vertex; shaders.actions_canvas.usage_flag_pointers["WORLD_MATRIX"] = &p_shader->canvas_item.uses_world_matrix; shaders.actions_canvas.usage_flag_pointers["EXTRA_MATRIX"] = &p_shader->canvas_item.uses_extra_matrix; shaders.actions_canvas.usage_flag_pointers["PROJECTION_MATRIX"] = &p_shader->canvas_item.uses_projection_matrix; shaders.actions_canvas.usage_flag_pointers["INSTANCE_CUSTOM"] = &p_shader->canvas_item.uses_instance_custom; actions = &shaders.actions_canvas; actions->uniforms = &p_shader->uniforms; } break; case RS::SHADER_SPATIAL: { p_shader->spatial.blend_mode = Shader::Spatial::BLEND_MODE_MIX; p_shader->spatial.depth_draw_mode = Shader::Spatial::DEPTH_DRAW_OPAQUE; p_shader->spatial.cull_mode = Shader::Spatial::CULL_MODE_BACK; p_shader->spatial.uses_alpha = false; p_shader->spatial.uses_alpha_scissor = false; p_shader->spatial.uses_discard = false; p_shader->spatial.unshaded = false; p_shader->spatial.no_depth_test = false; p_shader->spatial.uses_sss = false; p_shader->spatial.uses_time = false; p_shader->spatial.uses_vertex_lighting = false; p_shader->spatial.uses_screen_texture = false; p_shader->spatial.uses_depth_texture = false; p_shader->spatial.uses_vertex = false; p_shader->spatial.uses_tangent = false; p_shader->spatial.uses_ensure_correct_normals = false; p_shader->spatial.writes_modelview_or_projection = false; p_shader->spatial.uses_world_coordinates = false; shaders.actions_scene.render_mode_values["blend_add"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_ADD); shaders.actions_scene.render_mode_values["blend_mix"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MIX); shaders.actions_scene.render_mode_values["blend_sub"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_SUB); shaders.actions_scene.render_mode_values["blend_mul"] = Pair<int *, int>(&p_shader->spatial.blend_mode, Shader::Spatial::BLEND_MODE_MUL); shaders.actions_scene.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_OPAQUE); shaders.actions_scene.render_mode_values["depth_draw_always"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALWAYS); shaders.actions_scene.render_mode_values["depth_draw_never"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_NEVER); shaders.actions_scene.render_mode_values["depth_draw_alpha_prepass"] = Pair<int *, int>(&p_shader->spatial.depth_draw_mode, Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS); shaders.actions_scene.render_mode_values["cull_front"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_FRONT); shaders.actions_scene.render_mode_values["cull_back"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_BACK); shaders.actions_scene.render_mode_values["cull_disabled"] = Pair<int *, int>(&p_shader->spatial.cull_mode, Shader::Spatial::CULL_MODE_DISABLED); shaders.actions_scene.render_mode_flags["unshaded"] = &p_shader->spatial.unshaded; shaders.actions_scene.render_mode_flags["depth_test_disable"] = &p_shader->spatial.no_depth_test; shaders.actions_scene.render_mode_flags["vertex_lighting"] = &p_shader->spatial.uses_vertex_lighting; shaders.actions_scene.render_mode_flags["world_vertex_coords"] = &p_shader->spatial.uses_world_coordinates; shaders.actions_scene.render_mode_flags["ensure_correct_normals"] = &p_shader->spatial.uses_ensure_correct_normals; shaders.actions_scene.usage_flag_pointers["ALPHA"] = &p_shader->spatial.uses_alpha; shaders.actions_scene.usage_flag_pointers["ALPHA_SCISSOR"] = &p_shader->spatial.uses_alpha_scissor; shaders.actions_scene.usage_flag_pointers["SSS_STRENGTH"] = &p_shader->spatial.uses_sss; shaders.actions_scene.usage_flag_pointers["DISCARD"] = &p_shader->spatial.uses_discard; shaders.actions_scene.usage_flag_pointers["SCREEN_TEXTURE"] = &p_shader->spatial.uses_screen_texture; shaders.actions_scene.usage_flag_pointers["DEPTH_TEXTURE"] = &p_shader->spatial.uses_depth_texture; shaders.actions_scene.usage_flag_pointers["TIME"] = &p_shader->spatial.uses_time; // Use of any of these BUILTINS indicate the need for transformed tangents. // This is needed to know when to transform tangents in software skinning. shaders.actions_scene.usage_flag_pointers["TANGENT"] = &p_shader->spatial.uses_tangent; shaders.actions_scene.usage_flag_pointers["NORMALMAP"] = &p_shader->spatial.uses_tangent; shaders.actions_scene.write_flag_pointers["MODELVIEW_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection; shaders.actions_scene.write_flag_pointers["PROJECTION_MATRIX"] = &p_shader->spatial.writes_modelview_or_projection; shaders.actions_scene.write_flag_pointers["VERTEX"] = &p_shader->spatial.uses_vertex; actions = &shaders.actions_scene; actions->uniforms = &p_shader->uniforms; if (p_shader->spatial.uses_screen_texture && p_shader->spatial.uses_depth_texture) { ERR_PRINT_ONCE("Using both SCREEN_TEXTURE and DEPTH_TEXTURE is not supported in OpenGL"); } if (p_shader->spatial.uses_depth_texture && !config.support_depth_texture) { ERR_PRINT_ONCE("Using DEPTH_TEXTURE is not permitted on this hardware, operation will fail."); } } break; default: { return; } break; } Error err = shaders.compiler.compile(p_shader->mode, p_shader->code, actions, p_shader->path, gen_code); if (err != OK) { return; } p_shader->shader->set_custom_shader_code(p_shader->custom_code_id, gen_code.vertex, gen_code.vertex_global, gen_code.fragment, gen_code.light, gen_code.fragment_global, gen_code.uniforms, gen_code.texture_uniforms, gen_code.custom_defines); p_shader->texture_count = gen_code.texture_uniforms.size(); p_shader->texture_hints = gen_code.texture_hints; p_shader->uses_vertex_time = gen_code.uses_vertex_time; p_shader->uses_fragment_time = gen_code.uses_fragment_time; // some logic for batching if (p_shader->mode == RS::SHADER_CANVAS_ITEM) { if (p_shader->canvas_item.uses_modulate | p_shader->canvas_item.uses_color) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_COLOR_BAKING; } if (p_shader->canvas_item.uses_vertex) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_VERTEX_BAKING; } if (p_shader->canvas_item.uses_world_matrix | p_shader->canvas_item.uses_extra_matrix | p_shader->canvas_item.uses_projection_matrix | p_shader->canvas_item.uses_instance_custom) { p_shader->canvas_item.batch_flags |= RasterizerStorageCommon::PREVENT_ITEM_JOINING; } } p_shader->shader->set_custom_shader(p_shader->custom_code_id); p_shader->shader->bind(); // cache uniform locations for (SelfList<Material> *E = p_shader->materials.first(); E; E = E->next()) { _material_make_dirty(E->self()); } p_shader->valid = true; p_shader->version++; } void RasterizerStorageGLES3::update_dirty_shaders() { while (_shader_dirty_list.first()) { _update_shader(_shader_dirty_list.first()->self()); } } void RasterizerStorageGLES3::shader_get_param_list(RID p_shader, List<PropertyInfo> *p_param_list) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); if (shader->dirty_list.in_list()) { _update_shader(shader); } Map<int, StringName> order; for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = shader->uniforms.front(); E; E = E->next()) { if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi; ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[E->get()]; pi.name = E->get(); switch (u.type) { case ShaderLanguage::TYPE_VOID: { pi.type = Variant::NIL; } break; case ShaderLanguage::TYPE_BOOL: { pi.type = Variant::BOOL; } break; // bool vectors case ShaderLanguage::TYPE_BVEC2: { pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y"; } break; case ShaderLanguage::TYPE_BVEC3: { pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y,z"; } break; case ShaderLanguage::TYPE_BVEC4: { pi.type = Variant::INT; pi.hint = PROPERTY_HINT_FLAGS; pi.hint_string = "x,y,z,w"; } break; // int stuff case ShaderLanguage::TYPE_UINT: case ShaderLanguage::TYPE_INT: { pi.type = Variant::INT; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) { pi.hint = PROPERTY_HINT_RANGE; pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]); } } break; case ShaderLanguage::TYPE_IVEC2: case ShaderLanguage::TYPE_UVEC2: case ShaderLanguage::TYPE_IVEC3: case ShaderLanguage::TYPE_UVEC3: case ShaderLanguage::TYPE_IVEC4: case ShaderLanguage::TYPE_UVEC4: { // not sure what this should be in godot 4 // pi.type = Variant::POOL_INT_ARRAY; pi.type = Variant::PACKED_INT32_ARRAY; } break; case ShaderLanguage::TYPE_FLOAT: { pi.type = Variant::FLOAT; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_RANGE) { pi.hint = PROPERTY_HINT_RANGE; pi.hint_string = rtos(u.hint_range[0]) + "," + rtos(u.hint_range[1]) + "," + rtos(u.hint_range[2]); } } break; case ShaderLanguage::TYPE_VEC2: { pi.type = Variant::VECTOR2; } break; case ShaderLanguage::TYPE_VEC3: { pi.type = Variant::VECTOR3; } break; case ShaderLanguage::TYPE_VEC4: { if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) { pi.type = Variant::COLOR; } else { pi.type = Variant::PLANE; } } break; case ShaderLanguage::TYPE_MAT2: { pi.type = Variant::TRANSFORM2D; } break; case ShaderLanguage::TYPE_MAT3: { pi.type = Variant::BASIS; } break; case ShaderLanguage::TYPE_MAT4: { pi.type = Variant::TRANSFORM3D; } break; case ShaderLanguage::TYPE_SAMPLER2D: // case ShaderLanguage::TYPE_SAMPLEREXT: case ShaderLanguage::TYPE_ISAMPLER2D: case ShaderLanguage::TYPE_USAMPLER2D: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "Texture"; } break; case ShaderLanguage::TYPE_SAMPLERCUBE: { pi.type = Variant::OBJECT; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "CubeMap"; } break; case ShaderLanguage::TYPE_SAMPLER2DARRAY: case ShaderLanguage::TYPE_ISAMPLER2DARRAY: case ShaderLanguage::TYPE_USAMPLER2DARRAY: case ShaderLanguage::TYPE_SAMPLER3D: case ShaderLanguage::TYPE_ISAMPLER3D: case ShaderLanguage::TYPE_USAMPLER3D: { // Not implemented in OpenGL } break; // new for godot 4 case ShaderLanguage::TYPE_SAMPLERCUBEARRAY: case ShaderLanguage::TYPE_STRUCT: case ShaderLanguage::TYPE_MAX: { } break; } p_param_list->push_back(pi); } } void RasterizerStorageGLES3::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture)); if (p_texture.is_valid()) { shader->default_textures[p_name] = p_texture; } else { shader->default_textures.erase(p_name); } _shader_make_dirty(shader); } RID RasterizerStorageGLES3::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { const Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND_V(!shader, RID()); const Map<StringName, RID>::Element *E = shader->default_textures.find(p_name); if (!E) { return RID(); } return E->get(); } void RasterizerStorageGLES3::shader_add_custom_define(RID