/* Copyright (c) 2003-2010, Troy D. Hanson http://uthash.sourceforge.net All rights reserved. SPDX-License-Identifier: BSD-1-Clause */ #ifndef UTHASH_H #define UTHASH_H #include <string.h> /* memcmp,strlen */ #include <stddef.h> /* ptrdiff_t */ /* These macros use decltype or the earlier __typeof GNU extension. As decltype is only available in newer compilers (VS2010 or gcc 4.3+ when compiling c++ source) this code uses whatever method is needed or, for VS2008 where neither is available, uses casting workarounds. */ #ifdef _MSC_VER /* MS compiler */ #if _MSC_VER >= 1600 && __cplusplus /* VS2010 or newer in C++ mode */ #define DECLTYPE(x) (decltype(x)) #else /* VS2008 or older (or VS2010 in C mode) */ #define NO_DECLTYPE #define DECLTYPE(x) #endif #else /* GNU, Sun and other compilers */ #define DECLTYPE(x) (__typeof(x)) #endif #ifdef NO_DECLTYPE #define DECLTYPE_ASSIGN(dst,src) \ do { \ char **_da_dst = (char**)(&(dst)); \ *_da_dst = (char*)(src); \ } while(0) #else #define DECLTYPE_ASSIGN(dst,src) \ do { \ (dst) = DECLTYPE(dst)(src); \ } while(0) #endif /* a number of the hash function use uint32_t which isn't defined on win32 */ #ifdef _MSC_VER typedef unsigned int uint32_t; #else #include <inttypes.h> /* uint32_t */ #endif #define UTHASH_VERSION 1.9.1 #define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */ #define uthash_malloc(sz) malloc(sz) /* malloc fcn */ #define uthash_free(ptr) free(ptr) /* free fcn */ #define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */ #define uthash_expand_fyi(tbl) /* can be defined to log expands */ /* initial number of buckets */ #define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */ #define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */ #define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */ /* calculate the element whose hash handle address is hhe */ #define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho))) #define HASH_FIND(hh,head,keyptr,keylen,out) \ do { \ unsigned _hf_bkt,_hf_hashv; \ out=NULL; \ if (head) { \ HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \ if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \ HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \ keyptr,keylen,out); \ } \ } \ } while (0) #ifdef HASH_BLOOM #define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM) #define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0) #define HASH_BLOOM_MAKE(tbl) \ do { \ (tbl)->bloom_nbits = HASH_BLOOM; \ (tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \ if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \ memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \ (tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \ } while (0); #define HASH_BLOOM_FREE(tbl) \ do { \ uthash_free((tbl)->bloom_bv); \ } while (0); #define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8))) #define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8))) #define HASH_BLOOM_ADD(tbl,hashv) \ HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) #define HASH_BLOOM_TEST(tbl,hashv) \ HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) #else #define HASH_BLOOM_MAKE(tbl) #define HASH_BLOOM_FREE(tbl) #define HASH_BLOOM_ADD(tbl,hashv) #define HASH_BLOOM_TEST(tbl,hashv) (1) #endif #define HASH_MAKE_TABLE(hh,head) \ do { \ (head)->hh.tbl = (UT_hash_table*)uthash_malloc( \ sizeof(UT_hash_table)); \ if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \ memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \ (head)->hh.tbl->tail = &((head)->hh); \ (head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \ (head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \ (head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \ (head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \ HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \ memset((head)->hh.tbl->buckets, 0, \ HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ HASH_BLOOM_MAKE((head)->hh.tbl); \ (head)->hh.tbl->signature = HASH_SIGNATURE; \ } while(0) #define HASH_ADD(hh,head,fieldname,keylen_in,add) \ HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add) #define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \ do { \ unsigned _ha_bkt; \ (add)->hh.next = NULL; \ (add)->hh.key = (char*)keyptr; \ (add)->hh.keylen = keylen_in; \ if (!(head)) { \ head = (add); \ (head)->hh.prev = NULL; \ HASH_MAKE_TABLE(hh,head); \ } else { \ (head)->hh.tbl->tail->next = (add); \ (add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \ (head)->hh.tbl->tail = &((add)->hh); \ } \ (head)->hh.tbl->num_items++; \ (add)->hh.tbl = (head)->hh.tbl; \ HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \ (add)->hh.hashv, _ha_bkt); \ HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \ HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \ HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \ HASH_FSCK(hh,head); \ } while(0) #define HASH_TO_BKT( hashv, num_bkts, bkt ) \ do { \ bkt = ((hashv) & ((num_bkts) - 1)); \ } while(0) /* delete "delptr" from the hash table. * "the usual" patch-up process for the app-order doubly-linked-list. * The use of _hd_hh_del below deserves special explanation. * These used to be expressed using (delptr) but that led to a bug * if someone used the same symbol for the head and deletee, like * HASH_DELETE(hh,users,users); * We want that to work, but by changing the head (users) below * we were forfeiting our ability to further refer to the deletee (users) * in the patch-up process. Solution: use scratch space to * copy the deletee pointer, then the latter references are via that * scratch pointer rather than through the repointed (users) symbol. */ #define HASH_DELETE(hh,head,delptr) \ do { \ unsigned _hd_bkt; \ struct UT_hash_handle *_hd_hh_del; \ if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \ uthash_free((head)->hh.tbl->buckets ); \ HASH_BLOOM_FREE((head)->hh.tbl); \ uthash_free((head)->hh.tbl); \ head = NULL; \ } else { \ _hd_hh_del = &((delptr)->hh); \ if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \ (head)->hh.tbl->tail = \ (UT_hash_handle*)((char*)((delptr)->hh.prev) + \ (head)->hh.tbl->hho); \ } \ if ((delptr)->hh.prev) { \ ((UT_hash_handle*)((char*)((delptr)->hh.prev) + \ (head)->hh.tbl->hho))->next = (delptr)->hh.next; \ } else { \ DECLTYPE_ASSIGN(head,(delptr)->hh.next); \ } \ if (_hd_hh_del->next) { \ ((UT_hash_handle*)((char*)_hd_hh_del->next + \ (head)->hh.tbl->hho))->prev = \ _hd_hh_del->prev; \ } \ HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \ HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \ (head)->hh.tbl->num_items--; \ } \ HASH_FSCK(hh,head); \ } while (0) /* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */ #define HASH_FIND_STR(head,findstr,out) \ HASH_FIND(hh,head,findstr,strlen(findstr),out) #define HASH_ADD_STR(head,strfield,add) \ HASH_ADD(hh,head,strfield,strlen(add->strfield),add) #define HASH_FIND_INT(head,findint,out) \ HASH_FIND(hh,head,findint,sizeof(int),out) #define HASH_ADD_INT(head,intfield,add) \ HASH_ADD(hh,head,intfield,sizeof(int),add) #define HASH_FIND_PTR(head,findptr,out) \ HASH_FIND(hh,head,findptr,sizeof(void *),out) #define HASH_ADD_PTR(head,ptrfield,add) \ HASH_ADD(hh,head,ptrfield,sizeof(void *),add) #define HASH_DEL(head,delptr) \ HASH_DELETE(hh,head,delptr) /* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined. * This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined. */ #ifdef HASH_DEBUG #define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0) #define HASH_FSCK(hh,head) \ do { \ unsigned _bkt_i; \ unsigned _count, _bkt_count; \ char *_prev; \ struct UT_hash_handle *_thh; \ if (head) { \ _count = 0; \ for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \ _bkt_count = 0; \ _thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \ _prev = NULL; \ while (_thh) { \ if (_prev != (char*)(_thh->hh_prev)) { \ HASH_OOPS("invalid hh_prev %p, actual %p\n", \ _thh->hh_prev, _prev ); \ } \ _bkt_count++; \ _prev = (char*)(_thh); \ _thh = _thh->hh_next; \ } \ _count += _bkt_count; \ if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \ HASH_OOPS("invalid bucket count %d, actual %d\n", \ (head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \ } \ } \ if (_count != (head)->hh.tbl->num_items) { \ HASH_OOPS("invalid hh item count %d, actual %d\n", \ (head)->hh.tbl->num_items, _count ); \ } \ /* traverse hh in app order; check next/prev integrity, count */ \ _count = 0; \ _prev = NULL; \ _thh = &(head)->hh; \ while (_thh) { \ _count++; \ if (_prev !=(char*)(_thh->prev)) { \ HASH_OOPS("invalid prev %p, actual %p\n", \ _thh->prev, _prev ); \ } \ _prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \ _thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \ (head)->hh.tbl->hho) : NULL ); \ } \ if (_count != (head)->hh.tbl->num_items) { \ HASH_OOPS("invalid app item count %d, actual %d\n", \ (head)->hh.tbl->num_items, _count ); \ } \ } \ } while (0) #else #define HASH_FSCK(hh,head) #endif /* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to * the descriptor to which this macro is defined for tuning the hash function. * The app can #include <unistd.h> to get the prototype for write(2). */ #ifdef HASH_EMIT_KEYS #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \ do { \ unsigned _klen = fieldlen; \ write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \ write(HASH_EMIT_KEYS, keyptr, fieldlen); \ } while (0) #else #define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) #endif /* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */ #ifdef HASH_FUNCTION #define HASH_FCN HASH_FUNCTION #else #define HASH_FCN HASH_JEN #endif /* The Bernstein hash function, used in Perl prior to v5.6 */ #define HASH_BER(key,keylen,num_bkts,hashv,bkt) \ do { \ unsigned _hb_keylen=keylen; \ char *_hb_key=(char*)key; \ (hashv) = 0; \ while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \ bkt = (hashv) & (num_bkts-1); \ } while (0) /* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at * http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */ #define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \ do { \ unsigned _sx_i; \ char *_hs_key=(char*)key; \ hashv = 0; \ for(_sx_i=0; _sx_i < keylen; _sx_i++) \ hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \ bkt = hashv & (num_bkts-1); \ } while (0) #define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \ do { \ unsigned _fn_i; \ char *_hf_key=(char*)key; \ hashv = 2166136261UL; \ for(_fn_i=0; _fn_i < keylen; _fn_i++) \ hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \ bkt = hashv & (num_bkts-1); \ } while(0); #define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \ do { \ unsigned _ho_i; \ char *_ho_key=(char*)key; \ hashv = 0; \ for(_ho_i=0; _ho_i < keylen; _ho_i++) { \ hashv += _ho_key[_ho_i]; \ hashv += (hashv << 10); \ hashv ^= (hashv >> 6); \ } \ hashv += (hashv << 3); \ hashv ^= (hashv >> 11); \ hashv += (hashv << 15); \ bkt = hashv & (num_bkts-1); \ } while(0) #define HASH_JEN_MIX(a,b,c) \ do { \ a -= b; a -= c; a ^= ( c >> 13 ); \ b -= c; b -= a; b ^= ( a << 8 ); \ c -= a; c -= b; c ^= ( b >> 13 ); \ a -= b; a -= c; a ^= ( c >> 12 ); \ b -= c; b -= a; b ^= ( a << 16 ); \ c -= a; c -= b; c ^= ( b >> 5 ); \ a -= b; a -= c; a ^= ( c >> 3 ); \ b -= c; b -= a; b ^= ( a << 10 ); \ c -= a; c -= b; c ^= ( b >> 15 ); \ } while (0) #define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \ do { \ unsigned _hj_i,_hj_j,_hj_k; \ char *_hj_key=(char*)key; \ hashv = 0xfeedbeef; \ _hj_i = _hj_j = 0x9e3779b9; \ _hj_k = keylen; \ while (_hj_k >= 12) { \ _hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \ + ( (unsigned)_hj_key[2] << 16 ) \ + ( (unsigned)_hj_key[3] << 24 ) ); \ _hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \ + ( (unsigned)_hj_key[6] << 16 ) \ + ( (unsigned)_hj_key[7] << 24 ) ); \ hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \ + ( (unsigned)_hj_key[10] << 16 ) \ + ( (unsigned)_hj_key[11] << 24 ) ); \ \ HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ \ _hj_key += 12; \ _hj_k -= 12; \ } \ hashv += keylen; \ switch ( _hj_k ) { \ case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \ case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \ case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \ case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \ case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \ case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \ case 5: _hj_j += _hj_key[4]; \ case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \ case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \ case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \ case 1: _hj_i += _hj_key[0]; \ } \ HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ bkt = hashv & (num_bkts-1); \ } while(0) /* The Paul Hsieh hash function */ #undef get16bits #if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ || defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__) #define get16bits(d) (*((const uint16_t *) (d))) #endif #if !defined (get16bits) #define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \ +(uint32_t)(((const uint8_t *)(d))[0]) ) #endif #define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \ do { \ char *_sfh_key=(char*)key; \ uint32_t _sfh_tmp, _sfh_len = keylen; \ \ int _sfh_rem = _sfh_len & 3; \ _sfh_len >>= 2; \ hashv = 0xcafebabe; \ \ /* Main loop */ \ for (;_sfh_len > 0; _sfh_len--) { \ hashv += get16bits (_sfh_key); \ _sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \ hashv = (hashv << 16) ^ _sfh_tmp; \ _sfh_key += 2*sizeof (uint16_t); \ hashv += hashv >> 11; \ } \ \ /* Handle end cases */ \ switch (_sfh_rem) { \ case 3: hashv += get16bits (_sfh_key); \ hashv ^= hashv << 16; \ hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \ hashv += hashv >> 11; \ break; \ case 2: hashv += get16bits (_sfh_key); \ hashv ^= hashv << 11; \ hashv += hashv >> 17; \ break; \ case 1: hashv += *_sfh_key; \ hashv ^= hashv << 10; \ hashv += hashv >> 1; \ } \ \ /* Force "avalanching" of final 127 bits */ \ hashv ^= hashv << 3; \ hashv += hashv >> 5; \ hashv ^= hashv << 4; \ hashv += hashv >> 17; \ hashv ^= hashv << 25; \ hashv += hashv >> 6; \ bkt = hashv & (num_bkts-1); \ } while(0); #ifdef HASH_USING_NO_STRICT_ALIASING /* The MurmurHash exploits some CPU's (e.g. x86) tolerance for unaligned reads. * For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error. * So MurmurHash comes in two versions, the faster unaligned one and the slower * aligned one. We only use the faster one on CPU's where we know it's safe. * * Note the