/*************************************************************************/
/*  space_sw.cpp                                                         */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                    http://www.godotengine.org                         */
/*************************************************************************/
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur.                 */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/
#include "globals.h"
#include "space_sw.h"
#include "collision_solver_sw.h"
#include "physics_server_sw.h"


_FORCE_INLINE_ static bool _match_object_type_query(CollisionObjectSW *p_object, uint32_t p_layer_mask, uint32_t p_type_mask) {

	if (p_object->get_type()==CollisionObjectSW::TYPE_AREA)
		return p_type_mask&PhysicsDirectSpaceState::TYPE_MASK_AREA;

	if ((p_object->get_layer_mask()&p_layer_mask)==0)
		return false;

	BodySW *body = static_cast<BodySW*>(p_object);

	return (1<<body->get_mode())&p_type_mask;

}


bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3& p_from, const Vector3& p_to, RayResult &r_result, const Set<RID>& p_exclude, uint32_t p_layer_mask, uint32_t p_object_type_mask, bool p_pick_ray) {


	ERR_FAIL_COND_V(space->locked,false);

	Vector3 begin,end;
	Vector3 normal;
	begin=p_from;
	end=p_to;
	normal=(end-begin).normalized();


	int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);


	//todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision

	bool collided=false;
	Vector3 res_point,res_normal;
	int res_shape;
	const CollisionObjectSW *res_obj;
	real_t min_d=1e10;



	for(int i=0;i<amount;i++) {

		if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
			continue;

		if (p_pick_ray && !(static_cast<CollisionObjectSW*>(space->intersection_query_results[i])->is_ray_pickable()))
			continue;

		if (p_exclude.has( space->intersection_query_results[i]->get_self()))
			continue;

		const CollisionObjectSW *col_obj=space->intersection_query_results[i];

		int shape_idx=space->intersection_query_subindex_results[i];
		Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();

		Vector3 local_from = inv_xform.xform(begin);
		Vector3 local_to = inv_xform.xform(end);

		const ShapeSW *shape = col_obj->get_shape(shape_idx);

		Vector3 shape_point,shape_normal;


		if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) {



			Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
			shape_point=xform.xform(shape_point);

			real_t ld = normal.dot(shape_point);


			if (ld<min_d) {

				min_d=ld;
				res_point=shape_point;
				res_normal=inv_xform.basis.xform_inv(shape_normal).normalized();
				res_shape=shape_idx;
				res_obj=col_obj;
				collided=true;
			}
		}

	}

	if (!collided)
		return false;


	r_result.collider_id=res_obj->get_instance_id();
	if (r_result.collider_id!=0)
		r_result.collider=ObjectDB::get_instance(r_result.collider_id);
	else
		r_result.collider=NULL;
	r_result.normal=res_normal;
	r_result.position=res_point;
	r_result.rid=res_obj->get_self();
	r_result.shape=res_shape;

	return true;

}


int PhysicsDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Transform& p_xform,float p_margin,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {

	if (p_result_max<=0)
		return 0;

	ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
	ERR_FAIL_COND_V(!shape,0);

	AABB aabb = p_xform.xform(shape->get_aabb());

	int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);

	bool collided=false;
	int cc=0;

	//Transform ai = p_xform.affine_inverse();

	for(int i=0;i<amount;i++) {

		if (cc>=p_result_max)
			break;

		if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
			continue;

		//area cant be picked by ray (default)

		if (p_exclude.has( space->intersection_query_results[i]->get_self()))
			continue;


		const CollisionObjectSW *col_obj=space->intersection_query_results[i];
		int shape_idx=space->intersection_query_subindex_results[i];

		if (!CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), NULL,NULL,NULL,p_margin,0))
			continue;

		if (r_results) {
			r_results[cc].collider_id=col_obj->get_instance_id();
			if (r_results[cc].collider_id!=0)
				r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
			else
				r_results[cc].collider=NULL;
			r_results[cc].rid=col_obj->get_self();
			r_results[cc].shape=shape_idx;
		}

		cc++;

	}

	return cc;

}


bool PhysicsDirectSpaceStateSW::cast_motion(const RID& p_shape, const Transform& p_xform,const Vector3& p_motion,float p_margin,float &p_closest_safe,float &p_closest_unsafe, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask,ShapeRestInfo *r_info) {



	ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
	ERR_FAIL_COND_V(!shape,false);

