/*************************************************************************/ /* image.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "image.h" #include "core/io/image_loader.h" #include "core/os/copymem.h" #include "hash_map.h" #include "hq2x.h" #include "print_string.h" #include const char *Image::format_names[Image::FORMAT_MAX] = { "Grayscale", "Intensity", "GrayscaleAlpha", "RGB", "RGBA", "Indexed", "IndexedAlpha", "YUV422", "YUV444", "BC1", "BC2", "BC3", "BC4", "BC5", "PVRTC2", "PVRTC2Alpha", "PVRTC4", "PVRTC4Alpha", "ETC", "ATC", "ATCAlphaExp", "ATCAlphaInterp", }; SavePNGFunc Image::save_png_func = NULL; void Image::_put_pixel(int p_x, int p_y, const BColor &p_color, unsigned char *p_data) { _put_pixelw(p_x, p_y, width, p_color, p_data); } void Image::_put_pixelw(int p_x, int p_y, int p_width, const BColor &p_color, unsigned char *p_data) { int ofs = p_y * p_width + p_x; switch (format) { case FORMAT_GRAYSCALE: { p_data[ofs] = p_color.gray(); } break; case FORMAT_INTENSITY: { p_data[ofs] = p_color.a; } break; case FORMAT_GRAYSCALE_ALPHA: { p_data[ofs * 2] = p_color.gray(); p_data[ofs * 2 + 1] = p_color.a; } break; case FORMAT_RGB: { p_data[ofs * 3 + 0] = p_color.r; p_data[ofs * 3 + 1] = p_color.g; p_data[ofs * 3 + 2] = p_color.b; } break; case FORMAT_RGBA: { p_data[ofs * 4 + 0] = p_color.r; p_data[ofs * 4 + 1] = p_color.g; p_data[ofs * 4 + 2] = p_color.b; p_data[ofs * 4 + 3] = p_color.a; } break; case FORMAT_INDEXED: case FORMAT_INDEXED_ALPHA: { ERR_FAIL(); } break; default: {}; } } void Image::_get_mipmap_offset_and_size(int p_mipmap, int &r_offset, int &r_width, int &r_height) const { int w = width; int h = height; int ofs = 0; int pixel_size = get_format_pixel_size(format); int pixel_rshift = get_format_pixel_rshift(format); int minw, minh; _get_format_min_data_size(format, minw, minh); for (int i = 0; i < p_mipmap; i++) { int s = w * h; s *= pixel_size; s >>= pixel_rshift; ofs += s; w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } r_offset = ofs; r_width = w; r_height = h; } int Image::get_mipmap_offset(int p_mipmap) const { ERR_FAIL_INDEX_V(p_mipmap, (mipmaps + 1), -1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); return ofs; } void Image::get_mipmap_offset_and_size(int p_mipmap, int &r_ofs, int &r_size) const { int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w, h); r_ofs = ofs; r_size = ofs2 - ofs; } void Image::get_mipmap_offset_size_and_dimensions(int p_mipmap, int &r_ofs, int &r_size, int &w, int &h) const { int ofs; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); int ofs2, w2, h2; _get_mipmap_offset_and_size(p_mipmap + 1, ofs2, w2, h2); r_ofs = ofs; r_size = ofs2 - ofs; } void Image::put_pixel(int p_x, int p_y, const Color &p_color, int p_mipmap) { ERR_FAIL_INDEX(p_mipmap, mipmaps + 1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); ERR_FAIL_INDEX(p_x, w); ERR_FAIL_INDEX(p_y, h); DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); _put_pixelw(p_x, p_y, w, BColor(p_color.r * 255, p_color.g * 255, p_color.b * 255, p_color.a * 255), &data_ptr[ofs]); } Image::BColor Image::_get_pixel(int p_x, int p_y, const unsigned char *p_data, int p_data_size) const { return _get_pixelw(p_x, p_y, width, p_data, p_data_size); } Image::BColor Image::_get_pixelw(int p_x, int p_y, int p_width, const unsigned char *p_data, int p_data_size) const { int ofs = p_y * p_width + p_x; BColor result(0, 0, 0, 0); switch (format) { case FORMAT_GRAYSCALE: { result = BColor(p_data[ofs], p_data[ofs], p_data[ofs], 255.0); } break; case FORMAT_INTENSITY: { result = BColor(255, 255, 255, p_data[ofs]); } break; case FORMAT_GRAYSCALE_ALPHA: { result = BColor(p_data[ofs * 2], p_data[ofs * 2], p_data[ofs * 2], p_data[ofs * 2 + 1]); } break; case FORMAT_RGB: { result = BColor(p_data[ofs * 3], p_data[ofs * 3 + 1], p_data[ofs * 3 + 2]); } break; case FORMAT_RGBA: { result = BColor(p_data[ofs * 4], p_data[ofs * 4 + 1], p_data[ofs * 4 + 2], p_data[ofs * 4 + 3]); } break; case FORMAT_INDEXED_ALPHA: { int pitch = 4; const uint8_t *pal = &p_data[p_data_size - pitch * 256]; int idx = p_data[ofs]; result = BColor(pal[idx * pitch + 0], pal[idx * pitch + 1], pal[idx * pitch + 2], pal[idx * pitch + 3]); } break; case FORMAT_INDEXED: { int pitch = 3; const uint8_t *pal = &p_data[p_data_size - pitch * 256]; int idx = p_data[ofs]; result = BColor(pal[idx * pitch + 0], pal[idx * pitch + 1], pal[idx * pitch + 2], 255); } break; case FORMAT_YUV_422: { int y, u, v; if (p_x % 2) { const uint8_t *yp = &p_data[p_width * 2 * p_y + p_x * 2]; u = *(yp - 1); y = yp[0]; v = yp[1]; } else { const uint8_t *yp = &p_data[p_width * 2 * p_y + p_x * 2]; y = yp[0]; u = yp[1]; v = yp[3]; }; int32_t r = 1.164 * (y - 16) + 1.596 * (v - 128); int32_t g = 1.164 * (y - 16) - 0.813 * (v - 128) - 0.391 * (u - 128); int32_t b = 1.164 * (y - 16) + 2.018 * (u - 128); result = BColor(CLAMP(r, 0, 255), CLAMP(g, 0, 255), CLAMP(b, 0, 255)); } break; case FORMAT_YUV_444: { uint8_t y, u, v; const uint8_t *yp = &p_data[p_width * 3 * p_y + p_x * 3]; y = yp[0]; u = yp[1]; v = yp[2]; int32_t r = 1.164 * (y - 16) + 1.596 * (v - 128); int32_t g = 1.164 * (y - 16) - 0.813 * (v - 128) - 0.391 * (u - 128); int32_t b = 1.164 * (y - 16) + 2.018 * (u - 128); result = BColor(CLAMP(r, 0, 255), CLAMP(g, 0, 255), CLAMP(b, 0, 255)); } break; default: {} } return result; } void Image::put_indexed_pixel(int p_x, int p_y, uint8_t p_idx, int p_mipmap) { ERR_FAIL_COND(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA); ERR_FAIL_INDEX(p_mipmap, mipmaps + 1); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); ERR_FAIL_INDEX(p_x, w); ERR_FAIL_INDEX(p_y, h); data.set(ofs + p_y * w + p_x, p_idx); }; uint8_t Image::get_indexed_pixel(int p_x, int p_y, int p_mipmap) const { ERR_FAIL_COND_V(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA, 0); ERR_FAIL_INDEX_V(p_mipmap, mipmaps + 1, 0); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); ERR_FAIL_INDEX_V(p_x, w, 0); ERR_FAIL_INDEX_V(p_y, h, 0); return data[ofs + p_y * w + p_x]; }; void Image::set_pallete(const DVector &p_data) { int len = p_data.size(); ERR_FAIL_COND(format != FORMAT_INDEXED && format != FORMAT_INDEXED_ALPHA); ERR_FAIL_COND(format == FORMAT_INDEXED && len != (256 * 3)); ERR_FAIL_COND(format == FORMAT_INDEXED_ALPHA && len != (256 * 4)); int ofs, w, h; _get_mipmap_offset_and_size(mipmaps + 1, ofs, w, h); int pal_ofs = ofs; data.resize(pal_ofs + p_data.size()); DVector::Write wp = data.write(); unsigned char *dst = wp.ptr() + pal_ofs; DVector::Read r = p_data.read(); const unsigned char *src = r.ptr(); copymem(dst, src, len); }; int Image::get_width() const { return width; } int Image::get_height() const { return height; } int Image::get_mipmaps() const { return mipmaps; } Color Image::get_pixel(int p_x, int p_y, int p_mipmap) const { ERR_FAIL_INDEX_V(p_mipmap, mipmaps + 1, Color()); int ofs, w, h; _get_mipmap_offset_and_size(p_mipmap, ofs, w, h); ERR_FAIL_INDEX_V(p_x, w, Color()); ERR_FAIL_INDEX_V(p_y, h, Color()); int len = data.size(); DVector::Read r = data.read(); const unsigned char *data_ptr = r.ptr(); BColor c = _get_pixelw(p_x, p_y, w, &data_ptr[ofs], len); return Color(c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0); } void Image::convert(Format p_new_format) { if (data.size() == 0) return; if (p_new_format == format) return; if (format >= FORMAT_BC1 || p_new_format >= FORMAT_BC1) { ERR_EXPLAIN("Cannot convert to <-> from compressed/custom image formats (for now)."); ERR_FAIL(); } if (p_new_format == FORMAT_INDEXED || p_new_format == FORMAT_INDEXED_ALPHA) { return; } Image new_img(width, height, 0, p_new_format); int len = data.size(); DVector::Read r = data.read(); DVector::Write w = new_img.data.write(); const uint8_t *rptr = r.ptr(); uint8_t *wptr = w.ptr(); if (p_new_format == FORMAT_RGBA && format == FORMAT_INDEXED_ALPHA) { //optimized unquantized form int dataend = len - 256 * 4; const uint32_t *palpos = (const uint32_t *)&rptr[dataend]; uint32_t *dst32 = (uint32_t *)wptr; for (int i = 0; i < dataend; i++) dst32[i] = palpos[rptr[i]]; //since this is read/write, endianness is not a problem } else { //this is temporary, must find a faster way to do it. for (int i = 0; i < width; i++) for (int j = 0; j < height; j++) new_img._put_pixel(i, j, _get_pixel(i, j, rptr, len), wptr); } r = DVector::Read(); w = DVector::Write(); bool gen_mipmaps = mipmaps > 0; *this = new_img; if (gen_mipmaps) generate_mipmaps(); } Image::Format Image::get_format() const { return format; } static double _bicubic_interp_kernel(double x) { x = ABS(x); double bc = 0; if (x <= 1) bc = (1.5 * x - 2.5) * x * x + 1; else if (x < 2) bc = ((-0.5 * x + 2.5) * x - 4) * x + 2; return bc; } template static void _scale_cubic(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { // get source image size int width = p_src_width; int height = p_src_height; double xfac = (double)width / p_dst_width; double yfac = (double)height / p_dst_height; // coordinates of source points and cooefficiens double ox, oy, dx, dy, k1, k2; int ox1, oy1, ox2, oy2; // destination pixel values // width and height decreased by 1 int ymax = height - 1; int xmax = width - 1; // temporary pointer for (int y = 0; y < p_dst_height; y++) { // Y coordinates oy = (double)y * yfac - 0.5f; oy1 = (int)oy; dy = oy - (double)oy1; for (int x = 0; x < p_dst_width; x++) { // X coordinates ox = (double)x * xfac - 0.5f; ox1 = (int)ox; dx = ox - (double)ox1; // initial pixel value uint8_t *dst = p_dst + (y * p_dst_width + x) * CC; double color[CC]; for (int i = 0; i < CC; i++) { color[i] = 0; } for (int n = -1; n < 3; n++) { // get Y cooefficient k1 = _bicubic_interp_kernel(dy - (double)n); oy2 = oy1 + n; if (oy2 < 0) oy2 = 0; if (oy2 > ymax) oy2 = ymax; for (int m = -1; m < 3; m++) { // get X cooefficient k2 = k1 * _bicubic_interp_kernel((double)m - dx); ox2 = ox1 + m; if (ox2 < 0) ox2 = 0; if (ox2 > xmax) ox2 = xmax; // get pixel of original image const uint8_t *p = p_src + (oy2 * p_src_width + ox2) * CC; for (int i = 0; i < CC; i++) { color[i] += p[i] * k2; } } } for (int i = 0; i < CC; i++) { dst[i] = CLAMP(Math::fast_ftoi(color[i]), 0, 255); } } } } template static void _scale_bilinear(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { enum { FRAC_BITS = 8, FRAC_LEN = (1 << FRAC_BITS), FRAC_MASK = FRAC_LEN - 1 }; for (uint32_t i = 0; i < p_dst_height; i++) { uint32_t src_yofs_up_fp = (i * p_src_height * FRAC_LEN / p_dst_height); uint32_t src_yofs_frac = src_yofs_up_fp & FRAC_MASK; uint32_t src_yofs_up = src_yofs_up_fp >> FRAC_BITS; uint32_t src_yofs_down = (i + 1) * p_src_height / p_dst_height; if (src_yofs_down >= p_src_height) src_yofs_down = p_src_height - 1; //src_yofs_up*=CC; //src_yofs_down*=CC; uint32_t y_ofs_up = src_yofs_up * p_src_width * CC; uint32_t y_ofs_down = src_yofs_down * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs_left_fp = (j * p_src_width * FRAC_LEN / p_dst_width); uint32_t src_xofs_frac = src_xofs_left_fp & FRAC_MASK; uint32_t src_xofs_left = src_xofs_left_fp >> FRAC_BITS; uint32_t src_xofs_right = (j + 1) * p_src_width / p_dst_width; if (src_xofs_right >= p_src_width) src_xofs_right = p_src_width - 1; src_xofs_left *= CC; src_xofs_right *= CC; for (uint32_t l = 0; l < CC; l++) { uint32_t p00 = p_src[y_ofs_up + src_xofs_left + l] << FRAC_BITS; uint32_t p10 = p_src[y_ofs_up + src_xofs_right + l] << FRAC_BITS; uint32_t p01 = p_src[y_ofs_down + src_xofs_left + l] << FRAC_BITS; uint32_t p11 = p_src[y_ofs_down + src_xofs_right + l] << FRAC_BITS; uint32_t interp_up = p00 + (((p10 - p00) * src_xofs_frac) >> FRAC_BITS); uint32_t interp_down = p01 + (((p11 - p01) * src_xofs_frac) >> FRAC_BITS); uint32_t interp = interp_up + (((interp_down - interp_up) * src_yofs_frac) >> FRAC_BITS); interp >>= FRAC_BITS; p_dst[i * p_dst_width * CC + j * CC + l] = interp; } } } } template static void _scale_nearest(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_src_width, uint32_t p_src_height, uint32_t p_dst_width, uint32_t p_dst_height) { for (uint32_t i = 0; i < p_dst_height; i++) { uint32_t src_yofs = i * p_src_height / p_dst_height; uint32_t y_ofs = src_yofs * p_src_width * CC; for (uint32_t j = 0; j < p_dst_width; j++) { uint32_t src_xofs = j * p_src_width / p_dst_width; src_xofs *= CC; for (uint32_t l = 0; l < CC; l++) { uint32_t p = p_src[y_ofs + src_xofs + l]; p_dst[i * p_dst_width * CC + j * CC + l] = p; } } } } void Image::resize_to_po2(bool p_square) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats."); ERR_FAIL(); } int w = nearest_power_of_2(width); int h = nearest_power_of_2(height); if (w == width && h == height) { if (!p_square || w == h) return; //nothing to do } resize(w, h); } Image Image::resized(int p_width, int p_height, int p_interpolation) { Image ret = *this; ret.resize(p_width, p_height, (Interpolation)p_interpolation); return ret; }; void Image::resize(int p_width, int p_height, Interpolation p_interpolation) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot resize in indexed, compressed or custom image formats."); ERR_FAIL(); } ERR_FAIL_COND(p_width <= 0); ERR_FAIL_COND(p_height <= 0); ERR_FAIL_COND(p_width > MAX_WIDTH); ERR_FAIL_COND(p_height > MAX_HEIGHT); if (p_width == width && p_height == height) return; Image dst(p_width, p_height, 0, format); if (format == FORMAT_INDEXED) p_interpolation = INTERPOLATE_NEAREST; DVector::Read r = data.read(); const unsigned char *r_ptr = r.ptr(); DVector::Write w = dst.data.write(); unsigned char *w_ptr = w.ptr(); switch (p_interpolation) { case INTERPOLATE_NEAREST: { switch (get_format_pixel_size(format)) { case 1: _scale_nearest<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_nearest<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_nearest<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_nearest<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; case INTERPOLATE_BILINEAR: { switch (get_format_pixel_size(format)) { case 1: _scale_bilinear<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_bilinear<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_bilinear<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_bilinear<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; case INTERPOLATE_CUBIC: { switch (get_format_pixel_size(format)) { case 1: _scale_cubic<1>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 2: _scale_cubic<2>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 3: _scale_cubic<3>(r_ptr, w_ptr, width, height, p_width, p_height); break; case 4: _scale_cubic<4>(r_ptr, w_ptr, width, height, p_width, p_height); break; } } break; } r = DVector::Read(); w = DVector::Write(); if (mipmaps > 0) dst.generate_mipmaps(); *this = dst; } void Image::crop(int p_width, int p_height) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats."); ERR_FAIL(); } ERR_FAIL_COND(p_width <= 0); ERR_FAIL_COND(p_height <= 0); ERR_FAIL_COND(p_width > MAX_WIDTH); ERR_FAIL_COND(p_height > MAX_HEIGHT); /* to save memory, cropping should be done in-place, however, since this function will most likely either not be used much, or in critical areas, for now it wont, because it's a waste of time. */ if (p_width == width && p_height == height) return; Image dst(p_width, p_height, 0, format); for (int y = 0; y < p_height; y++) { for (int x = 0; x < p_width; x++) { Color col = (x >= width || y >= height) ? Color() : get_pixel(x, y); dst.put_pixel(x, y, col); } } if (mipmaps > 0) dst.generate_mipmaps(); *this = dst; } void Image::flip_y() { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot flip_y in indexed, compressed or custom image formats."); ERR_FAIL(); } bool gm = mipmaps; if (gm) clear_mipmaps(); for (int y = 0; y < (height / 2); y++) { for (int x = 0; x < width; x++) { Color up = get_pixel(x, y); Color down = get_pixel(x, height - y - 1); put_pixel(x, y, down); put_pixel(x, height - y - 1, up); } } if (gm) generate_mipmaps(); } void Image::flip_x() { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot flip_x in indexed, compressed or custom image formats."); ERR_FAIL(); } bool gm = mipmaps; if (gm) clear_mipmaps(); for (int y = 0; y < (height / 2); y++) { for (int x = 0; x < width; x++) { Color up = get_pixel(x, y); Color down = get_pixel(width - x - 1, y); put_pixel(x, y, down); put_pixel(width - x - 1, y, up); } } if (gm) generate_mipmaps(); } int Image::_get_dst_image_size(int p_width, int p_height, Format p_format, int &r_mipmaps, int p_mipmaps) { int size = 0; int w = p_width; int h = p_height; int mm = 0; int pixsize = get_format_pixel_size(p_format); int pixshift = get_format_pixel_rshift(p_format); int minw, minh; _get_format_min_data_size(p_format, minw, minh); switch (p_format) { case FORMAT_INDEXED: pixsize = 1; size = 256 * 3; break; case FORMAT_INDEXED_ALPHA: pixsize = 1; size = 256 * 4; break; default: {} }; while (true) { int s = w * h; s *= pixsize; s >>= pixshift; size += s; if (p_mipmaps >= 0 && mm == p_mipmaps) break; if (p_mipmaps >= 0) { w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } else { if (w == minw && h == minh) break; w = MAX(minw, w >> 1); h = MAX(minh, h >> 1); } mm++; }; r_mipmaps = mm; return size; } bool Image::_can_modify(Format p_format) const { switch (p_format) { //these are OK case FORMAT_GRAYSCALE: case FORMAT_INTENSITY: case FORMAT_GRAYSCALE_ALPHA: case FORMAT_RGB: case FORMAT_RGBA: return true; default: return false; } return false; } template static void _generate_po2_mipmap(const uint8_t *p_src, uint8_t *p_dst, uint32_t p_width, uint32_t p_height) { //fast power of 2 mipmap generation uint32_t dst_w = p_width >> 1; uint32_t dst_h = p_height >> 1; for (uint32_t i = 0; i < dst_h; i++) { const uint8_t *rup_ptr = &p_src[i * 2 * p_width * CC]; const uint8_t *rdown_ptr = rup_ptr + p_width * CC; uint8_t *dst_ptr = &p_dst[i * dst_w * CC]; uint32_t count = dst_w; while (count--) { for (int j = 0; j < CC; j++) { uint16_t val = 0; val += rup_ptr[j]; val += rup_ptr[j + CC]; val += rdown_ptr[j]; val += rdown_ptr[j + CC]; dst_ptr[j] = val >> 2; } dst_ptr += CC; rup_ptr += CC * 2; rdown_ptr += CC * 2; } } } void Image::expand_x2_hq2x() { ERR_FAIL_COND(format >= FORMAT_INDEXED); Format current = format; bool mipmaps = get_mipmaps(); if (mipmaps) { clear_mipmaps(); } if (current != FORMAT_RGBA) convert(FORMAT_RGBA); DVector