p_shader, const String &p_define) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->shader->add_custom_define(p_define); _shader_make_dirty(shader); } void RasterizerStorageGLES3::shader_get_custom_defines(RID p_shader, Vector<String> *p_defines) const { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->shader->get_custom_defines(p_defines); } void RasterizerStorageGLES3::shader_remove_custom_define(RID p_shader, const String &p_define) { Shader *shader = shader_owner.get_or_null(p_shader); ERR_FAIL_COND(!shader); shader->shader->remove_custom_define(p_define); _shader_make_dirty(shader); } /* COMMON MATERIAL API */ void RasterizerStorageGLES3::_material_make_dirty(Material *p_material) const { if (p_material->dirty_list.in_list()) return; _material_dirty_list.add(&p_material->dirty_list); } RID RasterizerStorageGLES3::material_allocate() { Material *material = memnew(Material); return material_owner.make_rid(material); } void RasterizerStorageGLES3::material_initialize(RID p_rid) { } //RID RasterizerStorageGLES3::material_create() { // Material *material = memnew(Material); // return material_owner.make_rid(material); //} void RasterizerStorageGLES3::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); Shader *shader = shader_owner.get_or_null(p_shader); if (material->shader) { // if a shader is present, remove the old shader material->shader->materials.remove(&material->list); } material->shader = shader; if (shader) { shader->materials.add(&material->list); } _material_make_dirty(material); } RID RasterizerStorageGLES3::material_get_shader(RID p_material) const { const Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, RID()); if (material->shader) { return material->shader->self; } return RID(); } void RasterizerStorageGLES3::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); if (p_value.get_type() == Variant::NIL) { material->params.erase(p_param); } else { material->params[p_param] = p_value; } _material_make_dirty(material); } Variant RasterizerStorageGLES3::material_get_param(RID p_material, const StringName &p_param) const { const Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, RID()); if (material->params.has(p_param)) { return material->params[p_param]; } return material_get_param_default(p_material, p_param); } Variant RasterizerStorageGLES3::material_get_param_default(RID p_material, const StringName &p_param) const { const Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->shader) { if (material->shader->uniforms.has(p_param)) { ShaderLanguage::ShaderNode::Uniform uniform = material->shader->uniforms[p_param]; Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } } return Variant(); } void RasterizerStorageGLES3::material_set_line_width(RID p_material, float p_width) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); material->line_width = p_width; } void RasterizerStorageGLES3::material_set_next_pass(RID p_material, RID p_next_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); material->next_pass = p_next_material; } bool RasterizerStorageGLES3::material_is_animated(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, false); if (material->dirty_list.in_list()) { _update_material(material); } bool animated = material->is_animated_cache; if (!animated && material->next_pass.is_valid()) { animated = material_is_animated(material->next_pass); } return animated; } bool RasterizerStorageGLES3::material_casts_shadows(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, false); if (material->dirty_list.in_list()) { _update_material(material); } bool casts_shadows = material->can_cast_shadow_cache; if (!casts_shadows && material->next_pass.is_valid()) { casts_shadows = material_casts_shadows(material->next_pass); } return casts_shadows; } bool RasterizerStorageGLES3::material_uses_tangents(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, false); if (!material->shader) { return false; } if (material->shader->dirty_list.in_list()) { _update_shader(material->shader); } return material->shader->spatial.uses_tangent; } bool RasterizerStorageGLES3::material_uses_ensure_correct_normals(RID p_material) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND_V(!material, false); if (!material->shader) { return false; } if (material->shader->dirty_list.in_list()) { _update_shader(material->shader); } return material->shader->spatial.uses_ensure_correct_normals; } void RasterizerStorageGLES3::material_add_instance_owner(RID p_material, DependencyTracker *p_instance) { /* Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); Map<InstanceBaseDependency *, int>::Element *E = material->instance_owners.find(p_instance); if (E) { E->get()++; } else { material->instance_owners[p_instance] = 1; } */ } void RasterizerStorageGLES3::material_remove_instance_owner(RID p_material, DependencyTracker *p_instance) { /* Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); Map<InstanceBaseDependency *, int>::Element *E = material->instance_owners.find(p_instance); ERR_FAIL_COND(!E); E->get()--; if (E->get() == 0) { material->instance_owners.erase(E); } */ } void RasterizerStorageGLES3::material_set_render_priority(RID p_material, int priority) { ERR_FAIL_COND(priority < RS::MATERIAL_RENDER_PRIORITY_MIN); ERR_FAIL_COND(priority > RS::MATERIAL_RENDER_PRIORITY_MAX); Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); material->render_priority = priority; } void RasterizerStorageGLES3::_update_material(Material *p_material) { if (p_material->dirty_list.in_list()) { _material_dirty_list.remove(&p_material->dirty_list); } if (p_material->shader && p_material->shader->dirty_list.in_list()) { _update_shader(p_material->shader); } if (p_material->shader && !p_material->shader->valid) { return; } { bool can_cast_shadow = false; bool is_animated = false; if (p_material->shader && p_material->shader->mode == RS::SHADER_SPATIAL) { if (p_material->shader->spatial.blend_mode == Shader::Spatial::BLEND_MODE_MIX && (!p_material->shader->spatial.uses_alpha || p_material->shader->spatial.depth_draw_mode == Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) { can_cast_shadow = true; } if (p_material->shader->spatial.uses_discard && p_material->shader->uses_fragment_time) { is_animated = true; } if (p_material->shader->spatial.uses_vertex && p_material->shader->uses_vertex_time) { is_animated = true; } if (can_cast_shadow != p_material->can_cast_shadow_cache || is_animated != p_material->is_animated_cache) { p_material->can_cast_shadow_cache = can_cast_shadow; p_material->is_animated_cache = is_animated; /* for (Map<Geometry *, int>::Element *E = p_material->geometry_owners.front(); E; E = E->next()) { E->key()->material_changed_notify(); } for (Map<InstanceBaseDependency *, int>::Element *E = p_material->instance_owners.front(); E; E = E->next()) { E->key()->base_changed(false, true); } */ } } } // uniforms and other things will be set in the use_material method in ShaderGLES3 if (p_material->shader && p_material->shader->texture_count > 0) { p_material->textures.resize(p_material->shader->texture_count); for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = p_material->shader->uniforms.front(); E; E = E->next()) { if (E->get().texture_order < 0) continue; // not a texture, does not go here RID texture; Map<StringName, Variant>::Element *V = p_material->params.find(E->key()); if (V) { texture = V->get(); } if (!texture.is_valid()) { Map<StringName, RID>::Element *W = p_material->shader->default_textures.find(E->key()); if (W) { texture = W->get(); } } p_material->textures.write[E->get().texture_order] = Pair<StringName, RID>(E->key(), texture); } } else { p_material->textures.clear(); } } /* void RasterizerStorageGLES3::_material_add_geometry(RID p_material, Geometry *p_geometry) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry); if (I) { I->get()++; } else { material->geometry_owners[p_geometry] = 1; } } void RasterizerStorageGLES3::_material_remove_geometry(RID p_material, Geometry *p_geometry) { Material *material = material_owner.get_or_null(p_material); ERR_FAIL_COND(!material); Map<Geometry *, int>::Element *I = material->geometry_owners.find(p_geometry); ERR_FAIL_COND(!I); I->get()--; if (I->get() == 0) { material->geometry_owners.erase(I); } } */ void RasterizerStorageGLES3::update_dirty_materials() { while (_material_dirty_list.first()) { Material *material = _material_dirty_list.first()->self(); _update_material(material); } } /* MESH API */ RID RasterizerStorageGLES3::mesh_allocate() { return RID(); } void RasterizerStorageGLES3::mesh_initialize(RID p_rid) { } void RasterizerStorageGLES3::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) { } bool RasterizerStorageGLES3::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) { return false; } RID RasterizerStorageGLES3::mesh_instance_create(RID p_base) { return RID(); } void RasterizerStorageGLES3::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) { } void RasterizerStorageGLES3::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) { } void RasterizerStorageGLES3::mesh_instance_check_for_update(RID p_mesh_instance) { } void RasterizerStorageGLES3::update_mesh_instances() { } void RasterizerStorageGLES3::reflection_probe_set_lod_threshold(RID p_probe, float p_ratio) { } float RasterizerStorageGLES3::reflection_probe_get_lod_threshold(RID p_probe) const { return 0.0; } void RasterizerStorageGLES3::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) { } int RasterizerStorageGLES3::mesh_get_blend_shape_count(RID p_mesh) const { return 0; } void RasterizerStorageGLES3::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) { } RS::BlendShapeMode RasterizerStorageGLES3::mesh_get_blend_shape_mode(RID p_mesh) const { return RS::BLEND_SHAPE_MODE_NORMALIZED; } void RasterizerStorageGLES3::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) { } void RasterizerStorageGLES3::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) { } void RasterizerStorageGLES3::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) { } void RasterizerStorageGLES3::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) { } RID RasterizerStorageGLES3::mesh_surface_get_material(RID p_mesh, int p_surface) const { return RID(); } RS::SurfaceData RasterizerStorageGLES3::mesh_get_surface(RID p_mesh, int p_surface) const { return RS::SurfaceData(); } int RasterizerStorageGLES3::mesh_get_surface_count(RID p_mesh) const { return 0; } void