preprocessor built-in defines can be emitted using: * * gcc -m64 -dM -E - < /dev/null (on gcc) * cc -## a.c (where a.c is a simple test file) (Sun Studio) */ #if (defined(__i386__) || defined(__x86_64__)) #define HASH_MUR HASH_MUR_UNALIGNED #else #define HASH_MUR HASH_MUR_ALIGNED #endif /* Appleby's MurmurHash fast version for unaligned-tolerant archs like i386 */ #define HASH_MUR_UNALIGNED(key,keylen,num_bkts,hashv,bkt) \ do { \ const unsigned int _mur_m = 0x5bd1e995; \ const int _mur_r = 24; \ hashv = 0xcafebabe ^ keylen; \ char *_mur_key = (char *)key; \ uint32_t _mur_tmp, _mur_len = keylen; \ \ for (;_mur_len >= 4; _mur_len-=4) { \ _mur_tmp = *(uint32_t *)_mur_key; \ _mur_tmp *= _mur_m; \ _mur_tmp ^= _mur_tmp >> _mur_r; \ _mur_tmp *= _mur_m; \ hashv *= _mur_m; \ hashv ^= _mur_tmp; \ _mur_key += 4; \ } \ \ switch(_mur_len) \ { \ case 3: hashv ^= _mur_key[2] << 16; \ case 2: hashv ^= _mur_key[1] << 8; \ case 1: hashv ^= _mur_key[0]; \ hashv *= _mur_m; \ }; \ \ hashv ^= hashv >> 13; \ hashv *= _mur_m; \ hashv ^= hashv >> 15; \ \ bkt = hashv & (num_bkts-1); \ } while(0) /* Appleby's MurmurHash version for alignment-sensitive archs like Sparc */ #define HASH_MUR_ALIGNED(key,keylen,num_bkts,hashv,bkt) \ do { \ const unsigned int _mur_m = 0x5bd1e995; \ const int _mur_r = 24; \ hashv = 0xcafebabe ^ keylen; \ char *_mur_key = (char *)key; \ uint32_t _mur_len = keylen; \ int _mur_align = (int)_mur_key & 3; \ \ if (_mur_align && (_mur_len >= 4)) { \ unsigned _mur_t = 0, _mur_d = 0; \ switch(_mur_align) { \ case 1: _mur_t |= _mur_key[2] << 16; \ case 2: _mur_t |= _mur_key[1] << 8; \ case 3: _mur_t |= _mur_key[0]; \ } \ _mur_t <<= (8 * _mur_align); \ _mur_key += 4-_mur_align; \ _mur_len -= 4-_mur_align; \ int _mur_sl = 8 * (4-_mur_align); \ int _mur_sr = 8 * _mur_align; \ \ for (;_mur_len >= 4; _mur_len-=4) { \ _mur_d = *(unsigned *)_mur_key; \ _mur_t = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ unsigned _mur_k = _mur_t; \ _mur_k *= _mur_m; \ _mur_k ^= _mur_k >> _mur_r; \ _mur_k *= _mur_m; \ hashv *= _mur_m; \ hashv ^= _mur_k; \ _mur_t = _mur_d; \ _mur_key += 4; \ } \ _mur_d = 0; \ if(_mur_len >= _mur_align) { \ switch(_mur_align) { \ case 3: _mur_d |= _mur_key[2] << 16; \ case 2: _mur_d |= _mur_key[1] << 8; \ case 1: _mur_d |= _mur_key[0]; \ } \ unsigned _mur_k = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ _mur_k *= _mur_m; \ _mur_k ^= _mur_k >> _mur_r; \ _mur_k *= _mur_m; \ hashv *= _mur_m; \ hashv ^= _mur_k; \ _mur_k += _mur_align; \ _mur_len -= _mur_align; \ \ switch(_mur_len) \ { \ case 3: hashv ^= _mur_key[2] << 16; \ case 2: hashv ^= _mur_key[1] << 8; \ case 1: hashv ^= _mur_key[0]; \ hashv *= _mur_m; \ } \ } else { \ switch(_mur_len) \ { \ case 3: _mur_d ^= _mur_key[2] << 16; \ case 2: _mur_d ^= _mur_key[1] << 8; \ case 1: _mur_d ^= _mur_key[0]; \ case 0: hashv ^= (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \ hashv *= _mur_m; \ } \ } \ \ hashv ^= hashv >> 13; \ hashv *= _mur_m; \ hashv ^= hashv >> 15; \ } else { \ for (;_mur_len >= 4; _mur_len-=4) { \ unsigned _mur_k = *(unsigned*)_mur_key; \ _mur_k *= _mur_m; \ _mur_k ^= _mur_k >> _mur_r; \ _mur_k *= _mur_m; \ hashv *= _mur_m; \ hashv ^= _mur_k; \ _mur_key += 4; \ } \ switch(_mur_len) \ { \ case 3: hashv ^= _mur_key[2] << 16; \ case 2: hashv ^= _mur_key[1] << 8; \ case 1: hashv ^= _mur_key[0]; \ hashv *= _mur_m; \ } \ \ hashv ^= hashv >> 13; \ hashv *= _mur_m; \ hashv ^= hashv >> 15; \ } \ bkt = hashv & (num_bkts-1); \ } while(0) #endif /* HASH_USING_NO_STRICT_ALIASING */ /* key comparison function; return 0 if keys equal */ #define HASH_KEYCMP(a,b,len) memcmp(a,b,len) /* iterate over items