dest; dest.resize(width * 2 * height * 2 * 4); { DVector::Read r = data.read(); DVector::Write w = dest.write(); hq2x_resize((const uint32_t *)r.ptr(), width, height, (uint32_t *)w.ptr()); } width *= 2; height *= 2; data = dest; if (current != FORMAT_RGBA) convert(current); if (mipmaps) { generate_mipmaps(); } } void Image::shrink_x2() { ERR_FAIL_COND(format == FORMAT_INDEXED || format == FORMAT_INDEXED_ALPHA); ERR_FAIL_COND(data.size() == 0); if (mipmaps) { //just use the lower mipmap as base and copy all DVector new_img; int ofs = get_mipmap_offset(1); int new_size = data.size() - ofs; new_img.resize(new_size); { DVector::Write w = new_img.write(); DVector::Read r = data.read(); copymem(w.ptr(), &r[ofs], new_size); } mipmaps--; width /= 2; height /= 2; data = new_img; } else { DVector new_img; ERR_FAIL_COND(format >= FORMAT_INDEXED); int ps = get_format_pixel_size(format); new_img.resize((width / 2) * (height / 2) * ps); { DVector::Write w = new_img.write(); DVector::Read r = data.read(); switch (format) { case FORMAT_GRAYSCALE: case FORMAT_INTENSITY: _generate_po2_mipmap<1>(r.ptr(), w.ptr(), width, height); break; case FORMAT_GRAYSCALE_ALPHA: _generate_po2_mipmap<2>(r.ptr(), w.ptr(), width, height); break; case FORMAT_RGB: _generate_po2_mipmap<3>(r.ptr(), w.ptr(), width, height); break; case FORMAT_RGBA: _generate_po2_mipmap<4>(r.ptr(), w.ptr(), width, height); break; default: {} } } width /= 2; height /= 2; data = new_img; } } Error Image::generate_mipmaps(int p_mipmaps, bool p_keep_existing) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot generate mipmaps in indexed, compressed or custom image formats."); ERR_FAIL_V(ERR_UNAVAILABLE); } int from_mm = 1; if (p_keep_existing) { from_mm = mipmaps + 1; } int size = _get_dst_image_size(width, height, format, mipmaps, p_mipmaps); data.resize(size); DVector::Write wp = data.write(); if (nearest_power_of_2(width) == uint32_t(width) && nearest_power_of_2(height) == uint32_t(height)) { //use fast code for powers of 2 int prev_ofs = 0; int prev_h = height; int prev_w = width; for (int i = 1; i < mipmaps; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); if (i >= from_mm) { switch (format) { case FORMAT_GRAYSCALE: case FORMAT_INTENSITY: _generate_po2_mipmap<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_GRAYSCALE_ALPHA: _generate_po2_mipmap<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_RGB: _generate_po2_mipmap<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; case FORMAT_RGBA: _generate_po2_mipmap<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h); break; default: {} } } prev_ofs = ofs; prev_w = w; prev_h = h; } } else { //use slow code.. //use bilinear filtered code for non powers of 2 int prev_ofs = 0; int prev_h = height; int prev_w = width; for (int i = 1; i < mipmaps; i++) { int ofs, w, h; _get_mipmap_offset_and_size(i, ofs, w, h); if (i >= from_mm) { switch (format) { case FORMAT_GRAYSCALE: case FORMAT_INTENSITY: _scale_bilinear<1>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_GRAYSCALE_ALPHA: _scale_bilinear<2>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_RGB: _scale_bilinear<3>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; case FORMAT_RGBA: _scale_bilinear<4>(&wp[prev_ofs], &wp[ofs], prev_w, prev_h, w, h); break; default: {} } } prev_ofs = ofs; prev_w = w; prev_h = h; } } return OK; } void Image::clear_mipmaps() { if (mipmaps == 0) return; if (format == FORMAT_CUSTOM) { ERR_EXPLAIN("Cannot clear mipmaps in indexed, compressed or custom image formats."); ERR_FAIL(); } if (empty()) return; int ofs, w, h; _get_mipmap_offset_and_size(1, ofs, w, h); int palsize = get_format_pallete_size(format); DVector pallete; ERR_FAIL_COND(ofs + palsize > data.size()); //bug? if (palsize) { pallete.resize(palsize); DVector::Read r = data.read(); DVector::Write w = pallete.write(); copymem(&w[0], &r[data.size() - palsize], palsize); } data.resize(ofs + palsize); if (palsize) { DVector::Read r = pallete.read(); DVector::Write w = data.write(); copymem(&w[ofs], &r[0], palsize); } mipmaps = 0; } void Image::make_normalmap(float p_height_scale) { if (!_can_modify(format)) { ERR_EXPLAIN("Cannot crop in indexed, compressed or custom image formats."); ERR_FAIL(); } ERR_FAIL_COND(empty()); Image normalmap(width, height, 0, FORMAT_RGB); /* for (int y=0;y0)?get_pixel(x,y-1).gray()/255.0:center; float down=(y<(height-1))?get_pixel(x,y+1).gray()/255.0:center; float left=(x>0)?get_pixel(x-1,y).gray()/255.0:center; float right=(x<(width-1))?get_pixel(x+1,y).gray()/255.0:center; // uhm, how do i do this? .... Color result( (uint8_t)((normal.x+1.0)*127.0), (uint8_t)((normal.y+1.0)*127.0), (uint8_t)((normal.z+1.0)*127.0) ); normalmap.put_pixel( x, y, result ); } } */ *this = normalmap; } bool Image::empty() const { return (data.size() == 0); } DVector Image::get_data() const { return data; } void Image::create(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { int mm = 0; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_use_mipmaps ? -1 : 0); data.resize(size); { DVector::Write w = data.write(); zeromem(w.ptr(), size); } width = p_width; height = p_height; mipmaps = mm; format = p_format; } void Image::create(int p_width, int p_height, int p_mipmaps, Format p_format, const DVector &p_data) { ERR_FAIL_INDEX(p_width - 1, MAX_WIDTH); ERR_FAIL_INDEX(p_height - 1, MAX_HEIGHT); if (p_format < FORMAT_CUSTOM) { int mm; int size = _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps); if (size != p_data.size()) { ERR_EXPLAIN("Expected data size of " + itos(size) + " in Image::create()"); ERR_FAIL_COND(p_data.size() != size); } }; height = p_height; width = p_width; format = p_format; data = p_data; mipmaps = p_mipmaps; } void Image::create(const char **p_xpm) { int size_width, size_height; int pixelchars = 0; mipmaps = 0; bool has_alpha = false; enum Status { READING_HEADER, READING_COLORS, READING_PIXELS, DONE }; Status status = READING_HEADER; int line = 0; HashMap colormap; int colormap_size; while (status != DONE) { const char *line_ptr = p_xpm[line]; switch (status) { case