RasterizerStorageGLES3::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { } AABB RasterizerStorageGLES3::mesh_get_custom_aabb(RID p_mesh) const { return AABB(); } AABB RasterizerStorageGLES3::mesh_get_aabb(RID p_mesh, RID p_skeleton) { return AABB(); } void RasterizerStorageGLES3::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) { } void RasterizerStorageGLES3::mesh_clear(RID p_mesh) { } /* MULTIMESH API */ RID RasterizerStorageGLES3::multimesh_allocate() { return RID(); } void RasterizerStorageGLES3::multimesh_initialize(RID p_rid) { } void RasterizerStorageGLES3::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) { } int RasterizerStorageGLES3::multimesh_get_instance_count(RID p_multimesh) const { return 0; } void RasterizerStorageGLES3::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { } void RasterizerStorageGLES3::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) { } void RasterizerStorageGLES3::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { } void RasterizerStorageGLES3::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { } void RasterizerStorageGLES3::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { } RID RasterizerStorageGLES3::multimesh_get_mesh(RID p_multimesh) const { return RID(); } AABB RasterizerStorageGLES3::multimesh_get_aabb(RID p_multimesh) const { return AABB(); } Transform3D RasterizerStorageGLES3::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return Transform3D(); } Transform2D RasterizerStorageGLES3::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { return Transform2D(); } Color RasterizerStorageGLES3::multimesh_instance_get_color(RID p_multimesh, int p_index) const { return Color(); } Color RasterizerStorageGLES3::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { return Color(); } void RasterizerStorageGLES3::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) { } Vector<float> RasterizerStorageGLES3::multimesh_get_buffer(RID p_multimesh) const { return Vector<float>(); } void RasterizerStorageGLES3::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { } int RasterizerStorageGLES3::multimesh_get_visible_instances(RID p_multimesh) const { return 0; } /* SKELETON API */ RID RasterizerStorageGLES3::skeleton_allocate() { return RID(); } void RasterizerStorageGLES3::skeleton_initialize(RID p_rid) { } void RasterizerStorageGLES3::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) { } void RasterizerStorageGLES3::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) { } int RasterizerStorageGLES3::skeleton_get_bone_count(RID p_skeleton) const { return 0; } void RasterizerStorageGLES3::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) { } Transform3D RasterizerStorageGLES3::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { return Transform3D(); } void RasterizerStorageGLES3::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) { } Transform2D RasterizerStorageGLES3::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { return Transform2D(); } /* Light API */ RID RasterizerStorageGLES3::directional_light_allocate() { return RID(); } void RasterizerStorageGLES3::directional_light_initialize(RID p_rid) { } RID RasterizerStorageGLES3::omni_light_allocate() { return RID(); } void RasterizerStorageGLES3::omni_light_initialize(RID p_rid) { } RID RasterizerStorageGLES3::spot_light_allocate() { return RID(); } void RasterizerStorageGLES3::spot_light_initialize(RID p_rid) { } RID RasterizerStorageGLES3::reflection_probe_allocate() { return RID(); } void RasterizerStorageGLES3::reflection_probe_initialize(RID p_rid) { } void RasterizerStorageGLES3::light_set_color(RID p_light, const Color &p_color) { } void RasterizerStorageGLES3::light_set_param(RID p_light, RS::LightParam p_param, float p_value) { } void RasterizerStorageGLES3::light_set_shadow(RID p_light, bool p_enabled) { } void RasterizerStorageGLES3::light_set_shadow_color(RID p_light, const Color &p_color) { } void RasterizerStorageGLES3::light_set_projector(RID p_light, RID p_texture) { } void RasterizerStorageGLES3::light_set_negative(RID p_light, bool p_enable) { } void RasterizerStorageGLES3::light_set_cull_mask(RID p_light, uint32_t p_mask) { } void RasterizerStorageGLES3::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { } void RasterizerStorageGLES3::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) { } void RasterizerStorageGLES3::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) { } void RasterizerStorageGLES3::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) { } void RasterizerStorageGLES3::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) { } void RasterizerStorageGLES3::light_directional_set_blend_splits(RID p_light, bool p_enable) { } bool RasterizerStorageGLES3::light_directional_get_blend_splits(RID p_light) const { return false; } void RasterizerStorageGLES3::light_directional_set_sky_only(RID p_light, bool p_sky_only) { } bool RasterizerStorageGLES3::light_directional_is_sky_only(RID p_light) const { return false; } RS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_shadow_mode(RID p_light) { return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; } RS::LightOmniShadowMode RasterizerStorageGLES3::light_omni_get_shadow_mode(RID p_light) { return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; } bool RasterizerStorageGLES3::light_has_shadow(RID p_light) const { return false; } bool RasterizerStorageGLES3::light_has_projector(RID p_light) const { return false; } RS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const { return RS::LIGHT_OMNI; } AABB RasterizerStorageGLES3::light_get_aabb(RID p_light) const { return AABB(); } float RasterizerStorageGLES3::light_get_param(RID p_light, RS::LightParam p_param) { return 0.0; } Color RasterizerStorageGLES3::light_get_color(RID p_light) { return Color(); } RS::LightBakeMode RasterizerStorageGLES3::light_get_bake_mode(RID p_light) { return RS::LIGHT_BAKE_DISABLED; } uint32_t RasterizerStorageGLES3::light_get_max_sdfgi_cascade(RID p_light) { return 0; } uint64_t RasterizerStorageGLES3::light_get_version(RID p_light) const { return 0; } /* PROBE API */ void RasterizerStorageGLES3::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) { } void RasterizerStorageGLES3::reflection_probe_set_intensity(RID p_probe, float p_intensity) { } void RasterizerStorageGLES3::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) { } void RasterizerStorageGLES3::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) { } void RasterizerStorageGLES3::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) { } void RasterizerStorageGLES3::reflection_probe_set_max_distance(RID p_probe, float p_distance) { } void RasterizerStorageGLES3::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { } void RasterizerStorageGLES3::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { } void RasterizerStorageGLES3::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { } void RasterizerStorageGLES3::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { } void RasterizerStorageGLES3::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { } void RasterizerStorageGLES3::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { } void RasterizerStorageGLES3::reflection_probe_set_resolution(RID p_probe, int p_resolution) { } AABB RasterizerStorageGLES3::reflection_probe_get_aabb(RID p_probe) const { return AABB(); } RS::ReflectionProbeUpdateMode RasterizerStorageGLES3::reflection_probe_get_update_mode(RID p_probe) const { return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE; } uint32_t RasterizerStorageGLES3::reflection_probe_get_cull_mask(RID p_probe) const { return 0; } Vector3 RasterizerStorageGLES3::reflection_probe_get_extents(RID p_probe) const { return Vector3(); } Vector3 RasterizerStorageGLES3::reflection_probe_get_origin_offset(RID p_probe) const { return Vector3(); } float RasterizerStorageGLES3::reflection_probe_get_origin_max_distance(RID p_probe) const { return 0.0; } bool RasterizerStorageGLES3::reflection_probe_renders_shadows(RID p_probe) const { return false; } void RasterizerStorageGLES3::base_update_dependency(RID p_base, DependencyTracker *p_instance) { } void RasterizerStorageGLES3::skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) { } /* DECAL API */ RID RasterizerStorageGLES3::decal_allocate() { return RID(); } void RasterizerStorageGLES3::decal_initialize(RID p_rid) { } void RasterizerStorageGLES3::decal_set_extents(RID p_decal, const Vector3 &p_extents) { } void RasterizerStorageGLES3::decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture) { } void RasterizerStorageGLES3::decal_set_emission_energy(RID p_decal, float p_energy) { } void RasterizerStorageGLES3::decal_set_albedo_mix(RID p_decal, float p_mix) { } void RasterizerStorageGLES3::decal_set_modulate(RID p_decal, const Color &p_modulate) { } void RasterizerStorageGLES3::decal_set_cull_mask(RID p_decal, uint32_t p_layers) { } void RasterizerStorageGLES3::decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length) { } void RasterizerStorageGLES3::decal_set_fade(RID p_decal, float p_above, float p_below) { } void RasterizerStorageGLES3::decal_set_normal_fade(RID p_decal, float p_fade) { } AABB RasterizerStorageGLES3::decal_get_aabb(RID p_decal) const { return AABB(); } /* VOXEL GI API */ RID RasterizerStorageGLES3::voxel_gi_allocate() { return RID(); } void RasterizerStorageGLES3::voxel_gi_initialize(RID p_rid) { } void RasterizerStorageGLES3::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) { } AABB RasterizerStorageGLES3::voxel_gi_get_bounds(RID p_voxel_gi) const { return AABB(); } Vector3i RasterizerStorageGLES3::voxel_gi_get_octree_size(RID p_voxel_gi) const { return Vector3i(); } Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_octree_cells(RID p_voxel_gi) const { return Vector<uint8_t>(); } Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_data_cells(RID p_voxel_gi) const { return Vector<uint8_t>(); } Vector<uint8_t> RasterizerStorageGLES3::voxel_gi_get_distance_field(RID p_voxel_gi) const { return Vector<uint8_t>(); } Vector<int> RasterizerStorageGLES3::voxel_gi_get_level_counts(RID p_voxel_gi) const { return Vector<int>(); } Transform3D RasterizerStorageGLES3::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const { return Transform3D(); } void RasterizerStorageGLES3::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_dynamic_range(RID p_voxel_gi) const { return 0; } void