	AABB aabb = p_xform.xform(shape->get_aabb());
	aabb=aabb.merge(AABB(aabb.pos+p_motion,aabb.size)); //motion
	aabb=aabb.grow(p_margin);

	//if (p_motion!=Vector3())
	//	print_line(p_motion);

	int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);

	float best_safe=1;
	float best_unsafe=1;

	Transform xform_inv = p_xform.affine_inverse();
	MotionShapeSW mshape;
	mshape.shape=shape;
	mshape.motion=xform_inv.basis.xform(p_motion);

	bool best_first=true;

	Vector3 closest_A,closest_B;

	for(int i=0;i<amount;i++) {


		if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
			continue;

		if (p_exclude.has( space->intersection_query_results[i]->get_self()))
			continue; //ignore excluded


		const CollisionObjectSW *col_obj=space->intersection_query_results[i];
		int shape_idx=space->intersection_query_subindex_results[i];

		Vector3 point_A,point_B;
		Vector3 sep_axis=p_motion.normalized();

		Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
		//test initial overlap, does it collide if going all the way?
		if (CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
			//print_line("failed motion cast (no collision)");
			continue;
		}


		//test initial overlap
#if 0
		if (CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,NULL,NULL,&sep_axis)) {
			print_line("failed initial cast (collision at begining)");
			return false;
		}
#else
		sep_axis=p_motion.normalized();

		if (!CollisionSolverSW::solve_distance(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
			//print_line("failed motion cast (no collision)");
			return false;
		}
#endif


		//just do kinematic solving
		float low=0;
		float hi=1;
		Vector3 mnormal=p_motion.normalized();

		for(int i=0;i<8;i++) { //steps should be customizable..

			Transform xfa = p_xform;
			float ofs = (low+hi)*0.5;

			Vector3 sep=mnormal; //important optimization for this to work fast enough

			mshape.motion=xform_inv.basis.xform(p_motion*ofs);

			Vector3 lA,lB;

			bool collided = !CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,lA,lB,aabb,&sep);

			if (collided) {

				//print_line(itos(i)+": "+rtos(ofs));
				hi=ofs;
			} else {

				point_A=lA;
				point_B=lB;
				low=ofs;
			}
		}

		if (low<best_safe) {
			best_first=true; //force reset
			best_safe=low;
			best_unsafe=hi;
		}

		if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low<=best_safe))) {
			closest_A=point_A;
			closest_B=point_B;
			r_info->collider_id=col_obj->get_instance_id();
			r_info->rid=col_obj->get_self();
			r_info->shape=shape_idx;
			r_info->point=closest_B;
			r_info->normal=(closest_A-closest_B).normalized();
			best_first=false;
			if (col_obj->get_type()==CollisionObjectSW::TYPE_BODY) {
				const BodySW *body=static_cast<const BodySW*>(col_obj);
				r_info->linear_velocity= body->get_linear_velocity() + (body->get_angular_velocity()).cross(body->get_transform().origin - closest_B);
			}

		}


	}

	p_closest_safe=best_safe;
	p_closest_unsafe=best_unsafe;

	return true;
}

bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform& p_shape_xform,float p_margin,Vector3 *r_results,int p_result_max,int &r_result_count, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask){

	if (p_result_max<=0)
		return 0;

	ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
	ERR_FAIL_COND_V(!shape,0);

	AABB aabb = p_shape_xform.xform(shape->get_aabb());
	aabb=aabb.grow(p_margin);

	int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);

	bool collided=false;
	int cc=0;
	r_result_count=0;

	PhysicsServerSW::CollCbkData cbk;
	cbk.max=p_result_max;
	cbk.amount=0;
	cbk.ptr=r_results;
	CollisionSolverSW::CallbackResult cbkres=NULL;

	PhysicsServerSW::CollCbkData *cbkptr=NULL;
	if (p_result_max>0) {
		cbkptr=&cbk;
		cbkres=PhysicsServerSW::_shape_col_cbk;
	}


	for(int i=0;i<amount;i++) {

		if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
			continue;

		const CollisionObjectSW *col_obj=space->intersection_query_results[i];
		int shape_idx=space->intersection_query_subindex_results[i];

		if (p_exclude.has( col_obj->get_self() )) {
			continue;
		}

		//print_line("AGAINST: "+itos(col_obj->get_self().get_id())+":"+itos(shape_idx));
		//print_line("THE ABBB: "+(col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).xform(col_obj->get_shape(shape_idx)->get_aabb()));

		if (CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),cbkres,cbkptr,NULL,p_margin)) {
			collided=true;
		}