READING_HEADER: { String line_str = line_ptr; line_str.replace("\t", " "); size_width = line_str.get_slicec(' ', 0).to_int(); size_height = line_str.get_slicec(' ', 1).to_int(); colormap_size = line_str.get_slicec(' ', 2).to_int(); pixelchars = line_str.get_slicec(' ', 3).to_int(); ERR_FAIL_COND(colormap_size > 32766); ERR_FAIL_COND(pixelchars > 5); ERR_FAIL_COND(size_width > 32767); ERR_FAIL_COND(size_height > 32767); status = READING_COLORS; } break; case READING_COLORS: { String colorstring; for (int i = 0; i < pixelchars; i++) { colorstring += *line_ptr; line_ptr++; } //skip spaces while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) break; line_ptr++; } if (*line_ptr == 'c') { line_ptr++; while (*line_ptr == ' ' || *line_ptr == '\t' || *line_ptr == 0) { if (*line_ptr == 0) break; line_ptr++; } if (*line_ptr == '#') { line_ptr++; uint8_t col_r; uint8_t col_g; uint8_t col_b; // uint8_t col_a=255; for (int i = 0; i < 6; i++) { char v = line_ptr[i]; if (v >= '0' && v <= '9') v -= '0'; else if (v >= 'A' && v <= 'F') v = (v - 'A') + 10; else if (v >= 'a' && v <= 'f') v = (v - 'a') + 10; else break; switch (i) { case 0: col_r = v << 4; break; case 1: col_r |= v; break; case 2: col_g = v << 4; break; case 3: col_g |= v; break; case 4: col_b = v << 4; break; case 5: col_b |= v; break; }; } // magenta mask if (col_r == 255 && col_g == 0 && col_b == 255) { colormap[colorstring] = Color(0, 0, 0, 0); has_alpha = true; } else { colormap[colorstring] = Color(col_r / 255.0, col_g / 255.0, col_b / 255.0, 1.0); } } } if (line == colormap_size) { status = READING_PIXELS; create(size_width, size_height, 0, has_alpha ? FORMAT_RGBA : FORMAT_RGB); } } break; case READING_PIXELS: { int y = line - colormap_size - 1; for (int x = 0; x < size_width; x++) { char pixelstr[6] = { 0, 0, 0, 0, 0, 0 }; for (int i = 0; i < pixelchars; i++) pixelstr[i] = line_ptr[x * pixelchars + i]; Color *colorptr = colormap.getptr(pixelstr); ERR_FAIL_COND(!colorptr); put_pixel(x, y, *colorptr); } if (y == (size_height - 1)) status = DONE; } break; default: {} } line++; } } #define DETECT_ALPHA_MAX_TRESHOLD 254 #define DETECT_ALPHA_MIN_TRESHOLD 2 #define DETECT_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value < DETECT_ALPHA_MIN_TRESHOLD) \ bit = true; \ else if (value < DETECT_ALPHA_MAX_TRESHOLD) { \ \ detected = true; \ break; \ } \ } #define DETECT_NON_ALPHA(m_value) \ { \ uint8_t value = m_value; \ if (value > 0) { \ \ detected = true; \ break; \ } \ } bool Image::is_invisible() const { if (format == FORMAT_GRAYSCALE || format == FORMAT_RGB || format == FORMAT_INDEXED) return false; int len = data.size(); if (len == 0) return true; if (format >= FORMAT_YUV_422 && format <= FORMAT_YUV_444) return false; int w, h; _get_mipmap_offset_and_size(1, len, w, h); DVector::Read r = data.read(); const unsigned char *data_ptr = r.ptr(); bool detected = false; switch (format) { case FORMAT_INTENSITY: { for (int i = 0; i < len; i++) { DETECT_NON_ALPHA(data_ptr[i]); } } break; case FORMAT_GRAYSCALE_ALPHA: { for (int i = 0; i < (len >> 1); i++) { DETECT_NON_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA: { for (int i = 0; i < (len >> 2); i++) { DETECT_NON_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_INDEXED: { return false; } break; case FORMAT_INDEXED_ALPHA: { return false; } break; case FORMAT_PVRTC2_ALPHA: case FORMAT_PVRTC4_ALPHA: case FORMAT_BC2: case FORMAT_BC3: { detected = true; } break; default: {} } return !detected; } Image::AlphaMode Image::detect_alpha() const { if (format == FORMAT_GRAYSCALE || format == FORMAT_RGB || format == FORMAT_INDEXED) return ALPHA_NONE; int len = data.size(); if (len == 0) return ALPHA_NONE; if (format >= FORMAT_YUV_422 && format <= FORMAT_YUV_444) return ALPHA_NONE; int w, h; _get_mipmap_offset_and_size(1, len, w, h); DVector::Read r = data.read(); const unsigned char *data_ptr = r.ptr(); bool bit = false; bool detected = false; switch (format) { case FORMAT_INTENSITY: { for (int i = 0; i < len; i++) { DETECT_ALPHA(data_ptr[i]); } } break; case FORMAT_GRAYSCALE_ALPHA: { for (int i = 0; i < (len >> 1); i++) { DETECT_ALPHA(data_ptr[(i << 1) + 1]); } } break; case FORMAT_RGBA: { for (int i = 0; i < (len >> 2); i++) { DETECT_ALPHA(data_ptr[(i << 2) + 3]) } } break; case FORMAT_INDEXED: { return ALPHA_NONE; } break; case FORMAT_INDEXED_ALPHA: { return ALPHA_BLEND; } break; case FORMAT_PVRTC2_ALPHA: case FORMAT_PVRTC4_ALPHA: case FORMAT_BC2: case FORMAT_BC3: { detected = true; } break; default: {} } if (detected) return ALPHA_BLEND; else if (bit) return ALPHA_BIT; else return ALPHA_NONE; } Error Image::load(const String &p_path) { return ImageLoader::load_image(p_path, this); } Error Image::save_png(const String &p_path) { if (save_png_func == NULL) return ERR_UNAVAILABLE; return save_png_func(p_path, *this); }; bool Image::operator==(const Image &p_image) const { if (data.size() == 0 && p_image.data.size() == 0) return true; DVector::Read r = data.read(); DVector::Read pr = p_image.data.read(); return r.ptr() == pr.ptr(); } int Image::get_format_pixel_size(Format p_format) { switch (p_format) { case FORMAT_GRAYSCALE: { return 1; } break; case FORMAT_INTENSITY: { return 1; } break; case FORMAT_GRAYSCALE_ALPHA: { return 2; } break; case FORMAT_RGB: { return 3; } break; case FORMAT_RGBA: { return 4; } break; case FORMAT_INDEXED: { return 1; } break; case FORMAT_INDEXED_ALPHA: { return 1; } break; case FORMAT_BC1: case FORMAT_BC2: case FORMAT_BC3: case FORMAT_BC4: case FORMAT_BC5: { return 1; } break; case FORMAT_PVRTC2: case FORMAT_PVRTC2_ALPHA: { return 1; } break; case FORMAT_PVRTC4: case FORMAT_PVRTC4_ALPHA: { return 1; } break; case FORMAT_ATC: case FORMAT_ATC_ALPHA_EXPLICIT: case FORMAT_ATC_ALPHA_INTERPOLATED: { return 1; } break; case FORMAT_ETC: { return 1; } break; case FORMAT_YUV_422: { return 2; }; case FORMAT_YUV_444: { return 3; } break; case FORMAT_CUSTOM: { ERR_EXPLAIN("pixel size requested for custom image format, and it's unknown obviously"); ERR_FAIL_V(1); } break; default: { ERR_EXPLAIN("Cannot obtain pixel size from this