/**************************************************************************/ /* ss_effects.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "ss_effects.h" #include "core/config/project_settings.h" #include "servers/rendering/renderer_rd/renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h" #include "servers/rendering/renderer_rd/uniform_set_cache_rd.h" using namespace RendererRD; SSEffects *SSEffects::singleton = nullptr; static _FORCE_INLINE_ void store_camera(const Projection &p_mtx, float *p_array) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { p_array[i * 4 + j] = p_mtx.columns[i][j]; } } } SSEffects::SSEffects() { singleton = this; // Initialize depth buffer for screen space effects { Vector downsampler_modes; downsampler_modes.push_back("\n"); downsampler_modes.push_back("\n#define USE_HALF_SIZE\n"); downsampler_modes.push_back("\n#define GENERATE_MIPS\n"); downsampler_modes.push_back("\n#define GENERATE_MIPS\n#define USE_HALF_SIZE\n"); downsampler_modes.push_back("\n#define USE_HALF_BUFFERS\n"); downsampler_modes.push_back("\n#define USE_HALF_BUFFERS\n#define USE_HALF_SIZE\n"); downsampler_modes.push_back("\n#define GENERATE_MIPS\n#define GENERATE_FULL_MIPS"); ss_effects.downsample_shader.initialize(downsampler_modes); ss_effects.downsample_shader_version = ss_effects.downsample_shader.version_create(); for (int i = 0; i < SS_EFFECTS_MAX; i++) { ss_effects.pipelines[i] = RD::get_singleton()->compute_pipeline_create(ss_effects.downsample_shader.version_get_shader(ss_effects.downsample_shader_version, i)); } ss_effects.gather_constants_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SSEffectsGatherConstants)); SSEffectsGatherConstants gather_constants; const int sub_pass_count = 5; for (int pass = 0; pass < 4; pass++) { for (int subPass = 0; subPass < sub_pass_count; subPass++) { int a = pass; int spmap[5]{ 0, 1, 4, 3, 2 }; int b = spmap[subPass]; float ca, sa; float angle0 = (float(a) + float(b) / float(sub_pass_count)) * Math_PI * 0.5f; ca = Math::cos(angle0); sa = Math::sin(angle0); float scale = 1.0f + (a - 1.5f + (b - (sub_pass_count - 1.0f) * 0.5f) / float(sub_pass_count)) * 0.07f; gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 0] = scale * ca; gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 1] = scale * -sa; gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 2] = -scale * sa; gather_constants.rotation_matrices[pass * 20 + subPass * 4 + 3] = -scale * ca; } } RD::get_singleton()->buffer_update(ss_effects.gather_constants_buffer, 0, sizeof(SSEffectsGatherConstants), &gather_constants); } // Initialize Screen Space Indirect Lighting (SSIL) ssil_set_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to")); { Vector ssil_modes; ssil_modes.push_back("\n"); ssil_modes.push_back("\n#define SSIL_BASE\n"); ssil_modes.push_back("\n#define ADAPTIVE\n"); ssil.gather_shader.initialize(ssil_modes); ssil.gather_shader_version = ssil.gather_shader.version_create(); for (int i = SSIL_GATHER; i <= SSIL_GATHER_ADAPTIVE; i++) { ssil.pipelines[i] = RD::get_singleton()->compute_pipeline_create(ssil.gather_shader.version_get_shader(ssil.gather_shader_version, i)); } ssil.projection_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SSILProjectionUniforms)); } { Vector ssil_modes; ssil_modes.push_back("\n#define GENERATE_MAP\n"); ssil_modes.push_back("\n#define PROCESS_MAPA\n"); ssil_modes.push_back("\n#define PROCESS_MAPB\n"); ssil.importance_map_shader.initialize(ssil_modes); ssil.importance_map_shader_version = ssil.importance_map_shader.version_create(); for (int i = SSIL_GENERATE_IMPORTANCE_MAP; i <= SSIL_PROCESS_IMPORTANCE_MAPB; i++) { ssil.pipelines[i] = RD::get_singleton()->compute_pipeline_create(ssil.importance_map_shader.version_get_shader(ssil.importance_map_shader_version, i - SSIL_GENERATE_IMPORTANCE_MAP)); } ssil.importance_map_load_counter = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t)); int zero[1] = { 0 }; RD::get_singleton()->buffer_update(ssil.importance_map_load_counter, 0, sizeof(uint32_t), &zero); RD::get_singleton()->set_resource_name(ssil.importance_map_load_counter, "Importance Map Load Counter"); Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 0; u.append_id(ssil.importance_map_load_counter); uniforms.push_back(u); } ssil.counter_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssil.importance_map_shader.version_get_shader(ssil.importance_map_shader_version, 