RasterizerStorageGLES3::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_propagation(RID p_voxel_gi) const { return 0; } void RasterizerStorageGLES3::voxel_gi_set_energy(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_energy(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_bias(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_bias(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_normal_bias(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) { } bool RasterizerStorageGLES3::voxel_gi_is_interior(RID p_voxel_gi) const { return false; } void RasterizerStorageGLES3::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) { } bool RasterizerStorageGLES3::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const { return false; } void RasterizerStorageGLES3::voxel_gi_set_anisotropy_strength(RID p_voxel_gi, float p_strength) { } float RasterizerStorageGLES3::voxel_gi_get_anisotropy_strength(RID p_voxel_gi) const { return 0; } uint32_t RasterizerStorageGLES3::voxel_gi_get_version(RID p_voxel_gi) { return 0; } /* LIGHTMAP CAPTURE */ RID RasterizerStorageGLES3::lightmap_allocate() { return RID(); } void RasterizerStorageGLES3::lightmap_initialize(RID p_rid) { } void RasterizerStorageGLES3::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) { } void RasterizerStorageGLES3::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) { } void RasterizerStorageGLES3::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) { } void RasterizerStorageGLES3::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { } PackedVector3Array RasterizerStorageGLES3::lightmap_get_probe_capture_points(RID p_lightmap) const { return PackedVector3Array(); } PackedColorArray RasterizerStorageGLES3::lightmap_get_probe_capture_sh(RID p_lightmap) const { return PackedColorArray(); } PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { return PackedInt32Array(); } PackedInt32Array RasterizerStorageGLES3::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { return PackedInt32Array(); } AABB RasterizerStorageGLES3::lightmap_get_aabb(RID p_lightmap) const { return AABB(); } void RasterizerStorageGLES3::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) { } bool RasterizerStorageGLES3::lightmap_is_interior(RID p_lightmap) const { return false; } void RasterizerStorageGLES3::lightmap_set_probe_capture_update_speed(float p_speed) { } float RasterizerStorageGLES3::lightmap_get_probe_capture_update_speed() const { return 0; } /* OCCLUDER */ void RasterizerStorageGLES3::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) { } /* PARTICLES */ RID RasterizerStorageGLES3::particles_allocate() { return RID(); } void RasterizerStorageGLES3::particles_initialize(RID p_rid) { } void RasterizerStorageGLES3::particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) { } void RasterizerStorageGLES3::particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) { } void RasterizerStorageGLES3::particles_set_emitting(RID p_particles, bool p_emitting) { } void RasterizerStorageGLES3::particles_set_amount(RID p_particles, int p_amount) { } void RasterizerStorageGLES3::particles_set_lifetime(RID p_particles, double p_lifetime) { } void RasterizerStorageGLES3::particles_set_one_shot(RID p_particles, bool p_one_shot) { } void RasterizerStorageGLES3::particles_set_pre_process_time(RID p_particles, double p_time) { } void RasterizerStorageGLES3::particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) { } void RasterizerStorageGLES3::particles_set_randomness_ratio(RID p_particles, real_t p_ratio) { } void RasterizerStorageGLES3::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) { } void RasterizerStorageGLES3::particles_set_speed_scale(RID p_particles, double p_scale) { } void RasterizerStorageGLES3::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { } void RasterizerStorageGLES3::particles_set_process_material(RID p_particles, RID p_material) { } void RasterizerStorageGLES3::particles_set_fixed_fps(RID p_particles, int p_fps) { } void RasterizerStorageGLES3::particles_set_interpolate(RID p_particles, bool p_enable) { } void RasterizerStorageGLES3::particles_set_fractional_delta(RID p_particles, bool p_enable) { } void RasterizerStorageGLES3::particles_set_subemitter(RID p_particles, RID p_subemitter_particles) { } void RasterizerStorageGLES3::particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) { } void RasterizerStorageGLES3::particles_set_collision_base_size(RID p_particles, real_t p_size) { } void RasterizerStorageGLES3::particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) { } void RasterizerStorageGLES3::particles_set_trails(RID p_particles, bool p_enable, double p_length) { } void RasterizerStorageGLES3::particles_set_trail_bind_poses(RID p_particles, const Vector<Transform3D> &p_bind_poses) { } void RasterizerStorageGLES3::particles_restart(RID p_particles) { } void RasterizerStorageGLES3::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) { } void RasterizerStorageGLES3::particles_set_draw_passes(RID p_particles, int p_count) { } void RasterizerStorageGLES3::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) { } void RasterizerStorageGLES3::particles_request_process(RID p_particles) { } AABB RasterizerStorageGLES3::particles_get_current_aabb(RID p_particles) { return AABB(); } AABB RasterizerStorageGLES3::particles_get_aabb(RID p_particles) const { return AABB(); } void RasterizerStorageGLES3::particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) { } bool RasterizerStorageGLES3::particles_get_emitting(RID p_particles) { return false; } int RasterizerStorageGLES3::particles_get_draw_passes(RID p_particles) const { return 0; } RID RasterizerStorageGLES3::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { return RID(); } void RasterizerStorageGLES3::particles_add_collision(RID p_particles, RID p_instance) { } void RasterizerStorageGLES3::particles_remove_collision(RID p_particles, RID p_instance) { } void RasterizerStorageGLES3::particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, RID p_texture) { } void RasterizerStorageGLES3::update_particles() { } /* PARTICLES COLLISION */ RID RasterizerStorageGLES3::particles_collision_allocate() { return RID(); } void RasterizerStorageGLES3::particles_collision_initialize(RID p_rid) { } void RasterizerStorageGLES3::particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) { } void RasterizerStorageGLES3::particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) { } void RasterizerStorageGLES3::particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) { } void RasterizerStorageGLES3::particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) { } void RasterizerStorageGLES3::particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) { } void RasterizerStorageGLES3::particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) { } void RasterizerStorageGLES3::particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) { } void RasterizerStorageGLES3::particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) { } void RasterizerStorageGLES3::particles_collision_height_field_update(RID p_particles_collision) { } void RasterizerStorageGLES3::particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) { } AABB RasterizerStorageGLES3::particles_collision_get_aabb(RID p_particles_collision) const { return AABB(); } bool RasterizerStorageGLES3::particles_collision_is_heightfield(RID p_particles_collision) const { return false; } RID RasterizerStorageGLES3::particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const { return RID(); } RID RasterizerStorageGLES3::particles_collision_instance_create(RID p_collision) { return RID(); } void RasterizerStorageGLES3::particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) { } void RasterizerStorageGLES3::particles_collision_instance_set_active(RID p_collision_instance, bool p_active) { } RID RasterizerStorageGLES3::fog_volume_allocate() { return RID(); } void RasterizerStorageGLES3::fog_volume_initialize(RID p_rid) { } void RasterizerStorageGLES3::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) { } void RasterizerStorageGLES3::fog_volume_set_extents(RID p_fog_volume, const Vector3 &p_extents) { } void RasterizerStorageGLES3::fog_volume_set_material(RID p_fog_volume, RID p_material) { } AABB RasterizerStorageGLES3::fog_volume_get_aabb(RID p_fog_volume) const { return AABB(); } RS::FogVolumeShape RasterizerStorageGLES3::fog_volume_get_shape(RID p_fog_volume) const { return RS::FOG_VOLUME_SHAPE_BOX; } /* VISIBILITY NOTIFIER */ RID RasterizerStorageGLES3::visibility_notifier_allocate() { return RID(); } void RasterizerStorageGLES3::visibility_notifier_initialize(RID p_notifier) { } void RasterizerStorageGLES3::visibility_notifier_set_aabb(RID p_notifier, const AABB &p_aabb) { } void RasterizerStorageGLES3::visibility_notifier_set_callbacks(RID p_notifier, const Callable &p_enter_callbable, const Callable &p_exit_callable) { } AABB RasterizerStorageGLES3::visibility_notifier_get_aabb(RID p_notifier) const { return AABB(); } void RasterizerStorageGLES3::visibility_notifier_call(RID p_notifier, bool p_enter, bool p_deferred) { } /* GLOBAL VARIABLES */ void RasterizerStorageGLES3::global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) { } void RasterizerStorageGLES3::global_variable_remove(const StringName &p_name) { } Vector<StringName> RasterizerStorageGLES3::global_variable_get_list() const { return Vector<StringName>(); } void RasterizerStorageGLES3::global_variable_set(const StringName &p_name, const Variant &p_value) { } void RasterizerStorageGLES3::global_variable_set_override(const StringName &p_name, const Variant &p_value) { } Variant RasterizerStorageGLES3::global_variable_get(const StringName &p_name) const { return Variant(); } RS::GlobalVariableType RasterizerStorageGLES3::global_variable_get_type(const StringName &p_name) const { return RS::GLOBAL_VAR_TYPE_MAX; } void RasterizerStorageGLES3::global_variables_load_settings(bool p_load_textures) { } void RasterizerStorageGLES3::global_variables_clear() { } int32_t RasterizerStorageGLES3::global_variables_instance_allocate(RID p_instance) { return 0; } void RasterizerStorageGLES3::global_variables_instance_free(RID p_instance) { } void RasterizerStorageGLES3::global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value) { } bool RasterizerStorageGLES3::particles_is_inactive(RID p_particles) const { return false; } /* RENDER TARGET */ void