format"); ERR_FAIL_V(1); } } return 0; } int Image::get_image_data_size(int p_width, int p_height, Format p_format, int p_mipmaps) { int mm; return _get_dst_image_size(p_width, p_height, p_format, mm, p_mipmaps); } int Image::get_image_required_mipmaps(int p_width, int p_height, Format p_format) { int mm; _get_dst_image_size(p_width, p_height, p_format, mm, -1); return mm; } void Image::_get_format_min_data_size(Format p_format, int &r_w, int &r_h) { switch (p_format) { case FORMAT_BC1: case FORMAT_BC2: case FORMAT_BC3: case FORMAT_BC4: case FORMAT_BC5: { r_w = 4; r_h = 4; } break; case FORMAT_PVRTC2: case FORMAT_PVRTC2_ALPHA: { r_w = 16; r_h = 8; } break; case FORMAT_PVRTC4_ALPHA: case FORMAT_PVRTC4: { r_w = 8; r_h = 8; } break; case FORMAT_ATC: case FORMAT_ATC_ALPHA_EXPLICIT: case FORMAT_ATC_ALPHA_INTERPOLATED: { r_w = 8; r_h = 8; } break; case FORMAT_ETC: { r_w = 4; r_h = 4; } break; default: { r_w = 1; r_h = 1; } break; } } int Image::get_format_pixel_rshift(Format p_format) { if (p_format == FORMAT_BC1 || p_format == FORMAT_BC4 || p_format == FORMAT_ATC || p_format == FORMAT_PVRTC4 || p_format == FORMAT_PVRTC4_ALPHA || p_format == FORMAT_ETC) return 1; else if (p_format == FORMAT_PVRTC2 || p_format == FORMAT_PVRTC2_ALPHA) return 2; else return 0; } int Image::get_format_pallete_size(Format p_format) { switch (p_format) { case FORMAT_GRAYSCALE: { return 0; } break; case FORMAT_INTENSITY: { return 0; } break; case FORMAT_GRAYSCALE_ALPHA: { return 0; } break; case FORMAT_RGB: { return 0; } break; case FORMAT_RGBA: { return 0; } break; case FORMAT_INDEXED: { return 3 * 256; } break; case FORMAT_INDEXED_ALPHA: { return 4 * 256; } break; default: {} } return 0; } Error Image::_decompress_bc() { print_line("decompressing bc"); int wd = width, ht = height; if (wd % 4 != 0) { wd += 4 - (wd % 4); } if (ht % 4 != 0) { ht += 4 - (ht % 4); } int mm; int size = _get_dst_image_size(wd, ht, FORMAT_RGBA, mm, mipmaps); DVector newdata; newdata.resize(size); DVector::Write w = newdata.write(); DVector::Read r = data.read(); int rofs = 0; int wofs = 0; //print_line("width: "+itos(wd)+" height: "+itos(ht)); for (int i = 0; i <= mm; i++) { switch (format) { case FORMAT_BC1: { int len = (wd * ht) / 16; uint8_t *dst = &w[wofs]; uint32_t ofs_table[16]; for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4; } } for (int j = 0; j < len; j++) { const uint8_t *src = &r[rofs + j * 8]; uint16_t col_a = src[1]; col_a <<= 8; col_a |= src[0]; uint16_t col_b = src[3]; col_b <<= 8; col_b |= src[2]; uint8_t table[4][4] = { { (col_a >> 11) << 3, ((col_a >> 5) & 0x3f) << 2, ((col_a)&0x1f) << 3, 255 }, { (col_b >> 11) << 3, ((col_b >> 5) & 0x3f) << 2, ((col_b)&0x1f) << 3, 255 }, { 0, 0, 0, 255 }, { 0, 0, 0, 255 } }; if (col_a < col_b) { //punchrough table[2][0] = (int(table[0][0]) + int(table[1][0])) >> 1; table[2][1] = (int(table[0][1]) + int(table[1][1])) >> 1; table[2][2] = (int(table[0][2]) + int(table[1][2])) >> 1; table[3][3] = 0; //premul alpha black } else { //gradient table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3; table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3; table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3; table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3; table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3; table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3; } uint32_t block = src[4]; block <<= 8; block |= src[5]; block <<= 8; block |= src[6]; block <<= 8; block |= src[7]; int y = (j / (wd / 4)) * 4; int x = (j % (wd / 4)) * 4; int pixofs = (y * wd + x) * 4; for (int k = 0; k < 16; k++) { int idx = pixofs + ofs_table[k]; dst[idx + 0] = table[block & 0x3][0]; dst[idx + 1] = table[block & 0x3][1]; dst[idx + 2] = table[block & 0x3][2]; dst[idx + 3] = table[block & 0x3][3]; block >>= 2; } } rofs += len * 8; wofs += wd * ht * 4; wd /= 2; ht /= 2; } break; case FORMAT_BC2: { int len = (wd * ht) / 16; uint8_t *dst = &w[wofs]; uint32_t ofs_table[16]; for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4; } } for (int j = 0; j < len; j++) { const uint8_t *src = &r[rofs + j * 16]; uint64_t ablock = src[1]; ablock <<= 8; ablock |= src[0]; ablock <<= 8; ablock |= src[3]; ablock <<= 8; ablock |= src[2]; ablock <<= 8; ablock |= src[5]; ablock <<= 8; ablock |= src[4]; ablock <<= 8; ablock |= src[7]; ablock <<= 8; ablock |= src[6]; uint16_t col_a = src[8 + 1]; col_a <<= 8; col_a |= src[8 + 0]; uint16_t col_b = src[8 + 3]; col_b <<= 8; col_b |= src[8 + 2]; uint8_t table[4][4] = { { (col_a >> 11) << 3, ((col_a >> 5) & 0x3f) << 2, ((col_a)&0x1f) << 3, 255 }, { (col_b >> 11) << 3, ((col_b >> 5) & 0x3f) << 2, ((col_b)&0x1f) << 3, 255 }, { 0, 0, 0, 255 }, { 0, 0, 0, 255 } }; //always gradient table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3; table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3; table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3; table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3; table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3; table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3; uint32_t block = src[4 + 8]; block <<= 8; block |= src[5 + 8]; block <<= 8; block |= src[6 + 8]; block <<= 8; block |= src[7 + 8]; int y = (j / (wd / 4)) * 4; int x = (j % (wd / 4)) * 4; int pixofs = (y * wd + x) * 4; for (int k = 0; k < 16; k++) { uint8_t alpha = ablock & 0xf; alpha = int(alpha) * 255 / 15; //right way for alpha int idx = pixofs + ofs_table[k]; dst[idx + 0] = table[block & 0x3][0]; dst[idx + 1] = table[block & 0x3][1]; dst[idx + 2] = table[block & 0x3][2]; dst[idx + 3] = alpha; block >>= 2; ablock >>= 4; } } rofs += len * 16; wofs += wd * ht * 4; wd /= 2; ht /= 2; } break; case FORMAT_BC3: { int len = (wd * ht) / 16; uint8_t *dst = &w[wofs]; uint32_t ofs_table[16]; for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { ofs_table[15 - (y * 4 + (3 - x))] = (x + y * wd) * 4; } } for (int j = 0; j < len; j++) { const uint8_t *src = &r[rofs + j * 16]; uint8_t a_start = src[1]; uint8_t a_end = src[0]; uint64_t ablock = src[3]; ablock <<= 8; ablock |= src[2]; ablock <<= 