2), 2); RD::get_singleton()->set_resource_name(ssil.counter_uniform_set, "Load Counter Uniform Set"); } { Vector ssil_modes; ssil_modes.push_back("\n#define MODE_NON_SMART\n"); ssil_modes.push_back("\n#define MODE_SMART\n"); ssil_modes.push_back("\n#define MODE_WIDE\n"); ssil.blur_shader.initialize(ssil_modes); ssil.blur_shader_version = ssil.blur_shader.version_create(); for (int i = SSIL_BLUR_PASS; i <= SSIL_BLUR_PASS_WIDE; i++) { ssil.pipelines[i] = RD::get_singleton()->compute_pipeline_create(ssil.blur_shader.version_get_shader(ssil.blur_shader_version, i - SSIL_BLUR_PASS)); } } { Vector ssil_modes; ssil_modes.push_back("\n#define MODE_NON_SMART\n"); ssil_modes.push_back("\n#define MODE_SMART\n"); ssil_modes.push_back("\n#define MODE_HALF\n"); ssil.interleave_shader.initialize(ssil_modes); ssil.interleave_shader_version = ssil.interleave_shader.version_create(); for (int i = SSIL_INTERLEAVE; i <= SSIL_INTERLEAVE_HALF; i++) { ssil.pipelines[i] = RD::get_singleton()->compute_pipeline_create(ssil.interleave_shader.version_get_shader(ssil.interleave_shader_version, i - SSIL_INTERLEAVE)); } } // Initialize Screen Space Ambient Occlusion (SSAO) ssao_set_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to")); { RD::SamplerState sampler; sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler.mip_filter = RD::SAMPLER_FILTER_NEAREST; sampler.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler.repeat_w = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler.max_lod = 4; uint32_t pipeline = 0; { Vector ssao_modes; ssao_modes.push_back("\n"); ssao_modes.push_back("\n#define SSAO_BASE\n"); ssao_modes.push_back("\n#define ADAPTIVE\n"); ssao.gather_shader.initialize(ssao_modes); ssao.gather_shader_version = ssao.gather_shader.version_create(); for (int i = 0; i <= SSAO_GATHER_ADAPTIVE; i++) { ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.gather_shader.version_get_shader(ssao.gather_shader_version, i)); pipeline++; } } { Vector ssao_modes; ssao_modes.push_back("\n#define GENERATE_MAP\n"); ssao_modes.push_back("\n#define PROCESS_MAPA\n"); ssao_modes.push_back("\n#define PROCESS_MAPB\n"); ssao.importance_map_shader.initialize(ssao_modes); ssao.importance_map_shader_version = ssao.importance_map_shader.version_create(); for (int i = SSAO_GENERATE_IMPORTANCE_MAP; i <= SSAO_PROCESS_IMPORTANCE_MAPB; i++) { ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, i - SSAO_GENERATE_IMPORTANCE_MAP)); pipeline++; } ssao.importance_map_load_counter = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t)); int zero[1] = { 0 }; RD::get_singleton()->buffer_update(ssao.importance_map_load_counter, 0, sizeof(uint32_t), &zero); RD::get_singleton()->set_resource_name(ssao.importance_map_load_counter, "Importance Map Load Counter"); Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 0; u.append_id(ssao.importance_map_load_counter); uniforms.push_back(u); } ssao.counter_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, 2), 2); RD::get_singleton()->set_resource_name(ssao.counter_uniform_set, "Load Counter Uniform Set"); } { Vector ssao_modes; ssao_modes.push_back("\n#define MODE_NON_SMART\n"); ssao_modes.push_back("\n#define MODE_SMART\n"); ssao_modes.push_back("\n#define MODE_WIDE\n"); ssao.blur_shader.initialize(ssao_modes); ssao.blur_shader_version = ssao.blur_shader.version_create(); for (int i = SSAO_BLUR_PASS; i <= SSAO_BLUR_PASS_WIDE; i++) { ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.blur_shader.version_get_shader(ssao.blur_shader_version, i - SSAO_BLUR_PASS)); pipeline++; } } { Vector ssao_modes; ssao_modes.push_back("\n#define MODE_NON_SMART\n"); ssao_modes.push_back("\n#define MODE_SMART\n"); ssao_modes.push_back("\n#define MODE_HALF\n"); ssao.interleave_shader.initialize(ssao_modes); ssao.interleave_shader_version = ssao.interleave_shader.version_create(); for (int i = SSAO_INTERLEAVE; i <= SSAO_INTERLEAVE_HALF; i++) { ssao.pipelines[pipeline] = RD::get_singleton()->compute_pipeline_create(ssao.interleave_shader.version_get_shader(ssao.interleave_shader_version, i - SSAO_INTERLEAVE)); RD::get_singleton()->set_resource_name(ssao.pipelines[pipeline], "Interleave Pipeline " + itos(i)); pipeline++; } } ERR_FAIL_COND(pipeline != SSAO_MAX); ss_effects.mirror_sampler = RD::get_singleton()->sampler_create(sampler); } // Screen Space Reflections ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality"))); { Vector