	}

	r_result_count=cbk.amount;

	return collided;

}


struct _RestCallbackData {

	const CollisionObjectSW *object;
	const CollisionObjectSW *best_object;
	int shape;
	int best_shape;
	Vector3 best_contact;
	Vector3 best_normal;
	float best_len;
};

static void _rest_cbk_result(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) {


	_RestCallbackData *rd=(_RestCallbackData*)p_userdata;

	Vector3 contact_rel = p_point_B - p_point_A;
	float len = contact_rel.length();
	if (len <= rd->best_len)
		return;

	rd->best_len=len;
	rd->best_contact=p_point_B;
	rd->best_normal=contact_rel/len;
	rd->best_object=rd->object;
	rd->best_shape=rd->shape;

}
bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform& p_shape_xform,float p_margin,ShapeRestInfo *r_info, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {


	ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
	ERR_FAIL_COND_V(!shape,0);

	AABB aabb = p_shape_xform.xform(shape->get_aabb());
	aabb=aabb.grow(p_margin);

	int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);

	_RestCallbackData rcd;
	rcd.best_len=0;
	rcd.best_object=NULL;
	rcd.best_shape=0;

	for(int i=0;i<amount;i++) {


		if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
			continue;

		const CollisionObjectSW *col_obj=space->intersection_query_results[i];
		int shape_idx=space->intersection_query_subindex_results[i];

		if (p_exclude.has( col_obj->get_self() ))
			continue;

		rcd.object=col_obj;
		rcd.shape=shape_idx;
		bool sc = CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),_rest_cbk_result,&rcd,NULL,p_margin);
		if (!sc)
			continue;


	}

	if (rcd.best_len==0)
		return false;

	r_info->collider_id=rcd.best_object->get_instance_id();
	r_info->shape=rcd.best_shape;
	r_info->normal=rcd.best_normal;
	r_info->point=rcd.best_contact;
	r_info->rid=rcd.best_object->get_self();
	if (rcd.best_object->get_type()==CollisionObjectSW::TYPE_BODY) {

		const BodySW *body = static_cast<const BodySW*>(rcd.best_object);
		Vector3 rel_vec = r_info->point-body->get_transform().get_origin();
		r_info->linear_velocity = body->get_linear_velocity() +
				(body->get_angular_velocity()).cross(body->get_transform().origin-rcd.best_contact);// * mPos);


	} else {
		r_info->linear_velocity=Vector3();
	}

	return true;
}


PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() {


	space=NULL;
}


////////////////////////////////////////////////////////////////////////////////////////////////////////////










void* SpaceSW::_broadphase_pair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_self) {

	CollisionObjectSW::Type type_A=A->get_type();
	CollisionObjectSW::Type type_B=B->get_type();
	if (type_A>type_B) {

		SWAP(A,B);
		SWAP(p_subindex_A,p_subindex_B);
		SWAP(type_A,type_B);
	}

	SpaceSW *self = (SpaceSW*)p_self;

	self->collision_pairs++;

	if (type_A==CollisionObjectSW::TYPE_AREA) {

		AreaSW *area=static_cast<AreaSW*>(A);
		if (type_B==CollisionObjectSW::TYPE_AREA) {

			AreaSW *area_b=static_cast<AreaSW*>(B);
			Area2PairSW *area2_pair = memnew(Area2PairSW(area_b,p_subindex_B,area,p_subindex_A) );
			return area2_pair;
		} else {

			BodySW *body=static_cast<BodySW*>(B);
			AreaPairSW *area_pair = memnew(AreaPairSW(body,p_subindex_B,area,p_subindex_A) );
			return area_pair;
		}
	} else {


		BodyPairSW *b = memnew( BodyPairSW((BodySW*)A,p_subindex_A,(BodySW*)B,p_subindex_B) );
		return b;

	}

	return NULL;
}

void SpaceSW::_broadphase_unpair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_data,void *p_self) {



	SpaceSW *self = (SpaceSW*)p_self;
	self->collision_pairs--;
	ConstraintSW *c = (ConstraintSW*)p_data;
	memdelete(c);
}


const SelfList<BodySW>::List& SpaceSW::get_active_body_list() const {

	return active_list;
}
void SpaceSW::body_add_to_active_list(SelfList<BodySW>* p_body) {

	active_list.add(p_body);
}
void SpaceSW::body_remove_from_active_list(SelfList<BodySW>* p_body) {

	active_list.remove(p_body);