RasterizerStorageGLES3::_set_current_render_target(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); // FTODO // if (!p_render_target.is_valid() && storage->frame.current_rt && storage->frame.clear_request) { // // pending clear request. Do that first. // glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); // glClearColor(storage->frame.clear_request_color.r, // storage->frame.clear_request_color.g, // storage->frame.clear_request_color.b, // storage->frame.clear_request_color.a); // glClear(GL_COLOR_BUFFER_BIT); // } if (rt) { if (rt->allocate_is_dirty) { rt->allocate_is_dirty = false; _render_target_allocate(rt); } // if (p_render_target.is_valid()) { // RasterizerStorageGLES3::RenderTarget *rt = storage.render_target_owner.get_or_null(p_render_target); frame.current_rt = rt; ERR_FAIL_COND(!rt); frame.clear_request = false; glViewport(0, 0, rt->width, rt->height); // print_line("_set_current_render_target w " + itos(rt->width) + " h " + itos(rt->height)); _dims.rt_width = rt->width; _dims.rt_height = rt->height; _dims.win_width = rt->width; _dims.win_height = rt->height; } else { frame.current_rt = NULL; frame.clear_request = false; // FTODO // glViewport(0, 0, OS::get_singleton()->get_window_size().width, OS::get_singleton()->get_window_size().height); bind_framebuffer_system(); } } void RasterizerStorageGLES3::_render_target_allocate(RenderTarget *rt) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif // do not allocate a render target with no size if (rt->width <= 0 || rt->height <= 0) return; // do not allocate a render target that is attached to the screen if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) { rt->fbo = RasterizerStorageGLES3::system_fbo; return; } GLuint color_internal_format; GLuint color_format; GLuint color_type = GL_UNSIGNED_BYTE; Image::Format image_format; if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { #ifdef GLES_OVER_GL color_internal_format = GL_RGBA8; #else color_internal_format = GL_RGBA; #endif color_format = GL_RGBA; image_format = Image::FORMAT_RGBA8; } else { #ifdef GLES_OVER_GL color_internal_format = GL_RGB8; #else color_internal_format = GL_RGB; #endif color_format = GL_RGB; image_format = Image::FORMAT_RGB8; } rt->used_dof_blur_near = false; rt->mip_maps_allocated = false; { /* Front FBO */ Texture *texture = texture_owner.get_or_null(rt->texture); ERR_FAIL_COND(!texture); // framebuffer glGenFramebuffers(1, &rt->fbo); bind_framebuffer(rt->fbo); // color glGenTextures(1, &rt->color); glBindTexture(GL_TEXTURE_2D, rt->color); glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, rt->width, rt->height, 0, color_format, color_type, NULL); if (texture->flags & TEXTURE_FLAG_FILTER) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0); // depth if (config.support_depth_texture) { glGenTextures(1, &rt->depth); glBindTexture(GL_TEXTURE_2D, rt->depth); glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, rt->width, rt->height, 0, GL_DEPTH_COMPONENT, config.depth_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); } else { glGenRenderbuffers(1, &rt->depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->depth); glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, rt->width, rt->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth); } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { glDeleteFramebuffers(1, &rt->fbo); if (config.support_depth_texture) { glDeleteTextures(1, &rt->depth); } else { glDeleteRenderbuffers(1, &rt->depth); } glDeleteTextures(1, &rt->color); rt->fbo = 0; rt->width = 0; rt->height = 0; rt->color = 0; rt->depth = 0; texture->tex_id = 0; texture->active = false; WARN_PRINT("Could not create framebuffer!!"); return; } texture->format = image_format; texture->gl_format_cache = color_format; texture->gl_type_cache = GL_UNSIGNED_BYTE; texture->gl_internal_format_cache = color_internal_format; texture->tex_id = rt->color; texture->width = rt->width; texture->alloc_width = rt->width; texture->height = rt->height; texture->alloc_height = rt->height; texture->active = true; texture_set_flags(rt->texture, texture->flags); } /* BACK FBO */ /* For MSAA */ #ifndef JAVASCRIPT_ENABLED if (rt->msaa >= RS::VIEWPORT_MSAA_2X && rt->msaa <= RS::VIEWPORT_MSAA_8X) { rt->multisample_active = true; static const int msaa_value[] = { 0, 2, 4, 8, 16 }; int msaa = msaa_value[rt->msaa]; int max_samples = 0; glGetIntegerv(GL_MAX_SAMPLES, &max_samples); if (msaa > max_samples) { WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples)); msaa = max_samples; } //regular fbo glGenFramebuffers(1, &rt->multisample_fbo); bind_framebuffer(rt->multisample_fbo); glGenRenderbuffers(1, &rt->multisample_depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_depth); glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config.depth_buffer_internalformat, rt->width, rt->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->multisample_depth); glGenRenderbuffers(1, &rt->multisample_color); glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_color); glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->width, rt->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->multisample_color); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { // Delete allocated resources and default to no MSAA WARN_PRINT_ONCE("Cannot allocate back framebuffer for MSAA"); printf("err status: %x\n", status); rt->multisample_active = false; glDeleteFramebuffers(1, &rt->multisample_fbo); rt->multisample_fbo = 0; glDeleteRenderbuffers(1, &rt->multisample_depth); rt->multisample_depth = 0; glDeleteRenderbuffers(1, &rt->multisample_color); rt->multisample_color = 0; } glBindRenderbuffer(GL_RENDERBUFFER, 0); bind_framebuffer(0); } else #endif // JAVASCRIPT_ENABLED { rt->multisample_active = false; } glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // copy texscreen buffers // if (!(rt->flags[RendererStorage::RENDER_TARGET_NO_SAMPLING])) { if (true) { glGenTextures(1, &rt->copy_screen_effect.color); glBindTexture(GL_TEXTURE_2D, rt->copy_screen_effect.color); if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, rt->width, rt->height, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenFramebuffers(1, &rt->copy_screen_effect.fbo); bind_framebuffer(rt->copy_screen_effect.fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->copy_screen_effect.color, 0); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { _render_target_clear(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } // Allocate mipmap chains for post_process effects // if (!rt->flags[RendererStorage::RENDER_TARGET_NO_3D] && rt->width >= 2 && rt->height >= 2) { if (rt->width >= 2 && rt->height >= 2) { for (int i = 0; i < 2; i++) { ERR_FAIL_COND(rt->mip_maps[i].sizes.size()); int w = rt->width; int h = rt->height; if (i > 0) { w >>= 1; h >>= 1; } int level = 0; int fb_w = w; int fb_h = h; while (true) { RenderTarget::MipMaps::Size mm; mm.width = w; mm.height = h; rt->mip_maps[i].sizes.push_back(mm); w >>= 1; h >>= 1; if (w < 2 || h < 2) break; level++; } GLsizei width = fb_w; GLsizei height = fb_h; if (config.render_to_mipmap_supported) { glGenTextures(1, &rt->mip_maps[i].color); glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].color); for (int l = 0; l < level + 1; l++) { glTexImage2D(GL_TEXTURE_2D, l, color_internal_format, width, height, 0, color_format, color_type, NULL); width = MAX(1, (width / 2)); height = MAX(1, (height / 2)); } #ifdef GLES_OVER_GL glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level); #endif } else { // Can't render to specific levels of a mipmap in ES 2.0 or Webgl so create a texture for each level for (int l = 0; l < level + 1; l++) { glGenTextures(1, &rt->mip_maps[i].sizes.write[l].color); glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[l].color); glTexImage2D(GL_TEXTURE_2D, 0, color_internal_format, width, height, 0, color_format, color_type, NULL); width = MAX(1, (width / 2)); height = MAX(1, (height / 2)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } } glDisable(GL_SCISSOR_TEST); glColorMask(1, 1, 1, 1); glDepthMask(GL_TRUE); for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) { RenderTarget::MipMaps::Size &mm = rt->mip_maps[i].sizes.write[j]; glGenFramebuffers(1, &mm.fbo); bind_framebuffer(mm.fbo); if (config.render_to_mipmap_supported) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].color, j); } else { glBindTexture(GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->mip_maps[i].sizes[j].color, 0); } bool used_depth = false; if (j == 0 && i == 0) { //use always if (config.support_depth_texture) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); } else { glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth); } used_depth = true; } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { WARN_PRINT_ONCE("Cannot allocate mipmaps for 3D post processing effects"); bind_framebuffer_system(); return; } glClearColor(1.0, 0.0, 1.0, 0.0); glClear(GL_COLOR_BUFFER_BIT); if (used_depth) { glClearDepth(1.0); glClear(GL_DEPTH_BUFFER_BIT); } } rt->mip_maps[i].levels = level; if (config.render_to_mipmap_supported) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } } rt->mip_maps_allocated = true; } bind_framebuffer_system(); } void RasterizerStorageGLES3::_render_target_clear(RenderTarget *rt) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif // there is nothing to clear when DIRECT_TO_SCREEN is used if (rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) return; if (rt->fbo) { glDeleteFramebuffers(1, &rt->fbo); glDeleteTextures(1, &rt->color); rt->fbo = 0; } if (rt->external.fbo != 0) { // free this glDeleteFramebuffers(1, &rt->external.fbo); // clean up our texture Texture *t = texture_owner.get_or_null(rt->external.texture); t->alloc_height = 0; t->alloc_width = 0; t->width = 0; t->height = 0; t->active = false; texture_owner.free(rt->external.texture); memdelete(t); rt->external.fbo = 0; } if (rt->depth) { if (config.support_depth_texture) { glDeleteTextures(1, &rt->depth); } else { glDeleteRenderbuffers(1, &rt->depth); } rt->depth = 0; } Texture *tex = texture_owner.get_or_null(rt->texture); tex->alloc_height = 0; tex->alloc_width = 0; tex->width = 0; tex->height = 0; tex->active = false; if (rt->copy_screen_effect.color) { glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo); rt->copy_screen_effect.fbo = 0; glDeleteTextures(1, &rt->copy_screen_effect.color); rt->copy_screen_effect.color = 0; } for (int i = 0; i < 2; i++) { if (rt->mip_maps[i].sizes.size()) { for (int j = 0; j < rt->mip_maps[i].sizes.size(); j++) { glDeleteFramebuffers(1, &rt->mip_maps[i].sizes[j].fbo); glDeleteTextures(1, &rt->mip_maps[i].sizes[j].color); } glDeleteTextures(1, &rt->mip_maps[i].color); rt->mip_maps[i].sizes.clear(); rt->mip_maps[i].levels = 0; rt->mip_maps[i].color = 0; } } if (rt->multisample_active) { glDeleteFramebuffers(1, &rt->multisample_fbo); rt->multisample_fbo = 0; glDeleteRenderbuffers(1, &rt->multisample_depth); rt->multisample_depth = 0; glDeleteRenderbuffers(1, &rt->multisample_color); rt->multisample_color = 0; } } RID RasterizerStorageGLES3::render_target_create() { #ifdef OPENGL_DISABLE_RENDER_TARGETS // return RID(); #endif RenderTarget *rt = memnew(RenderTarget); Texture *t = memnew(Texture); t->type = RenderingDevice::TEXTURE_TYPE_2D; t->flags = 0; t->width = 0; t->height = 0; t->alloc_height = 0; t->alloc_width = 0; t->format = Image::FORMAT_R8; t->target = GL_TEXTURE_2D; t->gl_format_cache = 0; t->gl_internal_format_cache = 0; t->gl_type_cache = 0; t->data_size = 0; t->total_data_size = 0; t->ignore_mipmaps = false; t->compressed = false; t->mipmaps = 1; t->active = true; t->tex_id = 0; t->render_target = rt; rt->texture = texture_owner.make_rid(t); return render_target_owner.make_rid(rt); } void RasterizerStorageGLES3::render_target_set_position(RID p_render_target, int p_x, int p_y) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); rt->x = p_x; rt->y = p_y; } void RasterizerStorageGLES3::render_target_set_size(RID p_render_target, int p_width, int p_height, uint32_t p_view_count) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); if (p_width == rt->width && p_height == rt->height) return; _render_target_clear(rt); rt->width = p_width; rt->height = p_height; // print_line("render_target_set_size " + itos(p_render_target.get_id()) + ", w " + itos(p_width) + " h " + itos(p_height)); rt->allocate_is_dirty = true; //_render_target_allocate(rt); } RID RasterizerStorageGLES3::render_target_get_texture(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return RID(); #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND_V(!rt, RID()); if (rt->external.fbo == 0) { return rt->texture; } else { return rt->external.texture; } } void RasterizerStorageGLES3::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); if (p_texture_id == 0) { if (rt->external.fbo != 0) { // free this glDeleteFramebuffers(1, &rt->external.fbo); // and this if (rt->external.depth != 0) { glDeleteRenderbuffers(1, &rt->external.depth); } // clean up our texture Texture *t = texture_owner.get_or_null(rt->external.texture); t->alloc_height = 0; t->alloc_width = 0; t->width = 0; t->height = 0; t->active = false; texture_owner.free(rt->external.texture); memdelete(t); rt->external.fbo = 0; rt->external.color = 0; rt->external.depth = 0; } } else { Texture *t; if (rt->external.fbo == 0) { // create our fbo glGenFramebuffers(1, &rt->external.fbo); bind_framebuffer(rt->external.fbo); // allocate a texture t = memnew(Texture); t->type = RenderingDevice::TEXTURE_TYPE_2D; t->flags = 0; t->width = 0; t->height = 0; t->alloc_height = 0; t->alloc_width = 0; t->format = Image::FORMAT_RGBA8; t->target = GL_TEXTURE_2D; t->gl_format_cache = 0; t->gl_internal_format_cache = 0; t->gl_type_cache = 0; t->data_size = 0; t->compressed = false; t->srgb = false; t->total_data_size = 0; t->ignore_mipmaps = false; t->mipmaps = 1; t->active = true; t->tex_id = 0; t->render_target = rt; rt->external.texture = texture_owner.make_rid(t); } else { // bind our frame buffer bind_framebuffer(rt->external.fbo); // find our texture t = texture_owner.get_or_null(rt->external.texture); } // set our texture t->tex_id = p_texture_id; rt->external.color = p_texture_id; // size shouldn't be different t->width = rt->width; t->height = rt->height; t->alloc_height = rt->width; t->alloc_width = rt->height; // Switch our texture on our frame buffer { // set our texture as the destination for our framebuffer glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, p_texture_id, 0); // seeing we're rendering into this directly, better also use our depth buffer, just use our existing one :) if (config.support_depth_texture) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rt->depth, 0); } else { glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth); } } // check status and unbind GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); bind_framebuffer_system(); if (status != GL_FRAMEBUFFER_COMPLETE) { printf("framebuffer fail, status: %x\n", status); } ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } void RasterizerStorageGLES3::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); // When setting DIRECT_TO_SCREEN, you need to clear before the value is set, but allocate after as // those functions change how they operate depending on the value of DIRECT_TO_SCREEN if (p_flag == RENDER_TARGET_DIRECT_TO_SCREEN && p_value != rt->flags[RENDER_TARGET_DIRECT_TO_SCREEN]) { _render_target_clear(rt); rt->flags[p_flag] = p_value; _render_target_allocate(rt); } rt->flags[p_flag] = p_value; switch (p_flag) { case RENDER_TARGET_TRANSPARENT: /* case RENDER_TARGET_HDR: case RENDER_TARGET_NO_3D: case RENDER_TARGET_NO_SAMPLING: case RENDER_TARGET_NO_3D_EFFECTS: */ { //must reset for these formats _render_target_clear(rt); _render_target_allocate(rt); } break; default: { } } } bool RasterizerStorageGLES3::render_target_was_used(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return false; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->used_in_frame; } void RasterizerStorageGLES3::render_target_clear_used(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); rt->used_in_frame = false; } void RasterizerStorageGLES3::render_target_set_msaa(RID p_render_target, RS::ViewportMSAA p_msaa) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); if (rt->msaa == p_msaa) return; _render_target_clear(rt); rt->msaa = p_msaa; _render_target_allocate(rt); } //RasterizerStorageGLES3::RenderTarget * RasterizerStorageGLES3::render_target_get(RID p_render_target) //{ // return render_target_owner.get_or_null(p_render_target); //} void RasterizerStorageGLES3::render_target_set_use_fxaa(RID p_render_target, bool p_fxaa) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); rt->use_fxaa = p_fxaa; } void RasterizerStorageGLES3::render_target_set_use_debanding(RID p_render_target, bool p_debanding) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); if (p_debanding) { WARN_PRINT_ONCE("Debanding is not supported in the OpenGL backend. Switch to the Vulkan backend and make sure HDR is enabled."); } rt->use_debanding = p_debanding; } void RasterizerStorageGLES3::render_target_request_clear(RID p_render_target, const Color &p_clear_color) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); rt->clear_requested = true; rt->clear_color = p_clear_color; // ERR_FAIL_COND(!frame.current_rt); // frame.clear_request = true; // frame.clear_request_color = p_color; } bool RasterizerStorageGLES3::render_target_is_clear_requested(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return false; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->clear_requested; } Color RasterizerStorageGLES3::render_target_get_clear_request_color(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return Color(); #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND_V(!rt, Color()); return rt->clear_color; } void RasterizerStorageGLES3::render_target_disable_clear_request(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); rt->clear_requested = false; } void RasterizerStorageGLES3::render_target_do_clear_request(RID p_render_target) { #ifdef OPENGL_DISABLE_RENDER_TARGETS return; #endif // NEW for GLES... // This is being called at the wrong time. Instead it will be performed // at canvas begin return; /* RenderTarget *rt = render_target_owner.get_or_null(p_render_target); ERR_FAIL_COND(!rt); if (!rt->clear_requested) { return; } const Color &c = rt->clear_color; glClearColor(c.r, c.g, c.b, c.a); // more bits? glClear(GL_COLOR_BUFFER_BIT); */ } void RasterizerStorageGLES3::render_target_set_sdf_size_and_scale(RID p_render_target, RS::ViewportSDFOversize p_size, RS::ViewportSDFScale p_scale) { } Rect2i RasterizerStorageGLES3::render_target_get_sdf_rect(RID p_render_target) const { return Rect2i(); } void RasterizerStorageGLES3::render_target_mark_sdf_enabled(RID p_render_target, bool p_enabled) { } /* CANVAS SHADOW */ RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) { CanvasLightShadow *cls = memnew(CanvasLightShadow); if (p_width > config.max_texture_size) p_width = config.max_texture_size; cls->size = p_width; cls->height = 16; glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &cls->fbo); bind_framebuffer(cls->fbo); glGenRenderbuffers(1, &cls->depth); glBindRenderbuffer(GL_RENDERBUFFER, cls->depth); glRenderbufferStorage(GL_RENDERBUFFER, config.depth_buffer_internalformat, cls->size, cls->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth); glGenTextures(1, &cls->distance); glBindTexture(GL_TEXTURE_2D, cls->distance); if (config.use_rgba_2d_shadows) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); } else { #ifdef GLES_OVER_GL glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_FLOAT, cls->size, cls->height, 0, _RED_OES, GL_FLOAT, NULL); #endif } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("errnum: %x\n",status); bind_framebuffer_system(); if (status != GL_FRAMEBUFFER_COMPLETE) { memdelete(cls); ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID()); } return canvas_light_shadow_owner.make_rid(cls); } /* LIGHT SHADOW MAPPING */ /* RID RasterizerStorageGLES3::canvas_light_occluder_create() { CanvasOccluder *co = memnew(CanvasOccluder); co->index_id = 0; co->vertex_id = 0; co->len = 0; return canvas_occluder_owner.make_rid(co); } void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) { CanvasOccluder *co = canvas_occluder_owner.get(p_occluder); ERR_FAIL_COND(!co); co->lines = p_lines; if (p_lines.size() != co->len) { if (co->index_id) glDeleteBuffers(1, &co->index_id); if (co->vertex_id) glDeleteBuffers(1, &co->vertex_id); co->index_id = 0; co->vertex_id = 0; co->len = 0; } if (p_lines.size()) { PoolVector<float> geometry; PoolVector<uint16_t> indices; int lc = p_lines.size(); geometry.resize(lc * 6); indices.resize(lc * 3); PoolVector<float>::Write vw = geometry.write(); PoolVector<uint16_t>::Write