specialization_constants; { RD::PipelineSpecializationConstant sc; sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.constant_id = 0; // SSR_USE_FULL_PROJECTION_MATRIX sc.bool_value = false; specialization_constants.push_back(sc); } { Vector ssr_scale_modes; ssr_scale_modes.push_back("\n"); ssr_scale.shader.initialize(ssr_scale_modes); ssr_scale.shader_version = ssr_scale.shader.version_create(); for (int v = 0; v < SSR_VARIATIONS; v++) { specialization_constants.ptrw()[0].bool_value = (v & SSR_MULTIVIEW) ? true : false; ssr_scale.pipelines[v] = RD::get_singleton()->compute_pipeline_create(ssr_scale.shader.version_get_shader(ssr_scale.shader_version, 0), specialization_constants); } } { Vector ssr_modes; ssr_modes.push_back("\n"); // SCREEN_SPACE_REFLECTION_NORMAL ssr_modes.push_back("\n#define MODE_ROUGH\n"); // SCREEN_SPACE_REFLECTION_ROUGH ssr.shader.initialize(ssr_modes); ssr.shader_version = ssr.shader.version_create(); for (int v = 0; v < SSR_VARIATIONS; v++) { specialization_constants.ptrw()[0].bool_value = (v & SSR_MULTIVIEW) ? true : false; for (int i = 0; i < SCREEN_SPACE_REFLECTION_MAX; i++) { ssr.pipelines[v][i] = RD::get_singleton()->compute_pipeline_create(ssr.shader.version_get_shader(ssr.shader_version, i), specialization_constants); } } } { Vector ssr_filter_modes; ssr_filter_modes.push_back("\n"); // SCREEN_SPACE_REFLECTION_FILTER_HORIZONTAL ssr_filter_modes.push_back("\n#define VERTICAL_PASS\n"); // SCREEN_SPACE_REFLECTION_FILTER_VERTICAL ssr_filter.shader.initialize(ssr_filter_modes); ssr_filter.shader_version = ssr_filter.shader.version_create(); for (int v = 0; v < SSR_VARIATIONS; v++) { specialization_constants.ptrw()[0].bool_value = (v & SSR_MULTIVIEW) ? true : false; for (int i = 0; i < SCREEN_SPACE_REFLECTION_FILTER_MAX; i++) { ssr_filter.pipelines[v][i] = RD::get_singleton()->compute_pipeline_create(ssr_filter.shader.version_get_shader(ssr_filter.shader_version, i), specialization_constants); } } } } // Subsurface scattering sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality"))); sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale"); sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale"); { Vector sss_modes; sss_modes.push_back("\n#define USE_11_SAMPLES\n"); sss_modes.push_back("\n#define USE_17_SAMPLES\n"); sss_modes.push_back("\n#define USE_25_SAMPLES\n"); sss.shader.initialize(sss_modes); sss.shader_version = sss.shader.version_create(); for (int i = 0; i < sss_modes.size(); i++) { sss.pipelines[i] = RD::get_singleton()->compute_pipeline_create(sss.shader.version_get_shader(sss.shader_version, i)); } } } SSEffects::~SSEffects() { { // Cleanup SS Reflections ssr.shader.version_free(ssr.shader_version); ssr_filter.shader.version_free(ssr_filter.shader_version); ssr_scale.shader.version_free(ssr_scale.shader_version); if (ssr.ubo.is_valid()) { RD::get_singleton()->free(ssr.ubo); } } { // Cleanup SS downsampler ss_effects.downsample_shader.version_free(ss_effects.downsample_shader_version); RD::get_singleton()->free(ss_effects.mirror_sampler); RD::get_singleton()->free(ss_effects.gather_constants_buffer); } { // Cleanup SSIL ssil.blur_shader.version_free(ssil.blur_shader_version); ssil.gather_shader.version_free(ssil.gather_shader_version); ssil.interleave_shader.version_free(ssil.interleave_shader_version); ssil.importance_map_shader.version_free(ssil.importance_map_shader_version); RD::get_singleton()->free(ssil.importance_map_load_counter); RD::get_singleton()->free(ssil.projection_uniform_buffer); } { // Cleanup SSAO ssao.blur_shader.version_free(ssao.blur_shader_version); ssao.gather_shader.version_free(ssao.gather_shader_version); ssao.interleave_shader.version_free(ssao.interleave_shader_version); ssao.importance_map_shader.version_free(ssao.importance_map_shader_version); RD::get_singleton()->free(ssao.importance_map_load_counter); } { // Cleanup Subsurface scattering sss.shader.version_free(sss.shader_version); } singleton = nullptr; } /* SS Downsampler */ void SSEffects::downsample_depth(Ref p_render_buffers, uint32_t p_view, const Projection &p_projection) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); uint32_t view_count = p_render_buffers->get_view_count(); Size2i full_screen_size = p_render_buffers->get_internal_size(); Size2i size((full_screen_size.x + 1) / 2, (full_screen_size.y + 1) / 2); // Make sure our buffers exist, buffers are automatically