}

void SpaceSW::body_add_to_inertia_update_list(SelfList<BodySW>* p_body) {


	inertia_update_list.add(p_body);
}

void SpaceSW::body_remove_from_inertia_update_list(SelfList<BodySW>* p_body) {

	inertia_update_list.remove(p_body);
}

BroadPhaseSW *SpaceSW::get_broadphase() {

	return broadphase;
}

void SpaceSW::add_object(CollisionObjectSW *p_object) {

	ERR_FAIL_COND( objects.has(p_object) );
	objects.insert(p_object);
}

void SpaceSW::remove_object(CollisionObjectSW *p_object) {

	ERR_FAIL_COND( !objects.has(p_object) );
	objects.erase(p_object);
}

const Set<CollisionObjectSW*> &SpaceSW::get_objects() const {

	return objects;
}

void SpaceSW::body_add_to_state_query_list(SelfList<BodySW>* p_body) {

	state_query_list.add(p_body);
}
void SpaceSW::body_remove_from_state_query_list(SelfList<BodySW>* p_body) {

	state_query_list.remove(p_body);
}

void SpaceSW::area_add_to_monitor_query_list(SelfList<AreaSW>* p_area) {

	monitor_query_list.add(p_area);
}
void SpaceSW::area_remove_from_monitor_query_list(SelfList<AreaSW>* p_area) {

	monitor_query_list.remove(p_area);
}

void SpaceSW::area_add_to_moved_list(SelfList<AreaSW>* p_area) {

	area_moved_list.add(p_area);
}

void SpaceSW::area_remove_from_moved_list(SelfList<AreaSW>* p_area) {

	area_moved_list.remove(p_area);
}

const SelfList<AreaSW>::List& SpaceSW::get_moved_area_list() const {

	return area_moved_list;
}




void SpaceSW::call_queries() {

	while(state_query_list.first()) {

		BodySW * b = state_query_list.first()->self();
		b->call_queries();
		state_query_list.remove(state_query_list.first());
	}

	while(monitor_query_list.first()) {

		AreaSW * a = monitor_query_list.first()->self();
		a->call_queries();
		monitor_query_list.remove(monitor_query_list.first());
	}

}

void SpaceSW::setup() {

	contact_debug_count=0;
	while(inertia_update_list.first()) {
		inertia_update_list.first()->self()->update_inertias();
		inertia_update_list.remove(inertia_update_list.first());
	}


}

void SpaceSW::update() {


	broadphase->update();

}


void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {

	switch(p_param) {

		case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break;
		case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break;
		case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break;
		case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_threshold=p_value; break;
		case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_threshold=p_value; break;
		case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break;
		case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio=p_value; break;
		case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break;
	}
}

real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const {

	switch(p_param) {

		case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius;
		case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation;
		case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration;
		case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_threshold;
		case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_threshold;
		case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep;
		case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio;
		case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias;
	}
	return 0;
}

void SpaceSW::lock() {

	locked=true;
}

void SpaceSW::unlock() {

	locked=false;
}

bool SpaceSW::is_locked() const {

	return locked;
}

PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() {

	return direct_access;
}

SpaceSW::SpaceSW() {

	collision_pairs=0;
	active_objects=0;
	island_count=0;
	contact_debug_count=0;

	locked=false;
	contact_recycle_radius=0.01;
	contact_max_separation=0.05;
	contact_max_allowed_penetration= 0.01;

	constraint_bias = 0.01;
	body_linear_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_linear",0.1);
	body_angular_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_angular", (8.0 / 180.0 * Math_PI) );
	body_time_to_sleep=0.5;
	body_angular_velocity_damp_ratio=10;


	broadphase = BroadPhaseSW::create_func();
	broadphase->set_pair_callback(_broadphase_pair,this);
	broadphase->set_unpair_callback(_broadphase_unpair,this);
	area=NULL;

	direct_access = memnew( PhysicsDirectSpaceStateSW );
	direct_access->space=this;

	for(int i=0;i<ELAPSED_TIME_MAX;i++)
		elapsed_time[i]=0;

}

SpaceSW::~SpaceSW() {

	memdelete(broadphase);
	memdelete( direct_access );
}