iw = indices.write(); PoolVector<Vector2>::Read lr = p_lines.read(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vw[i * 12 + 0] = lr[i * 2 + 0].x; vw[i * 12 + 1] = lr[i * 2 + 0].y; vw[i * 12 + 2] = POLY_HEIGHT; vw[i * 12 + 3] = lr[i * 2 + 1].x; vw[i * 12 + 4] = lr[i * 2 + 1].y; vw[i * 12 + 5] = POLY_HEIGHT; vw[i * 12 + 6] = lr[i * 2 + 1].x; vw[i * 12 + 7] = lr[i * 2 + 1].y; vw[i * 12 + 8] = -POLY_HEIGHT; vw[i * 12 + 9] = lr[i * 2 + 0].x; vw[i * 12 + 10] = lr[i * 2 + 0].y; vw[i * 12 + 11] = -POLY_HEIGHT; iw[i * 6 + 0] = i * 4 + 0; iw[i * 6 + 1] = i * 4 + 1; iw[i * 6 + 2] = i * 4 + 2; iw[i * 6 + 3] = i * 4 + 2; iw[i * 6 + 4] = i * 4 + 3; iw[i * 6 + 5] = i * 4 + 0; } //if same buffer len is being set, just use BufferSubData to avoid a pipeline flush if (!co->vertex_id) { glGenBuffers(1, &co->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr()); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (!co->index_id) { glGenBuffers(1, &co->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr()); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind co->len = lc; } } */ RS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const { return RS::INSTANCE_NONE; /* if (mesh_owner.owns(p_rid)) { return RS::INSTANCE_MESH; } else if (light_owner.owns(p_rid)) { return RS::INSTANCE_LIGHT; } else if (multimesh_owner.owns(p_rid)) { return RS::INSTANCE_MULTIMESH; } else if (immediate_owner.owns(p_rid)) { return RS::INSTANCE_IMMEDIATE; } else if (reflection_probe_owner.owns(p_rid)) { return RS::INSTANCE_REFLECTION_PROBE; } else if (lightmap_capture_data_owner.owns(p_rid)) { return RS::INSTANCE_LIGHTMAP_CAPTURE; } else { return RS::INSTANCE_NONE; } */ } bool RasterizerStorageGLES3::free(RID p_rid) { if (render_target_owner.owns(p_rid)) { RenderTarget *rt = render_target_owner.get_or_null(p_rid); _render_target_clear(rt); Texture *t = texture_owner.get_or_null(rt->texture); if (t) { texture_owner.free(rt->texture); memdelete(t); } render_target_owner.free(p_rid); memdelete(rt); return true; } else if (texture_owner.owns(p_rid)) { Texture *t = texture_owner.get_or_null(p_rid); // can't free a render target texture ERR_FAIL_COND_V(t->render_target, true); info.texture_mem -= t->total_data_size; texture_owner.free(p_rid); memdelete(t); return true; } else if (sky_owner.owns(p_rid)) { Sky *sky = sky_owner.get_or_null(p_rid); sky_set_texture(p_rid, RID(), 256); sky_owner.free(p_rid); memdelete(sky); return true; } else if (shader_owner.owns(p_rid)) { Shader *shader = shader_owner.get_or_null(p_rid); if (shader->shader && shader->custom_code_id) { shader->shader->free_custom_shader(shader->custom_code_id); } if (shader->dirty_list.in_list()) { _shader_dirty_list.remove(&shader->dirty_list); } while (shader->materials.first()) { Material *m = shader->materials.first()->self(); m->shader = NULL; _material_make_dirty(m); shader->materials.remove(shader->materials.first()); } shader_owner.free(p_rid); memdelete(shader); return true; } else if (material_owner.owns(p_rid)) { Material *m = material_owner.get_or_null(p_rid); if (m->shader) { m->shader->materials.remove(&m->list); } /* for (Map<Geometry *, int>::Element *E = m->geometry_owners.front(); E; E = E->next()) { Geometry *g = E->key(); g->material = RID(); } for (Map<InstanceBaseDependency *, int>::Element *E = m->instance_owners.front(); E; E = E->next()) { InstanceBaseDependency *ins = E->key(); if (ins->material_override == p_rid) { ins->material_override = RID(); } for (int i = 0; i < ins->materials.size(); i++) { if (ins->materials[i] == p_rid) { ins->materials.write[i] = RID(); } } } */ material_owner.free(p_rid); memdelete(m); return true; } else { return false; } /* } else if (skeleton_owner.owns(p_rid)) { Skeleton *s = skeleton_owner.get_or_null(p_rid); if (s->update_list.in_list()) { skeleton_update_list.remove(&s->update_list); } for (Set<InstanceBaseDependency *>::Element *E = s->instances.front(); E; E = E->next()) { E->get()->skeleton = RID(); } skeleton_allocate(p_rid, 0, false); if (s->tex_id) { glDeleteTextures(1, &s->tex_id); } skeleton_owner.free(p_rid); memdelete(s); return true; } else if (mesh_owner.owns(p_rid)) { Mesh *mesh = mesh_owner.get_or_null(p_rid); mesh->instance_remove_deps(); mesh_clear(p_rid); while (mesh->multimeshes.first()) { MultiMesh *multimesh = mesh->multimeshes.first()->self(); multimesh->mesh = RID(); multimesh->dirty_aabb = true; mesh->multimeshes.remove(mesh->multimeshes.first()); if (!multimesh->update_list.in_list()) { multimesh_update_list.add(&multimesh->update_list); } } mesh_owner.free(p_rid); memdelete(mesh); return true; } else if (multimesh_owner.owns(p_rid)) { MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid); multimesh->instance_remove_deps(); if (multimesh->mesh.is_valid()) { Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh); if (mesh) { mesh->multimeshes.remove(&multimesh->mesh_list); } } multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_3D, RS::MULTIMESH_COLOR_NONE); update_dirty_multimeshes(); multimesh_owner.free(p_rid); memdelete(multimesh); return true; } else if (immediate_owner.owns(p_rid)) { Immediate *im = immediate_owner.get_or_null(p_rid); im->instance_remove_deps(); immediate_owner.free(p_rid); memdelete(im); return true; } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get_or_null(p_rid); light->instance_remove_deps(); light_owner.free(p_rid); memdelete(light); return true; } else if (reflection_probe_owner.owns(p_rid)) { // delete the texture ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid); reflection_probe->instance_remove_deps(); reflection_probe_owner.free(p_rid); memdelete(reflection_probe); return true; } else if (lightmap_capture_data_owner.owns(p_rid)) { // delete the texture LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get_or_null(p_rid); lightmap_capture->instance_remove_deps(); lightmap_capture_data_owner.free(p_rid); memdelete(lightmap_capture); return true; } else if (canvas_occluder_owner.owns(p_rid)) { CanvasOccluder *co = canvas_occluder_owner.get_or_null(p_rid); if (co->index_id) glDeleteBuffers(1, &co->index_id); if (co->vertex_id) glDeleteBuffers(1, &co->vertex_id); canvas_occluder_owner.free(p_rid); memdelete(co); return true; } else if (canvas_light_shadow_owner.owns(p_rid)) { CanvasLightShadow *cls = canvas_light_shadow_owner.get_or_null(p_rid); glDeleteFramebuffers(1, &cls->fbo); glDeleteRenderbuffers(1, &cls->depth); glDeleteTextures(1, &cls->distance); canvas_light_shadow_owner.free(p_rid); memdelete(cls); return true; */ } bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const { if (p_feature == "pvrtc") return config.pvrtc_supported; if (p_feature == "s3tc") return config.s3tc_supported; if (p_feature == "etc") return config.etc_supported; if (p_feature == "skinning_fallback") return config.use_skeleton_software; return false; } //////////////////////////////////////////// void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) { } //void RasterizerStorageGLES3::render_info_begin_capture() { // info.snap = info.render; //} //void RasterizerStorageGLES3::render_info_end_capture() { // info.snap.object_count = info.render.object_count - info.snap.object_count; // info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count; // info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count; // info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count; // info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count; // info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count; // info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count; // info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count; //} //int RasterizerStorageGLES3::get_captured_render_info(RS::RenderInfo p_info) { // switch (p_info) { // case RS::INFO_OBJECTS_IN_FRAME: { // return info.snap.object_count; // } break; // case RS::INFO_VERTICES_IN_FRAME: { // return info.snap.vertices_count; // } break; // case RS::INFO_MATERIAL_CHANGES_IN_FRAME: { // return info.snap.material_switch_count; // } break; // case RS::INFO_SHADER_CHANGES_IN_FRAME: { // return info.snap.shader_rebind_count; // } break; // case RS::INFO_SURFACE_CHANGES_IN_FRAME: { // return info.snap.surface_switch_count; // } break; // case RS::INFO_DRAW_CALLS_IN_FRAME: { // return info.snap.draw_call_count; // } break; // /* // case RS::INFO_2D_ITEMS_IN_FRAME: { // return info.snap._2d_item_count; // } break; // case RS::INFO_2D_DRAW_CALLS_IN_FRAME: { // return info.snap._2d_draw_call_count; // } break; // */ // default: { // return get_render_info(p_info); // } // } //} //int RasterizerStorageGLES3::get_render_info(RS::RenderInfo p_info) { // switch (p_info) { // case RS::INFO_OBJECTS_IN_FRAME: // return info.render_final.object_count; // case RS::INFO_VERTICES_IN_FRAME: // return info.render_final.vertices_count; // case RS::INFO_MATERIAL_CHANGES_IN_FRAME: // return info.render_final.material_switch_count; // case RS::INFO_SHADER_CHANGES_IN_FRAME: // return info.render_final.shader_rebind_count; // case RS::INFO_SURFACE_CHANGES_IN_FRAME: // return info.render_final.surface_switch_count; // case RS::INFO_DRAW_CALLS_IN_FRAME: // return info.render_final.draw_call_count; // /* // case RS::INFO_2D_ITEMS_IN_FRAME: // return info.render_final._2d_item_count; // case RS::INFO_2D_DRAW_CALLS_IN_FRAME: // return info.render_final._2d_draw_call_count; //*/ // case RS::INFO_USAGE_VIDEO_MEM_TOTAL: // return 0; //no idea // case RS::INFO_VIDEO_MEM_USED: // return info.vertex_mem + info.texture_mem; // case RS::INFO_TEXTURE_MEM_USED: // return info.texture_mem; // case RS::INFO_VERTEX_MEM_USED: // return info.vertex_mem; // default: // return 0; //no idea either // } //} String RasterizerStorageGLES3::get_video_adapter_name() const { return (const char *)glGetString(GL_RENDERER); } String RasterizerStorageGLES3::get_video_adapter_vendor() const { return (const char *)glGetString(GL_VENDOR); } void RasterizerStorageGLES3::initialize() { RasterizerStorageGLES3::system_fbo = 0; { const GLubyte *extension_string = glGetString(GL_EXTENSIONS); Vector<String> extensions = String((const char *)extension_string).split(" "); for (int i = 0; i < extensions.size(); i++) { config.extensions.insert(extensions[i]); } } // FTODO config.keep_original_textures = true; // false config.shrink_textures_x2 = false; config.depth_internalformat = GL_DEPTH_COMPONENT; config.depth_type = GL_UNSIGNED_INT; #ifdef GLES_OVER_GL