cleared if view count or size changes. if (!p_render_buffers->has_texture(RB_SCOPE_SSDS, RB_LINEAR_DEPTH)) { p_render_buffers->create_texture(RB_SCOPE_SSDS, RB_LINEAR_DEPTH, RD::DATA_FORMAT_R16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, size, view_count * 4, 5); } // Downsample and deinterleave the depth buffer for SSAO and SSIL RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); int downsample_mode = SS_EFFECTS_DOWNSAMPLE; bool use_mips = ssao_quality > RS::ENV_SSAO_QUALITY_MEDIUM || ssil_quality > RS::ENV_SSIL_QUALITY_MEDIUM; if (ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW && ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) { downsample_mode = SS_EFFECTS_DOWNSAMPLE_HALF; } else if (use_mips) { downsample_mode = SS_EFFECTS_DOWNSAMPLE_MIPMAP; } bool use_half_size = false; bool use_full_mips = false; if (ssao_half_size && ssil_half_size) { downsample_mode++; use_half_size = true; } else if (ssao_half_size != ssil_half_size) { if (use_mips) { downsample_mode = SS_EFFECTS_DOWNSAMPLE_FULL_MIPS; use_full_mips = true; } else { // Only need the first two mipmaps, but the cost to generate the next two is trivial // TODO investigate the benefit of a shader version to generate only 2 mips downsample_mode = SS_EFFECTS_DOWNSAMPLE_MIPMAP; use_mips = true; } } RID shader = ss_effects.downsample_shader.version_get_shader(ss_effects.downsample_shader_version, downsample_mode); int depth_index = use_half_size ? 1 : 0; RD::get_singleton()->draw_command_begin_label("Downsample Depth"); RID downsample_uniform_set; if (use_mips) { // Grab our downsample uniform set from cache, these are automatically cleaned up if the depth textures are cleared. // This also ensures we can switch between left eye and right eye uniform sets without recreating the uniform twice a frame. Vector u_depths; // Note, use_full_mips is true if either SSAO or SSIL uses half size, but the other full size and we're using mips. // That means we're filling all 5 levels. // In this scenario `depth_index` will be 0. for (int i = 0; i < (use_full_mips ? 4 : 3); i++) { RID depth_mipmap = p_render_buffers->get_texture_slice(RB_SCOPE_SSDS, RB_LINEAR_DEPTH, p_view * 4, depth_index + i + 1, 4, 1); RD::Uniform u_depth; u_depth.uniform_type = RD::UNIFORM_TYPE_IMAGE; u_depth.binding = i; u_depth.append_id(depth_mipmap); u_depths.push_back(u_depth); } // This before only used SS_EFFECTS_DOWNSAMPLE_MIPMAP or SS_EFFECTS_DOWNSAMPLE_FULL_MIPS downsample_uniform_set = uniform_set_cache->get_cache_vec(shader, 2, u_depths); } float depth_linearize_mul = -p_projection.columns[3][2] * 0.5; float depth_linearize_add = p_projection.columns[2][2]; if (depth_linearize_mul * depth_linearize_add < 0) { depth_linearize_add = -depth_linearize_add; } ss_effects.downsample_push_constant.orthogonal = p_projection.is_orthogonal(); ss_effects.downsample_push_constant.z_near = depth_linearize_mul; ss_effects.downsample_push_constant.z_far = depth_linearize_add; if (ss_effects.downsample_push_constant.orthogonal) { ss_effects.downsample_push_constant.z_near = p_projection.get_z_near(); ss_effects.downsample_push_constant.z_far = p_projection.get_z_far(); } ss_effects.downsample_push_constant.pixel_size[0] = 1.0 / full_screen_size.x; ss_effects.downsample_push_constant.pixel_size[1] = 1.0 / full_screen_size.y; ss_effects.downsample_push_constant.radius_sq = 1.0; RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RID depth_texture = p_render_buffers->get_depth_texture(p_view); RID depth_mipmap = p_render_buffers->get_texture_slice(RB_SCOPE_SSDS, RB_LINEAR_DEPTH, p_view * 4, depth_index, 4, 1); RD::Uniform u_depth_buffer(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, depth_texture })); RD::Uniform u_depth_mipmap(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ depth_mipmap })); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ss_effects.pipelines[downsample_mode]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_depth_buffer), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_depth_mipmap), 1); if (use_mips) { RD::get_singleton()->compute_list_bind_uniform_set(compute_list, downsample_uniform_set, 2); } RD::get_singleton()->compute_list_set_push_constant(compute_list, &ss_effects.downsample_push_constant, sizeof(SSEffectsDownsamplePushConstant)); if (use_half_size) { size.x = MAX(1, size.x >> 1); size.y = MAX(1, size.y >> 