in a known bucket to find desired item */ #define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \ do { \ if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \ else out=NULL; \ while (out) { \ if (out->hh.keylen == keylen_in) { \ if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \ } \ if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \ else out = NULL; \ } \ } while(0) /* add an item to a bucket */ #define HASH_ADD_TO_BKT(head,addhh) \ do { \ head.count++; \ (addhh)->hh_next = head.hh_head; \ (addhh)->hh_prev = NULL; \ if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \ (head).hh_head=addhh; \ if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \ && (addhh)->tbl->noexpand != 1) { \ HASH_EXPAND_BUCKETS((addhh)->tbl); \ } \ } while(0) /* remove an item from a given bucket */ #define HASH_DEL_IN_BKT(hh,head,hh_del) \ (head).count--; \ if ((head).hh_head == hh_del) { \ (head).hh_head = hh_del->hh_next; \ } \ if (hh_del->hh_prev) { \ hh_del->hh_prev->hh_next = hh_del->hh_next; \ } \ if (hh_del->hh_next) { \ hh_del->hh_next->hh_prev = hh_del->hh_prev; \ } /* Bucket expansion has the effect of doubling the number of buckets * and redistributing the items into the new buckets. Ideally the * items will distribute more or less evenly into the new buckets * (the extent to which this is true is a measure of the quality of * the hash function as it applies to the key domain). * * With the items distributed into more buckets, the chain length * (item count) in each bucket is reduced. Thus by expanding buckets * the hash keeps a bound on the chain length. This bounded chain * length is the essence of how a hash provides constant time lookup. * * The calculation of tbl->ideal_chain_maxlen below deserves some * explanation. First, keep in mind that we're calculating the ideal * maximum chain length based on the *new* (doubled) bucket count. * In fractions this is just n/b (n=number of items,b=new num buckets). * Since the ideal chain length is an integer, we want to calculate * ceil(n/b). We don't depend on floating point arithmetic in this * hash, so to calculate ceil(n/b) with integers we could write * * ceil(n/b) = (n/b) + ((n%b)?1:0) * * and in fact a previous version of this hash did just that. * But now we have improved things a bit by recognizing that b is * always a power of two. We keep its base 2 log handy (call it lb), * so now we can write this with a bit shift and logical AND: * * ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0) * */ #define HASH_EXPAND_BUCKETS(tbl) \ do { \ unsigned _he_bkt; \ unsigned _he_bkt_i; \ struct UT_hash_handle *_he_thh, *_he_hh_nxt; \ UT_hash_bucket *_he_new_buckets, *_he_newbkt; \ _he_new_buckets = (UT_hash_bucket*)uthash_malloc( \ 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \ memset(_he_new_buckets, 0, \ 2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ tbl->ideal_chain_maxlen = \ (tbl->num_items >> (tbl->log2_num_buckets+1)) + \ ((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \ tbl->nonideal_items = 0; \ for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \ { \ _he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \ while (_he_thh) { \ _he_hh_nxt = _he_thh->hh_next; \ HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \ _he_newbkt = &(_he_new_buckets[ _he_bkt ]); \ if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \ tbl->nonideal_items++; \ _he_newbkt->expand_mult = _he_newbkt->count / \ tbl->ideal_chain_maxlen; \ } \ _he_thh->hh_prev = NULL; \ _he_thh->hh_next = _he_newbkt->hh_head; \ if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \ _he_thh; \ _he_newbkt->hh_head = _he_thh; \ _he_thh = _he_hh_nxt; \ } \ } \ tbl->num_buckets *= 2; \ tbl->log2_num_buckets++; \ uthash_free( tbl->buckets ); \ tbl->buckets = _he_new_buckets; \ tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \ (tbl->ineff_expands+1) : 0; \ if (tbl->ineff_expands > 1) { \ tbl->noexpand=1; \ uthash_noexpand_fyi(tbl); \ } \ uthash_expand_fyi(tbl); \ } while(0) /* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */ /* Note that HASH_SORT assumes the hash handle name to be hh. * HASH_SRT was added to allow the hash handle name to be passed in. */ #define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn) #define HASH_SRT(hh,head,cmpfcn) \ do { \ unsigned _hs_i; \ unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \ struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \ if (head) { \ _hs_insize = 1; \ _hs_looping = 1; \ _hs_list = &((head)->hh); \ while (_hs_looping) { \ _hs_p = _hs_list; \ _hs_list = NULL; \ _hs_tail = NULL; \ _hs_nmerges = 0; \ while (_hs_p) { \ _hs_nmerges++; \ _hs_q = _hs_p; \ _hs_psize = 0; \ for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \ _hs_psize++; \ _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ ((void*)((char*)(_hs_q->next) + \ (head)->hh.tbl->hho)) : NULL); \ if (! (_hs_q) ) break; \ } \ _hs_qsize = _hs_insize; \ while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \ if (_hs_psize == 0) { \ _hs_e = _hs_q; \ _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ ((void*)((char*)(_hs_q->next) + \ (head)->hh.tbl->hho)) : NULL); \ _hs_qsize--; \ } else if ( (_hs_qsize == 0) || !(_hs_q) ) { \ _hs_e = _hs_p; \ _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ ((void*)((char*)(_hs_p->next) + \ (head)->hh.tbl->hho)) : NULL); \ _hs_psize--; \ } else if (( \ cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \ DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \ ) <= 0) { \ _hs_e = _hs_p; \ _hs_p = (UT_hash_handle*)((_hs_p->next) ? \ ((void*)((char*)(_hs_p->next) + \ (head)->hh.tbl->hho)) : NULL); \ _hs_psize--; \ } else { \ _hs_e = _hs_q; \ _hs_q = (UT_hash_handle*)((_hs_q->next) ? \ ((void*)((char*)(_hs_q->next) + \ (head)->hh.tbl->hho)) : NULL); \ _hs_qsize--; \ } \ if ( _hs_tail ) { \ _hs_tail->next = ((_hs_e) ? \ ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \ } else { \ _hs_list = _hs_e; \ } \ _hs_e->prev = ((_hs_tail) ? \ ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \ _hs_tail = _hs_e; \ } \ _hs_p = _hs_q; \ } \ _hs_tail->next = NULL; \ if ( _hs_nmerges <= 1 ) { \ _hs_looping=0; \ (head)->hh.tbl->tail = _hs_tail; \ DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \ } \ _hs_insize *= 2; \ } \ HASH_FSCK(hh,head); \ } \ } while (0) /* This function selects items from one hash into another hash. * The end result is that the selected items have dual presence * in both hashes. There is no copy of the items made; rather * they are added into the new hash through a secondary hash * hash handle that must be present in the structure. */ #define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \ do { \ unsigned _src_bkt, _dst_bkt; \ void *_last_elt=NULL, *_elt; \ UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \ ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \ if (src) { \ for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \ for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \ _src_hh; \ _src_hh = _src_hh->hh_next) { \ _elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \ if (cond(_elt)) { \ _dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \ _dst_hh->key = _src_hh->key; \ _dst_hh->keylen = _src_hh->keylen; \ _dst_hh->hashv = _src_hh->hashv; \ _dst_hh->prev = _last_elt; \ _dst_hh->next = NULL; \ if (_last_elt_hh) { _last_elt_hh->next = _elt; } \ if (!dst) { \ DECLTYPE_ASSIGN(dst,_elt); \ HASH_MAKE_TABLE(hh_dst,dst); \ } else { \ _dst_hh->tbl = (dst)->hh_dst.tbl; \ } \ HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \ HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \ (dst)->hh_dst.tbl->num_items++; \ _last_elt = _elt; \ _last_elt_hh = _dst_hh; \ } \ } \ } \ } \ HASH_FSCK(hh_dst,dst); \ } while (0) #define HASH_CLEAR(hh,head) \ do { \ if (head) { \ uthash_free((head)->hh.tbl->buckets ); \ uthash_free((head)->hh.tbl); \ (head)=NULL; \ } \ } while(0) /* obtain a count of items in the hash */ #define HASH_COUNT(head) HASH_CNT(hh,head) #define HASH_CNT(hh,head) (head?(head->hh.tbl->num_items):0) typedef struct UT_hash_bucket { struct UT_hash_handle *hh_head; unsigned count; /* expand_mult is normally set to 0. In this situation, the max chain length * threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If * the bucket's chain exceeds this length, bucket expansion is triggered). * However, setting expand_mult to a non-zero value delays bucket expansion * (that would be triggered by additions to this particular bucket) * until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH. * (The multiplier is simply expand_mult+1). The whole idea of this * multiplier is to reduce bucket expansions, since they are expensive, in * situations where we know that a particular bucket tends to be overused. * It is better to let its chain length grow to a longer yet-still-bounded * value, than to do an O(n) bucket expansion too often. */ unsigned expand_mult; } UT_hash_bucket; /* random signature used only to find hash tables in external analysis */ #define HASH_SIGNATURE 0xa0111fe1 #define HASH_BLOOM_SIGNATURE 0xb12220f2 typedef struct UT_hash_table { UT_hash_bucket *buckets; unsigned num_buckets, log2_num_buckets; unsigned num_items; struct UT_hash_handle *tail; /* tail hh in app order, for fast append */ ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */ /* in an ideal situation (all buckets used equally), no bucket would have * more than ceil(#items/#buckets) items. that's the ideal chain length. */ unsigned ideal_chain_maxlen; /* nonideal_items is the number of items in the hash whose chain position * exceeds the ideal chain maxlen. these items pay the penalty for an uneven * hash distribution; reaching them in a chain traversal takes >ideal steps */ unsigned nonideal_items; /* ineffective expands occur when a bucket doubling was performed, but * afterward, more than half the items in the hash had nonideal chain * positions. If this happens on two consecutive expansions we inhibit any * further expansion, as it's not helping; this happens when the hash * function isn't a good fit for the key domain. When expansion is inhibited * the hash will still work, albeit no longer in constant time. */ unsigned ineff_expands, noexpand; uint32_t signature; /* used only to find hash tables in external analysis */ #ifdef HASH_BLOOM uint32_t bloom_sig; /* used only to test bloom exists in external analysis */ uint8_t *bloom_bv; char bloom_nbits; #endif } UT_hash_table; typedef struct UT_hash_handle { struct UT_hash_table *tbl; void *prev; /* prev element in app order */ void *next; /* next element in app order */ struct UT_hash_handle *hh_prev; /* previous hh in bucket order */ struct UT_hash_handle *hh_next; /* next hh in bucket order */ void *key; /* ptr to enclosing struct's key */ unsigned keylen; /* enclosing struct's key len */ unsigned hashv; /* result of hash-fcn(key) */ } UT_hash_handle; #endif /* UTHASH_H */