// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "patch.h" #include "catmullclark_patch.h" #include "bspline_patch.h" #include "gregory_patch.h" #include "tessellation.h" namespace embree { namespace isa { struct FeatureAdaptiveEvalGrid { typedef CatmullClark1Ring3fa CatmullClarkRing; typedef CatmullClarkPatch3fa CatmullClarkPatch; typedef BilinearPatch3fa BilinearPatch; typedef BSplinePatch3fa BSplinePatch; typedef BezierPatch3fa BezierPatch; typedef GregoryPatch3fa GregoryPatch; private: const unsigned x0,x1; const unsigned y0,y1; const unsigned swidth,sheight; const float rcp_swidth, rcp_sheight; float* const Px; float* const Py; float* const Pz; float* const U; float* const V; float* const Nx; float* const Ny; float* const Nz; const unsigned dwidth; //const unsigned dheight; unsigned count; public: FeatureAdaptiveEvalGrid (const GeneralCatmullClarkPatch3fa& patch, unsigned subPatch, const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight, float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight) : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)), Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0) { assert(swidth < (2<<20) && sheight < (2<<20)); const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1))); const BBox2f erange(Vec2f((float)x0,(float)y0),Vec2f((float)x1,(float)y1)); /* convert into standard quad patch if possible */ if (likely(patch.isQuadPatch())) { CatmullClarkPatch3fa qpatch; patch.init(qpatch); eval(qpatch, srange, erange, 0); assert(count == (x1-x0+1)*(y1-y0+1)); return; } /* subdivide patch */ unsigned N; array_t<CatmullClarkPatch3fa,GeneralCatmullClarkPatch3fa::SIZE> patches; patch.subdivide(patches,N); if (N == 4) { const Vec2f c = srange.center(); const BBox2f srange0(srange.lower,c); const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y)); const BBox2f srange2(c,srange.upper); const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y)); #if PATCH_USE_GREGORY == 2 BezierCurve3fa borders[GeneralCatmullClarkPatch3fa::SIZE]; patch.getLimitBorder(borders); BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r); BezierCurve3fa border1l,border1r; borders[1].subdivide(border1l,border1r); BezierCurve3fa border2l,border2r; borders[2].subdivide(border2l,border2r); BezierCurve3fa border3l,border3r; borders[3].subdivide(border3l,border3r); GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches); eval(patches[0],srange0,intersect(srange0,erange),1,&border0l,nullptr,nullptr,&border3r); eval(patches[1],srange1,intersect(srange1,erange),1,&border0r,&border1l,nullptr,nullptr); eval(patches[2],srange2,intersect(srange2,erange),1,nullptr,&border1r,&border2l,nullptr); eval(patches[3],srange3,intersect(srange3,erange),1,nullptr,nullptr,&border2r,&border3l); #else GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches); eval(patches[0],srange0,intersect(srange0,erange),1); eval(patches[1],srange1,intersect(srange1,erange),1); eval(patches[2],srange2,intersect(srange2,erange),1); eval(patches[3],srange3,intersect(srange3,erange),1); #endif } else { assert(subPatch < N); #if PATCH_USE_GREGORY == 2 BezierCurve3fa borders[2]; patch.getLimitBorder(borders,subPatch); BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r); BezierCurve3fa border2l,border2r; borders[1].subdivide(border2l,border2r); eval(patches[subPatch], srange, erange, 1, &border0l, nullptr, nullptr, &border2r); #else eval(patches[subPatch], srange, erange, 1); #endif } assert(count == (x1-x0+1)*(y1-y0+1)); } FeatureAdaptiveEvalGrid (const CatmullClarkPatch3fa& patch, const BBox2f& srange, const BBox2f& erange, const unsigned depth, const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight, float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight) : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)), Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0) { eval(patch,srange,erange,depth); } template<typename Patch> void evalLocalGrid(const Patch& patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1) { const float scale_x = rcp(srange.upper.x-srange.lower.x); const float scale_y = rcp(srange.upper.y-srange.lower.y); count += (lx1-lx0)*(ly1-ly0); #if 0 for (unsigned iy=ly0; iy<ly1; iy++) { for (unsigned ix=lx0; ix<lx1; ix++) { const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x); const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y); const Vec3fa p = patch.eval(lu,lv); const float u = float(ix)*rcp_swidth; const float v = float(iy)*rcp_sheight; const int ofs = (iy-y0)*dwidth+(ix-x0); Px[ofs] = p.x; Py[ofs] = p.y; Pz[ofs] = p.z; U[ofs] = u; V[ofs] = v; } } #else foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) { const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x); const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y); const Vec3vfx p = patch.eval(lu,lv); Vec3vfx n = zero; if (unlikely(Nx != nullptr)) n = normalize_safe(patch.normal(lu,lv)); const vfloatx u = vfloatx(ix)*rcp_swidth; const vfloatx v = vfloatx(iy)*rcp_sheight; const vintx ofs = (iy-y0)*dwidth+(ix-x0); if (likely(all(valid)) && all(iy==iy[0])) { const unsigned ofs2 = ofs[0]; vfloatx::storeu(Px+ofs2,p.x); vfloatx::storeu(Py+ofs2,p.y); vfloatx::storeu(Pz+ofs2,p.z); vfloatx::storeu(U+ofs2,u); vfloatx::storeu(V+ofs2,v); if (unlikely(Nx != nullptr)) { vfloatx::storeu(Nx+ofs2,n.x); vfloatx::storeu(Ny+ofs2,n.y); vfloatx::storeu(Nz+ofs2,n.z); } } else { foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) { const unsigned ofs2 = ofs[j]-j; vfloatx::storeu(valid,Px+ofs2,p.x); vfloatx::storeu(valid,Py+ofs2,p.y); vfloatx::storeu(valid,Pz+ofs2,p.z); vfloatx::storeu(valid,U+ofs2,u); vfloatx::storeu(valid,V+ofs2,v); if (unlikely(Nx != nullptr)) { vfloatx::storeu(valid,Nx+ofs2,n.x); vfloatx::storeu(valid,Ny+ofs2,n.y); vfloatx::storeu(valid,Nz+ofs2,n.z); } }); } }); #endif } __forceinline bool final(const CatmullClarkPatch3fa& patch, const CatmullClarkRing::Type type, unsigned depth) { const unsigned max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR; //#if PATCH_MIN_RESOLUTION // return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth; //#else return depth>=max_eval_depth; //#endif } void eval(const CatmullClarkPatch3fa& patch, const BBox2f& srange, const BBox2f& erange, const unsigned depth, const BezierCurve3fa* border0 = nullptr, const BezierCurve3fa* border1 = nullptr, const BezierCurve3fa* border2 = nullptr, const BezierCurve3fa* border3 = nullptr) { if (erange.empty()) return; int lx0 = (int) ceilf(erange.lower.x); int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0)); int ly0 = (int) ceilf(erange.lower.y); int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0)); if (lx0 >= lx1 || ly0 >= ly1) return; CatmullClarkPatch::Type ty = patch.type(); if (unlikely(final(patch,ty,depth))) { if (ty & CatmullClarkRing::TYPE_REGULAR) { RegularPatch rpatch(patch,border0,border1,border2,border3); evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1); return; } else { IrregularFillPatch ipatch(patch,border0,border1,border2,border3); evalLocalGrid(ipatch,srange,lx0,lx1,ly0,ly1); return; } } else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) { assert(depth > 0); RegularPatch rpatch(patch,border0,border1,border2,border3); evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1); return; } #if PATCH_USE_GREGORY == 2 else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) { assert(depth > 0); GregoryPatch gpatch(patch,border0,border1,border2,border3); evalLocalGrid(gpatch,srange,lx0,lx1,ly0,ly1); } #endif else { array_t<CatmullClarkPatch3fa,4> patches; patch.subdivide(patches); const Vec2f c = srange.center(); const BBox2f srange0(srange.lower,c); const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y)); const BBox2f srange2(c,srange.upper); const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y)); eval(patches[0],srange0,intersect(srange0,erange),depth+1); eval(patches[1],srange1,intersect(srange1,erange),depth+1); eval(patches[2],srange2,intersect(srange2,erange),depth+1); eval(patches[3],srange3,intersect(srange3,erange),depth+1); } } }; template<typename Eval, typename Patch> bool stitch_col(const Patch& patch, int subPatch, const bool right, const unsigned y0, const unsigned y1, const