1); } RD::get_singleton()->compute_list_dispatch_threads(compute_list, size.x, size.y, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); RD::get_singleton()->compute_list_end(); ss_effects.used_full_mips_last_frame = use_full_mips; ss_effects.used_half_size_last_frame = use_half_size; ss_effects.used_mips_last_frame = use_mips; } /* SSIL */ void SSEffects::ssil_set_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssil_quality = p_quality; ssil_half_size = p_half_size; ssil_adaptive_target = p_adaptive_target; ssil_blur_passes = p_blur_passes; ssil_fadeout_from = p_fadeout_from; ssil_fadeout_to = p_fadeout_to; } void SSEffects::gather_ssil(RD::ComputeListID p_compute_list, const RID *p_ssil_slices, const RID *p_edges_slices, const SSILSettings &p_settings, bool p_adaptive_base_pass, RID p_gather_uniform_set, RID p_importance_map_uniform_set, RID p_projection_uniform_set) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, p_gather_uniform_set, 0); if ((ssil_quality == RS::ENV_SSIL_QUALITY_ULTRA) && !p_adaptive_base_pass) { RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, p_importance_map_uniform_set, 1); } RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, p_projection_uniform_set, 3); RID shader = ssil.gather_shader.version_get_shader(ssil.gather_shader_version, 0); for (int i = 0; i < 4; i++) { if ((ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { continue; } RD::Uniform u_ssil_slice(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ p_ssil_slices[i] })); RD::Uniform u_edges_slice(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ p_edges_slices[i] })); ssil.gather_push_constant.pass_coord_offset[0] = i % 2; ssil.gather_push_constant.pass_coord_offset[1] = i / 2; ssil.gather_push_constant.pass_uv_offset[0] = ((i % 2) - 0.0) / p_settings.full_screen_size.x; ssil.gather_push_constant.pass_uv_offset[1] = ((i / 2) - 0.0) / p_settings.full_screen_size.y; ssil.gather_push_constant.pass = i; RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, uniform_set_cache->get_cache(shader, 2, u_ssil_slice, u_edges_slice), 2); RD::get_singleton()->compute_list_set_push_constant(p_compute_list, &ssil.gather_push_constant, sizeof(SSILGatherPushConstant)); Size2i size; // Calculate size same way as we created the buffer if (ssil_half_size) { size.x = (p_settings.full_screen_size.x + 3) / 4; size.y = (p_settings.full_screen_size.y + 3) / 4; } else { size.x = (p_settings.full_screen_size.x + 1) / 2; size.y = (p_settings.full_screen_size.y + 1) / 2; } RD::get_singleton()->compute_list_dispatch_threads(p_compute_list, size.x, size.y, 1); } RD::get_singleton()->compute_list_add_barrier(p_compute_list); } void SSEffects::ssil_allocate_buffers(Ref p_render_buffers, SSILRenderBuffers &p_ssil_buffers, const SSILSettings &p_settings) { if (p_ssil_buffers.half_size != ssil_half_size) { p_render_buffers->clear_context(RB_SCOPE_SSIL); } p_ssil_buffers.half_size = ssil_half_size; if (p_ssil_buffers.half_size) { p_ssil_buffers.buffer_width = (p_settings.full_screen_size.x + 3) / 4; p_ssil_buffers.buffer_height = (p_settings.full_screen_size.y + 3) / 4; p_ssil_buffers.half_buffer_width = (p_settings.full_screen_size.x + 7) / 8; p_ssil_buffers.half_buffer_height = (p_settings.full_screen_size.y + 7) / 8; } else { p_ssil_buffers.buffer_width = (p_settings.full_screen_size.x + 1) / 2; p_ssil_buffers.buffer_height = (p_settings.full_screen_size.y + 1) / 2; p_ssil_buffers.half_buffer_width = (p_settings.full_screen_size.x + 3) / 4; p_ssil_buffers.half_buffer_height = (p_settings.full_screen_size.y + 3) / 4; } uint32_t view_count = p_render_buffers->get_view_count(); Size2i full_size = Size2i(p_ssil_buffers.buffer_width, p_ssil_buffers.buffer_height); Size2i half_size = Size2i(p_ssil_buffers.half_buffer_width, p_ssil_buffers.half_buffer_height); // We create our intermediate and final results as render buffers. // These are automatically cached and cleaned up when our viewport resizes // or when our viewport gets destroyed. if (!p_render_buffers->has_texture(RB_SCOPE_SSIL, RB_FINAL)) { // We don't strictly have to check if it exists but we only want to clear it when we create it... RID final = p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_FINAL, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT); RD::get_singleton()->texture_clear(final, Color(0, 0, 0, 0), 0, 1, 0, view_count); } if (!p_render_buffers->has_texture(RB_SCOPE_SSIL, RB_LAST_FRAME)) { RID