8; ablock |= src[5]; ablock <<= 8; ablock |= src[4]; ablock <<= 8; ablock |= src[7]; ablock <<= 8; ablock |= src[6]; uint8_t atable[8]; if (a_start > a_end) { atable[0] = (int(a_start) * 7 + int(a_end) * 0) / 7; atable[1] = (int(a_start) * 6 + int(a_end) * 1) / 7; atable[2] = (int(a_start) * 5 + int(a_end) * 2) / 7; atable[3] = (int(a_start) * 4 + int(a_end) * 3) / 7; atable[4] = (int(a_start) * 3 + int(a_end) * 4) / 7; atable[5] = (int(a_start) * 2 + int(a_end) * 5) / 7; atable[6] = (int(a_start) * 1 + int(a_end) * 6) / 7; atable[7] = (int(a_start) * 0 + int(a_end) * 7) / 7; } else { atable[0] = (int(a_start) * 5 + int(a_end) * 0) / 5; atable[1] = (int(a_start) * 4 + int(a_end) * 1) / 5; atable[2] = (int(a_start) * 3 + int(a_end) * 2) / 5; atable[3] = (int(a_start) * 2 + int(a_end) * 3) / 5; atable[4] = (int(a_start) * 1 + int(a_end) * 4) / 5; atable[5] = (int(a_start) * 0 + int(a_end) * 5) / 5; atable[6] = 0; atable[7] = 255; } uint16_t col_a = src[8 + 1]; col_a <<= 8; col_a |= src[8 + 0]; uint16_t col_b = src[8 + 3]; col_b <<= 8; col_b |= src[8 + 2]; uint8_t table[4][4] = { { (col_a >> 11) << 3, ((col_a >> 5) & 0x3f) << 2, ((col_a)&0x1f) << 3, 255 }, { (col_b >> 11) << 3, ((col_b >> 5) & 0x3f) << 2, ((col_b)&0x1f) << 3, 255 }, { 0, 0, 0, 255 }, { 0, 0, 0, 255 } }; //always gradient table[2][0] = (int(table[0][0]) * 2 + int(table[1][0])) / 3; table[2][1] = (int(table[0][1]) * 2 + int(table[1][1])) / 3; table[2][2] = (int(table[0][2]) * 2 + int(table[1][2])) / 3; table[3][0] = (int(table[0][0]) + int(table[1][0]) * 2) / 3; table[3][1] = (int(table[0][1]) + int(table[1][1]) * 2) / 3; table[3][2] = (int(table[0][2]) + int(table[1][2]) * 2) / 3; uint32_t block = src[4 + 8]; block <<= 8; block |= src[5 + 8]; block <<= 8; block |= src[6 + 8]; block <<= 8; block |= src[7 + 8]; int y = (j / (wd / 4)) * 4; int x = (j % (wd / 4)) * 4; int pixofs = (y * wd + x) * 4; for (int k = 0; k < 16; k++) { uint8_t alpha = ablock & 0x7; int idx = pixofs + ofs_table[k]; dst[idx + 0] = table[block & 0x3][0]; dst[idx + 1] = table[block & 0x3][1]; dst[idx + 2] = table[block & 0x3][2]; dst[idx + 3] = atable[alpha]; block >>= 2; ablock >>= 3; } } rofs += len * 16; wofs += wd * ht * 4; wd /= 2; ht /= 2; } break; } } w = DVector::Write(); r = DVector::Read(); data = newdata; format = FORMAT_RGBA; if (wd != width || ht != height) { //todo, crop width = wd; height = ht; } return OK; } bool Image::is_compressed() const { return format >= FORMAT_BC1; } Image Image::decompressed() const { Image img = *this; img.decompress(); return img; } Error Image::decompress() { if (format >= FORMAT_BC1 && format <= FORMAT_BC5) _decompress_bc(); //_image_decompress_bc(this); else if (format >= FORMAT_PVRTC2 && format <= FORMAT_PVRTC4_ALPHA && _image_decompress_pvrtc) _image_decompress_pvrtc(this); else if (format == FORMAT_ETC && _image_decompress_etc) _image_decompress_etc(this); else return ERR_UNAVAILABLE; return OK; } Error Image::compress(CompressMode p_mode) { switch (p_mode) { case COMPRESS_BC: { ERR_FAIL_COND_V(!_image_compress_bc_func, ERR_UNAVAILABLE); _image_compress_bc_func(this); } break; case COMPRESS_PVRTC2: { ERR_FAIL_COND_V(!_image_compress_pvrtc2_func, ERR_UNAVAILABLE); _image_compress_pvrtc2_func(this); } break; case COMPRESS_PVRTC4: { ERR_FAIL_COND_V(!_image_compress_pvrtc4_func, ERR_UNAVAILABLE); _image_compress_pvrtc4_func(this); } break; case COMPRESS_ETC: { ERR_FAIL_COND_V(!_image_compress_etc_func, ERR_UNAVAILABLE); _image_compress_etc_func(this); } break; } return OK; } Image Image::compressed(int p_mode) { Image ret = *this; ret.compress((Image::CompressMode)p_mode); return ret; }; Image::Image(const char **p_xpm) { width = 0; height = 0; mipmaps = 0; format = FORMAT_GRAYSCALE; create(p_xpm); } Image::Image(int p_width, int p_height, bool p_use_mipmaps, Format p_format) { width = 0; height = 0; mipmaps = 0; format = FORMAT_GRAYSCALE; create(p_width, p_height, p_use_mipmaps, p_format); } Image::Image(int p_width, int p_height, int p_mipmaps, Format p_format, const DVector &p_data) { width = 0; height = 0; mipmaps = 0; format = FORMAT_GRAYSCALE; create(p_width, p_height, p_mipmaps, p_format, p_data); } Image Image::brushed(const Image &p_src, const Image &p_brush, const Point2 &p_dest) const { Image img = *this; img.brush_transfer(p_src, p_brush, p_dest); return img; } Rect2 Image::get_used_rect() const { if (format == FORMAT_GRAYSCALE || format == FORMAT_RGB || format == FORMAT_INDEXED || format > FORMAT_INDEXED_ALPHA) return Rect2(Point2(), Size2(width, height)); int len = data.size(); if (len == 0) return Rect2(); int data_size = len; DVector::Read r = data.read(); const unsigned char *rptr = r.ptr(); int minx = 0xFFFFFF, miny = 0xFFFFFFF; int maxx = -1, maxy = -1; for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { bool opaque = _get_pixel(i, j, rptr, data_size).a > 2; if (!opaque) continue; if (i > maxx) maxx = i; if (j > maxy) maxy = j; if (i < minx) minx = i; if (j < miny) miny = j; } } if (maxx == -1) return Rect2(); else return Rect2(minx, miny, maxx - minx + 1, maxy - miny + 1); } Image Image::get_rect(const Rect2 &p_area) const { Image img(p_area.size.x, p_area.size.y, mipmaps, format); img.blit_rect(*this, p_area, Point2(0, 0)); return img; }; void Image::brush_transfer(const Image &p_src, const Image &p_brush, const Point2 &p_dest) { ERR_FAIL_COND(width != p_src.width || height != p_src.height); int dst_data_size = data.size(); DVector::Write wp = data.write(); unsigned char *dst_data_ptr = wp.ptr(); int src_data_size = p_src.data.size(); DVector::Read rp = p_src.data.read(); const unsigned char *src_data_ptr = rp.ptr(); int brush_data_size = p_brush.data.size(); DVector::Read bp = p_brush.data.read(); const unsigned char *src_brush_ptr = bp.ptr(); int bw = p_brush.get_width(); int bh = p_brush.get_height(); int dx = p_dest.x; int dy = p_dest.y; for (int i = dy; i < dy + bh; i++) { if (i < 0 || i >= height) continue; for (int j = dx; j < dx + bw; j++) { if (j < 0 || j >= width) continue; BColor src = p_src._get_pixel(j, i, src_data_ptr, src_data_size); BColor