config.float_texture_supported = true; config.s3tc_supported = true; config.pvrtc_supported = false; config.etc_supported = false; config.support_npot_repeat_mipmap = true; config.depth_buffer_internalformat = GL_DEPTH_COMPONENT24; #else config.float_texture_supported = config.extensions.has("GL_ARB_texture_float") || config.extensions.has("GL_OES_texture_float"); config.s3tc_supported = config.extensions.has("GL_EXT_texture_compression_s3tc") || config.extensions.has("WEBGL_compressed_texture_s3tc"); config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture") || config.extensions.has("WEBGL_compressed_texture_etc1"); config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc") || config.extensions.has("WEBGL_compressed_texture_pvrtc"); config.support_npot_repeat_mipmap = config.extensions.has("GL_OES_texture_npot"); #ifdef JAVASCRIPT_ENABLED // RenderBuffer internal format must be 16 bits in WebGL, // but depth_texture should default to 32 always // if the implementation doesn't support 32, it should just quietly use 16 instead // https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/ config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16; config.depth_type = GL_UNSIGNED_INT; #else // on mobile check for 24 bit depth support for RenderBufferStorage if (config.extensions.has("GL_OES_depth24")) { config.depth_buffer_internalformat = _DEPTH_COMPONENT24_OES; config.depth_type = GL_UNSIGNED_INT; } else { config.depth_buffer_internalformat = GL_DEPTH_COMPONENT16; config.depth_type = GL_UNSIGNED_SHORT; } #endif #endif #ifdef GLES_OVER_GL //TODO: causes huge problems with desktop video drivers. Making false for now, needs to be true to render SCREEN_TEXTURE mipmaps config.render_to_mipmap_supported = false; #else //check if mipmaps can be used for SCREEN_TEXTURE and Glow on Mobile and web platforms config.render_to_mipmap_supported = config.extensions.has("GL_OES_fbo_render_mipmap") && config.extensions.has("GL_EXT_texture_lod"); #endif #ifdef GLES_OVER_GL config.use_rgba_2d_shadows = false; config.support_depth_texture = true; config.use_rgba_3d_shadows = false; config.support_depth_cubemaps = true; #else config.use_rgba_2d_shadows = !(config.float_texture_supported && config.extensions.has("GL_EXT_texture_rg")); config.support_depth_texture = config.extensions.has("GL_OES_depth_texture") || config.extensions.has("WEBGL_depth_texture"); config.use_rgba_3d_shadows = !config.support_depth_texture; config.support_depth_cubemaps = config.extensions.has("GL_OES_depth_texture_cube_map"); #endif #ifdef GLES_OVER_GL config.support_32_bits_indices = true; #else config.support_32_bits_indices = config.extensions.has("GL_OES_element_index_uint"); #endif #ifdef GLES_OVER_GL config.support_write_depth = true; #elif defined(JAVASCRIPT_ENABLED) config.support_write_depth = false; #else config.support_write_depth = config.extensions.has("GL_EXT_frag_depth"); #endif config.support_half_float_vertices = true; //every platform should support this except web, iOS has issues with their support, so add option to disable #ifdef JAVASCRIPT_ENABLED config.support_half_float_vertices = false; #endif bool disable_half_float = false; //GLOBAL_GET("rendering/opengl/compatibility/disable_half_float"); if (disable_half_float) { config.support_half_float_vertices = false; } config.etc_supported = config.extensions.has("GL_OES_compressed_ETC1_RGB8_texture"); config.latc_supported = config.extensions.has("GL_EXT_texture_compression_latc"); config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc"); config.pvrtc_supported = config.extensions.has("GL_IMG_texture_compression_pvrtc"); config.rgtc_supported = config.extensions.has("GL_EXT_texture_compression_rgtc") || config.extensions.has("GL_ARB_texture_compression_rgtc") || config.extensions.has("EXT_texture_compression_rgtc"); config.bptc_supported = config.extensions.has("GL_ARB_texture_compression_bptc") || config.extensions.has("EXT_texture_compression_bptc"); config.srgb_decode_supported = config.extensions.has("GL_EXT_texture_sRGB_decode"); //determine formats for depth textures (or renderbuffers) if (config.support_depth_texture) { // Will use texture for depth // have to manually see if we can create a valid framebuffer texture using UNSIGNED_INT, // as there is no extension to test for this. GLuint fbo; glGenFramebuffers(1, &fbo); bind_framebuffer(fbo); GLuint depth; glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, config.depth_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); bind_framebuffer_system(); glDeleteFramebuffers(1, &fbo); glBindTexture(GL_TEXTURE_2D, 0); glDeleteTextures(1, &depth); if (status != GL_FRAMEBUFFER_COMPLETE) { // If it fails, test to see if it supports a framebuffer texture using UNSIGNED_SHORT // This is needed because many OSX devices don't support either UNSIGNED_INT or UNSIGNED_SHORT #ifdef GLES_OVER_GL config.depth_internalformat = GL_DEPTH_COMPONENT16; #else // OES_depth_texture extension only specifies GL_DEPTH_COMPONENT. config.depth_internalformat = GL_DEPTH_COMPONENT; #endif config.depth_type = GL_UNSIGNED_SHORT; glGenFramebuffers(1, &fbo); bind_framebuffer(fbo); glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexImage2D(GL_TEXTURE_2D, 0, config.depth_internalformat, 32, 32, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { //if it fails again depth textures aren't supported, use rgba shadows and renderbuffer for depth config.support_depth_texture = false; config.use_rgba_3d_shadows = true; } bind_framebuffer_system(); glDeleteFramebuffers(1, &fbo); glBindTexture(GL_TEXTURE_2D, 0); glDeleteTextures(1, &depth); } } //picky requirements for these config.support_shadow_cubemaps = config.support_depth_texture && config.support_write_depth && config.support_depth_cubemaps; frame.count = 0; frame.delta = 0; frame.current_rt = NULL; frame.clear_request = false; glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &config.max_vertex_texture_image_units); glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &config.max_texture_image_units); glGetIntegerv(GL_MAX_TEXTURE_SIZE, &config.max_texture_size); // the use skeleton software path should be used if either float texture is not supported, // OR max_vertex_texture_image_units is zero config.use_skeleton_software = (config.float_texture_supported == false) || (config.max_vertex_texture_image_units == 0); shaders.copy.init(); shaders.cubemap_filter.init(); bool ggx_hq = false; //GLOBAL_GET("rendering/quality/reflections/high_quality_ggx"); shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, !ggx_hq); { // quad for copying stuff glGenBuffers(1, &resources.quadie); glBindBuffer(GL_ARRAY_BUFFER, resources.quadie); { const float qv[16] = { -1, -1, 0, 0, -1, 1, 0, 1, 1, 1, 1, 1, 1, -1, 1, 0, }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); } { //default textures glGenTextures(1, &resources.white_tex); unsigned char whitetexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { whitetexdata[i] = 255; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.white_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glGenTextures(1, &resources.black_tex); unsigned char blacktexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { blacktexdata[i] = 0; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.black_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, blacktexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glGenTextures(1, &resources.normal_tex); unsigned char normaltexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i += 3) { normaltexdata[i + 0] = 128; normaltexdata[i + 1] = 128; normaltexdata[i + 2] = 255; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.normal_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, normaltexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glGenTextures(1, &resources.aniso_tex); unsigned char anisotexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i += 3) { anisotexdata[i + 0] = 255; anisotexdata[i + 1] = 128; anisotexdata[i + 2] = 0; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.aniso_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, anisotexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); } // skeleton buffer { resources.skeleton_transform_buffer_size = 0; glGenBuffers(1, &resources.skeleton_transform_buffer); } // radical inverse vdc cache texture // used for cubemap filtering if (true /*||config.float_texture_supported*/) { //uint8 is similar and works everywhere glGenTextures(1, &resources.radical_inverse_vdc_cache_tex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex); uint8_t radical_inverse[512]; for (uint32_t i = 0; i < 512; i++) { uint32_t bits = i; bits = (bits << 16) | (bits >> 16); bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1); bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2); bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4); bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); float value = float(bits) * 2.3283064365386963e-10; radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255)); } glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling glBindTexture(GL_TEXTURE_2D, 0); } { glGenFramebuffers(1, &resources.mipmap_blur_fbo); glGenTextures(1, &resources.mipmap_blur_color); } #ifdef GLES_OVER_GL //this needs to be enabled manually in OpenGL 2.1 if (config.extensions.has("GL_ARB_seamless_cube_map")) { glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); } glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif config.force_vertex_shading = false; //GLOBAL_GET("rendering/quality/shading/force_vertex_shading"); config.use_fast_texture_filter = false; //GLOBAL_GET("rendering/quality/filters/use_nearest_mipmap_filter"); //config.should_orphan = GLOBAL_GET("rendering/options/api_usage_legacy/orphan_buffers"); } void RasterizerStorageGLES3::finalize() { } void RasterizerStorageGLES3::_copy_screen() { bind_quad_array(); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); } void RasterizerStorageGLES3::update_memory_info() { } uint64_t RasterizerStorageGLES3::get_rendering_info(RS::RenderingInfo p_info) { return 0; } void RasterizerStorageGLES3::update_dirty_resources() { update_dirty_shaders(); update_dirty_materials(); // update_dirty_skeletons(); // update_dirty_multimeshes(); } RasterizerStorageGLES3::RasterizerStorageGLES3() { RasterizerStorageGLES3::system_fbo = 0; config.should_orphan = true; } #endif // GLES3_BACKEND_ENABLED