int fine_y, const int coarse_y, float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dx0, const unsigned dwidth, const unsigned dheight) { assert(coarse_y <= fine_y); if (likely(fine_y == coarse_y)) return false; const unsigned y0s = stitch(y0,fine_y,coarse_y); const unsigned y1s = stitch(y1,fine_y,coarse_y); const unsigned M = y1s-y0s+1 + VSIZEX; dynamic_large_stack_array(float,px,M,64*sizeof(float)); dynamic_large_stack_array(float,py,M,64*sizeof(float)); dynamic_large_stack_array(float,pz,M,64*sizeof(float)); dynamic_large_stack_array(float,u,M,64*sizeof(float)); dynamic_large_stack_array(float,v,M,64*sizeof(float)); dynamic_large_stack_array(float,nx,M,64*sizeof(float)); dynamic_large_stack_array(float,ny,M,64*sizeof(float)); dynamic_large_stack_array(float,nz,M,64*sizeof(float)); const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz)); Eval(patch,subPatch, right,right, y0s,y1s, 2,coarse_y+1, px,py,pz,u,v, has_Nxyz ? (float*)nx : nullptr,has_Nxyz ? (float*)ny : nullptr ,has_Nxyz ? (float*)nz : nullptr, 1,4097); for (unsigned y=y0; y<=y1; y++) { const unsigned ys = stitch(y,fine_y,coarse_y)-y0s; Px[(y-y0)*dwidth+dx0] = px[ys]; Py[(y-y0)*dwidth+dx0] = py[ys]; Pz[(y-y0)*dwidth+dx0] = pz[ys]; U [(y-y0)*dwidth+dx0] = u[ys]; V [(y-y0)*dwidth+dx0] = v[ys]; if (unlikely(has_Nxyz)) { Nx[(y-y0)*dwidth+dx0] = nx[ys]; Ny[(y-y0)*dwidth+dx0] = ny[ys]; Nz[(y-y0)*dwidth+dx0] = nz[ys]; } } return true; } template<typename Eval, typename Patch> bool stitch_row(const Patch& patch, int subPatch, const bool bottom, const unsigned x0, const unsigned x1, const int fine_x, const int coarse_x, float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dy0, const unsigned dwidth, const unsigned dheight) { assert(coarse_x <= fine_x); if (likely(fine_x == coarse_x)) return false; const unsigned x0s = stitch(x0,fine_x,coarse_x); const unsigned x1s = stitch(x1,fine_x,coarse_x); const unsigned M = x1s-x0s+1 + VSIZEX; dynamic_large_stack_array(float,px,M,32*sizeof(float)); dynamic_large_stack_array(float,py,M,32*sizeof(float)); dynamic_large_stack_array(float,pz,M,32*sizeof(float)); dynamic_large_stack_array(float,u,M,32*sizeof(float)); dynamic_large_stack_array(float,v,M,32*sizeof(float)); dynamic_large_stack_array(float,nx,M,32*sizeof(float)); dynamic_large_stack_array(float,ny,M,32*sizeof(float)); dynamic_large_stack_array(float,nz,M,32*sizeof(float)); const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz)); Eval(patch,subPatch, x0s,x1s, bottom,bottom, coarse_x+1,2, px,py,pz,u,v, has_Nxyz ? (float*)nx :nullptr, has_Nxyz ? (float*)ny : nullptr , has_Nxyz ? (float*)nz : nullptr, 4097,1); for (unsigned x=x0; x<=x1; x++) { const unsigned xs = stitch(x,fine_x,coarse_x)-x0s; Px[dy0*dwidth+x-x0] = px[xs]; Py[dy0*dwidth+x-x0] = py[xs]; Pz[dy0*dwidth+x-x0] = pz[xs]; U [dy0*dwidth+x-x0] = u[xs]; V [dy0*dwidth+x-x0] = v[xs]; if (unlikely(has_Nxyz)) { Nx[dy0*dwidth+x-x0] = nx[xs]; Ny[dy0*dwidth+x-x0] = ny[xs]; Nz[dy0*dwidth+x-x0] = nz[xs]; } } return true; } template<typename Eval, typename Patch> void feature_adaptive_eval_grid (const Patch& patch, unsigned subPatch, const float levels[4], const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight, float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight) { bool sl = false, sr = false, st = false, sb = false; if (levels) { sl = x0 == 0 && stitch_col<Eval,Patch>(patch,subPatch,0,y0,y1,sheight-1,int(levels[3]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight); sr = x1 == swidth-1 && stitch_col<Eval,Patch>(patch,subPatch,1,y0,y1,sheight-1,int(levels[1]), Px,Py,Pz,U,V,Nx,Ny,Nz, x1-x0,dwidth,dheight); st = y0 == 0 && stitch_row<Eval,Patch>(patch,subPatch,0,x0,x1,swidth-1,int(levels[0]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight); sb = y1 == sheight-1 && stitch_row<Eval,Patch>(patch,subPatch,1,x0,x1,swidth-1,int(levels[2]), Px,Py,Pz,U,V,Nx,Ny,Nz, y1-y0,dwidth,dheight); } const unsigned ofs = st*dwidth+sl; Eval(patch,subPatch,x0+sl,x1-sr,y0+st,y1-sb, swidth,sheight, Px+ofs,Py+ofs,Pz+ofs,U+ofs,V+ofs,Nx?Nx+ofs:nullptr,Ny?Ny+ofs:nullptr,Nz?Nz+ofs:nullptr, dwidth,dheight); } } }