dst = _get_pixel(j, i, dst_data_ptr, dst_data_size); BColor brush = p_brush._get_pixel(j - dx, i - dy, src_brush_ptr, brush_data_size); uint32_t mult = brush.r; dst.r = dst.r + (((int32_t(src.r) - int32_t(dst.r)) * mult) >> 8); dst.g = dst.g + (((int32_t(src.g) - int32_t(dst.g)) * mult) >> 8); dst.b = dst.b + (((int32_t(src.b) - int32_t(dst.b)) * mult) >> 8); dst.a = dst.a + (((int32_t(src.a) - int32_t(dst.a)) * mult) >> 8); _put_pixel(j, i, dst, dst_data_ptr); } } } void Image::blit_rect(const Image &p_src, const Rect2 &p_src_rect, const Point2 &p_dest) { int dsize = data.size(); int srcdsize = p_src.data.size(); ERR_FAIL_COND(dsize == 0); ERR_FAIL_COND(srcdsize == 0); Rect2 rrect = Rect2(0, 0, p_src.width, p_src.height).clip(p_src_rect); DVector::Write wp = data.write(); unsigned char *dst_data_ptr = wp.ptr(); DVector::Read rp = p_src.data.read(); const unsigned char *src_data_ptr = rp.ptr(); if ((format == FORMAT_INDEXED || format == FORMAT_INDEXED_ALPHA) && (p_src.format == FORMAT_INDEXED || p_src.format == FORMAT_INDEXED_ALPHA)) { Point2i desti(p_dest.x, p_dest.y); Point2i srci(rrect.pos.x, rrect.pos.y); for (int i = 0; i < rrect.size.y; i++) { if (i < 0 || i >= height) continue; for (int j = 0; j < rrect.size.x; j++) { if (j < 0 || j >= width) continue; dst_data_ptr[width * (desti.y + i) + desti.x + j] = src_data_ptr[p_src.width * (srci.y + i) + srci.x + j]; } } } else { for (int i = 0; i < rrect.size.y; i++) { if (i < 0 || i >= height) continue; for (int j = 0; j < rrect.size.x; j++) { if (j < 0 || j >= width) continue; _put_pixel(p_dest.x + j, p_dest.y + i, p_src._get_pixel(rrect.pos.x + j, rrect.pos.y + i, src_data_ptr, srcdsize), dst_data_ptr); } } } } Image (*Image::_png_mem_loader_func)(const uint8_t *, int) = NULL; Image (*Image::_jpg_mem_loader_func)(const uint8_t *, int) = NULL; void (*Image::_image_compress_bc_func)(Image *) = NULL; void (*Image::_image_compress_pvrtc2_func)(Image *) = NULL; void (*Image::_image_compress_pvrtc4_func)(Image *) = NULL; void (*Image::_image_compress_etc_func)(Image *) = NULL; void (*Image::_image_decompress_pvrtc)(Image *) = NULL; void (*Image::_image_decompress_bc)(Image *) = NULL; void (*Image::_image_decompress_etc)(Image *) = NULL; DVector (*Image::lossy_packer)(const Image &, float) = NULL; Image (*Image::lossy_unpacker)(const DVector &) = NULL; DVector (*Image::lossless_packer)(const Image &) = NULL; Image (*Image::lossless_unpacker)(const DVector &) = NULL; void Image::set_compress_bc_func(void (*p_compress_func)(Image *)) { _image_compress_bc_func = p_compress_func; } void Image::normalmap_to_xy() { convert(Image::FORMAT_RGBA); { int len = data.size() / 4; DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 3] = data_ptr[(i << 2) + 0]; //x to w data_ptr[(i << 2) + 0] = data_ptr[(i << 2) + 1]; //y to xz data_ptr[(i << 2) + 2] = data_ptr[(i << 2) + 1]; } } convert(Image::FORMAT_GRAYSCALE_ALPHA); } void Image::srgb_to_linear() { if (data.size() == 0) return; static const uint8_t srgb2lin[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 112, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 139, 140, 142, 144, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 166, 167, 169, 171, 173, 175, 176, 178, 180, 182, 184, 186, 188, 190, 192, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 235, 237, 239, 241, 243, 245, 248, 250, 252 }; ERR_FAIL_COND(format != FORMAT_RGB && format != FORMAT_RGBA); if (format == FORMAT_RGBA) { int len = data.size() / 4; DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i << 2) + 0] = srgb2lin[data_ptr[(i << 2) + 0]]; data_ptr[(i << 2) + 1] = srgb2lin[data_ptr[(i << 2) + 1]]; data_ptr[(i << 2) + 2] = srgb2lin[data_ptr[(i << 2) + 2]]; } } else if (format == FORMAT_RGB) { int len = data.size() / 3; DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < len; i++) { data_ptr[(i * 3) + 0] = srgb2lin[data_ptr[(i * 3) + 0]]; data_ptr[(i * 3) + 1] = srgb2lin[data_ptr[(i * 3) + 1]]; data_ptr[(i * 3) + 2] = srgb2lin[data_ptr[(i * 3) + 2]]; } } } void Image::premultiply_alpha() { if (data.size() == 0) return; if (format != FORMAT_RGBA) return; //not needed DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { BColor bc = _get_pixel(j, i, data_ptr, 0); bc.r = (int(bc.r) * int(bc.a)) >> 8; bc.g = (int(bc.g) * int(bc.a)) >> 8; bc.b = (int(bc.b) * int(bc.a)) >> 8; _put_pixel(j, i, bc, data_ptr); } } } void Image::fix_alpha_edges() { if (data.size() == 0) return; if (format != FORMAT_RGBA) return; //not needed DVector dcopy = data; DVector::Read rp = data.read(); const uint8_t *rptr = rp.ptr(); DVector::Write wp = data.write(); unsigned char *data_ptr = wp.ptr(); const int max_radius = 4; const int alpha_treshold = 20; const int max_dist = 0x7FFFFFFF; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { BColor bc = _get_pixel(j, i, rptr, 0); if (bc.a >= alpha_treshold) continue; int closest_dist = max_dist; BColor closest_color; closest_color.a = bc.a; int from_x = MAX(0, j - max_radius); int to_x = MIN(width - 1, j + max_radius); int from_y = MAX(0, i - max_radius); int to_y = MIN(height - 1, i + max_radius); for (int k = from_y; k <= to_y; k++) { for (int l = from_x; l <= to_x; l++) { int dy = i - k; int dx = j - l; int dist = dy * dy + dx * dx; if (dist >= closest_dist) continue; const uint8_t *rp = &rptr[(k * width + l) << 2]; if (rp[3] < alpha_treshold) continue; closest_dist = dist; closest_color.r = rp[0]; closest_color.g = rp[1]; closest_color.b = rp[2]; } } if (closest_dist != max_dist) _put_pixel(j, i, closest_color, data_ptr); } } } String Image::get_format_name(Format p_format) { ERR_FAIL_INDEX_V(p_format, FORMAT_MAX, String()); return format_names[p_format]; } Image::Image(const uint8_t *p_mem_png_jpg, int p_len) { width = 0; height = 0; mipmaps = 0; format = FORMAT_GRAYSCALE; if (_png_mem_loader_func) { *this = _png_mem_loader_func(p_mem_png_jpg, p_len); } if (empty() && _jpg_mem_loader_func) { *this = _jpg_mem_loader_func(p_mem_png_jpg, p_len); } } Image::Image() { width = 0; height = 0; mipmaps = 0; format = FORMAT_GRAYSCALE; } Image::~Image() { }