last_frame = p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_LAST_FRAME, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT, RD::TEXTURE_SAMPLES_1, p_settings.full_screen_size, 0, 6); RD::get_singleton()->texture_clear(last_frame, Color(0, 0, 0, 0), 0, 6, 0, view_count); } // As we're not clearing these, and render buffers will return the cached texture if it already exists, // we don't first check has_texture here p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_DEINTERLEAVED, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, full_size, 4 * view_count); p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_DEINTERLEAVED_PONG, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, full_size, 4 * view_count); p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_EDGES, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, full_size, 4 * view_count); p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_IMPORTANCE_MAP, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, half_size); p_render_buffers->create_texture(RB_SCOPE_SSIL, RB_IMPORTANCE_PONG, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, half_size); } void SSEffects::screen_space_indirect_lighting(Ref p_render_buffers, SSILRenderBuffers &p_ssil_buffers, uint32_t p_view, RID p_normal_buffer, const Projection &p_projection, const Projection &p_last_projection, const SSILSettings &p_settings) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); RD::get_singleton()->draw_command_begin_label("Process Screen Space Indirect Lighting"); // Obtain our (cached) buffer slices for the view we are rendering. RID last_frame = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_LAST_FRAME, p_view, 0, 1, 6); RID deinterleaved = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_DEINTERLEAVED, p_view * 4, 0, 4, 1); RID deinterleaved_pong = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_DEINTERLEAVED_PONG, 4 * p_view, 0, 4, 1); RID edges = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_EDGES, 4 * p_view, 0, 4, 1); RID importance_map = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_IMPORTANCE_MAP, p_view, 0); RID importance_pong = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_IMPORTANCE_PONG, p_view, 0); RID deinterleaved_slices[4]; RID deinterleaved_pong_slices[4]; RID edges_slices[4]; for (uint32_t i = 0; i < 4; i++) { deinterleaved_slices[i] = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_DEINTERLEAVED, p_view * 4 + i, 0); deinterleaved_pong_slices[i] = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_DEINTERLEAVED_PONG, p_view * 4 + i, 0); edges_slices[i] = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_EDGES, p_view * 4 + i, 0); } //Store projection info before starting the compute list SSILProjectionUniforms projection_uniforms; store_camera(p_last_projection, projection_uniforms.inv_last_frame_projection_matrix); RD::get_singleton()->buffer_update(ssil.projection_uniform_buffer, 0, sizeof(SSILProjectionUniforms), &projection_uniforms); memset(&ssil.gather_push_constant, 0, sizeof(SSILGatherPushConstant)); RID shader = ssil.gather_shader.version_get_shader(ssil.gather_shader_version, SSIL_GATHER); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RID default_mipmap_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); { RD::get_singleton()->draw_command_begin_label("Gather Samples"); ssil.gather_push_constant.screen_size[0] = p_settings.full_screen_size.x; ssil.gather_push_constant.screen_size[1] = p_settings.full_screen_size.y; ssil.gather_push_constant.half_screen_pixel_size[0] = 2.0 / p_settings.full_screen_size.x; ssil.gather_push_constant.half_screen_pixel_size[1] = 2.0 / p_settings.full_screen_size.y; if (ssil_half_size) { ssil.gather_push_constant.half_screen_pixel_size[0] *= 2.0; ssil.gather_push_constant.half_screen_pixel_size[1] *= 2.0; } ssil.gather_push_constant.half_screen_pixel_size_x025[0] = ssil.gather_push_constant.half_screen_pixel_size[0] * 0.75; ssil.gather_push_constant.half_screen_pixel_size_x025[1] = ssil.gather_push_constant.half_screen_pixel_size[1] * 0.75; float tan_half_fov_x = 1.0 / p_projection.columns[0][0]; float tan_half_fov_y = 1.0 / p_projection.columns[1][1]; ssil.gather_push_constant.NDC_to_view_mul[0] = tan_half_fov_x * 2.0; ssil.gather_push_constant.NDC_to_view_mul[1] = tan_half_fov_y * -2.0; ssil.gather_push_constant.NDC_to_view_add[0] = tan_half_fov_x * -1.0; ssil.gather_push_constant.NDC_to_view_add[1] = tan_half_fov_y; ssil.gather_push_constant.z_near = p_projection.get_z_near(); ssil.gather_push_constant.z_far = p_projection.get_z_far(); ssil.gather_push_constant.is_orthogonal = p_projection.is_orthogonal(); ssil.gather_push_constant.radius = p_settings.radius; float radius_near_limit = (p_settings.radius * 1.2f); if (ssil_quality <= RS::ENV_SSIL_QUALITY_LOW) { radius_near_limit *= 1.50f; if (ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) { ssil.gather_push_constant.radius *= 0.8f; } } radius_near_limit /= tan_half_fov_y; ssil.gather_push_constant.intensity = p_settings.intensity * Math_PI; ssil.gather_push_constant.fade_out_mul = -1.0 / (ssil_fadeout_to - ssil_fadeout_from); ssil.gather_push_constant.fade_out_add = ssil_fadeout_from / (ssil_fadeout_to - ssil_fadeout_from) + 1.0; ssil.gather_push_constant.inv_radius_near_limit = 1.0f / radius_near_limit; ssil.gather_push_constant.neg_inv_radius = -1.0 / ssil.gather_push_constant.radius; ssil.gather_push_constant.normal_rejection_amount = p_settings.normal_rejection; ssil.gather_push_constant.load_counter_avg_div = 9.0 / float((p_ssil_buffers.half_buffer_width) * (p_ssil_buffers.half_buffer_height) * 255); ssil.gather_push_constant.adaptive_sample_limit = ssil_adaptive_target; ssil.gather_push_constant.quality = MAX(0, ssil_quality - 1); ssil.gather_push_constant.size_multiplier = ssil_half_size ? 2 : 1; // We are using our uniform cache so our uniform sets are automatically freed when our textures are freed. // It also ensures that we're reusing the right cached entry in a multiview situation without us having to // remember each instance of the uniform set. RID projection_uniform_set; { RD::Uniform u_last_frame; u_last_frame.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; u_last_frame.binding = 0; u_last_frame.append_id(default_mipmap_sampler); u_last_frame.append_id(last_frame); RD::Uniform u_projection; u_projection.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u_projection.binding = 1; u_projection.append_id(ssil.projection_uniform_buffer); projection_uniform_set = uniform_set_cache->get_cache(shader, 3, u_last_frame, u_projection); } RID gather_uniform_set; { RID depth_texture_view = p_render_buffers->get_texture_slice(RB_SCOPE_SSDS, RB_LINEAR_DEPTH, p_view * 4, ssil_half_size ? 1 : 0, 4, 4); RD::Uniform u_depth_texture_view; u_depth_texture_view.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; u_depth_texture_view.binding = 0; u_depth_texture_view.append_id(ss_effects.mirror_sampler); u_depth_texture_view.append_id(depth_texture_view); RD::Uniform u_normal_buffer; u_normal_buffer.uniform_type = RD::UNIFORM_TYPE_IMAGE; u_normal_buffer.binding = 1; u_normal_buffer.append_id(p_normal_buffer); RD::Uniform u_gather_constants_buffer; u_gather_constants_buffer.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u_gather_constants_buffer.binding = 2; u_gather_constants_buffer.append_id(ss_effects.gather_constants_buffer); gather_uniform_set = uniform_set_cache->get_cache(shader, 0, u_depth_texture_view, u_normal_buffer, u_gather_constants_buffer); } RID importance_map_uniform_set; { RD::Uniform u_pong; u_pong.uniform_type = RD::UNIFORM_TYPE_IMAGE; u_pong.binding = 0; u_pong.append_id(deinterleaved_pong); RD::Uniform u_importance_map; u_importance_map.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; u_importance_map.binding = 1; u_importance_map.append_id(default_sampler); u_importance_map.append_id(importance_map); RD::Uniform u_load_counter; u_load_counter.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u_load_counter.binding = 2; u_load_counter.append_id(ssil.importance_map_load_counter); RID shader_adaptive = ssil.gather_shader.version_get_shader(ssil.gather_shader_version, SSIL_GATHER_ADAPTIVE); importance_map_uniform_set = uniform_set_cache->get_cache(shader_adaptive, 1, u_pong, u_importance_map, u_load_counter); } if (ssil_quality == RS::ENV_SSIL_QUALITY_ULTRA) { RD::get_singleton()->draw_command_begin_label("Generate Importance Map"); ssil.importance_map_push_constant.half_screen_pixel_size[0] = 1.0 / p_ssil_buffers.buffer_width; ssil.importance_map_push_constant.half_screen_pixel_size[1] = 1.0 / p_ssil_buffers.buffer_height; ssil.importance_map_push_constant.intensity = p_settings.intensity * Math_PI; //base pass RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_GATHER_BASE]); gather_ssil(compute_list, deinterleaved_pong_slices, edges_slices, p_settings, true, gather_uniform_set, importance_map_uniform_set, projection_uniform_set); //generate importance map RID gen_imp_shader = ssil.importance_map_shader.version_get_shader(ssil.importance_map_shader_version, 0); RD::Uniform u_ssil_pong_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, deinterleaved_pong })); RD::Uniform u_importance_map(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ importance_map })); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_GENERATE_IMPORTANCE_MAP]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(gen_imp_shader, 0, u_ssil_pong_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(gen_imp_shader, 1, u_importance_map), 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssil.importance_map_push_constant, sizeof(SSILImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssil_buffers.half_buffer_width, p_ssil_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); // process Importance Map A RID proc_imp_shader_a = ssil.importance_map_shader.version_get_shader(ssil.importance_map_shader_version, 1); RD::Uniform u_importance_map_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, importance_map })); RD::Uniform u_importance_map_pong(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ importance_pong })); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_PROCESS_IMPORTANCE_MAPA]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_a, 0, u_importance_map_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_a, 1, u_importance_map_pong), 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssil.importance_map_push_constant, sizeof(SSILImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssil_buffers.half_buffer_width, p_ssil_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); // process Importance Map B RID proc_imp_shader_b = ssil.importance_map_shader.version_get_shader(ssil.importance_map_shader_version, 2); RD::Uniform u_importance_map_pong_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, importance_pong })); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_PROCESS_IMPORTANCE_MAPB]); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_b, 0, u_importance_map_pong_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_b, 1, u_importance_map), 1); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, ssil.counter_uniform_set, 2); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssil.importance_map_push_constant, sizeof(SSILImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssil_buffers.half_buffer_width, p_ssil_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); // Importance Map RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_GATHER_ADAPTIVE]); } else { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[SSIL_GATHER]); } gather_ssil(compute_list, deinterleaved_slices, edges_slices, p_settings, false, gather_uniform_set, importance_map_uniform_set, projection_uniform_set); RD::get_singleton()->draw_command_end_label(); //Gather } { RD::get_singleton()->draw_command_begin_label("Edge Aware Blur"); ssil.blur_push_constant.edge_sharpness = 1.0 - p_settings.sharpness; ssil.blur_push_constant.half_screen_pixel_size[0] = 1.0 / p_ssil_buffers.buffer_width; ssil.blur_push_constant.half_screen_pixel_size[1] = 1.0 / p_ssil_buffers.buffer_height; int blur_passes = ssil_quality > RS::ENV_SSIL_QUALITY_VERY_LOW ? ssil_blur_passes : 1; shader = ssil.blur_shader.version_get_shader(ssil.blur_shader_version, 0); for (int pass = 0; pass < blur_passes; pass++) { int blur_pipeline = SSIL_BLUR_PASS; if (ssil_quality > RS::ENV_SSIL_QUALITY_VERY_LOW) { blur_pipeline = SSIL_BLUR_PASS_SMART; if (pass < blur_passes - 2) { blur_pipeline = SSIL_BLUR_PASS_WIDE; } } RID blur_shader = ssil.blur_shader.version_get_shader(ssil.blur_shader_version, blur_pipeline - SSIL_BLUR_PASS); for (int i = 0; i < 4; i++) { if ((ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { continue; } RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[blur_pipeline]); if (pass % 2 == 0) { if (ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) { RD::Uniform u_ssil_slice(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ssil_slice), 0); } else { RD::Uniform u_ssil_slice(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ ss_effects.mirror_sampler, deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ssil_slice), 0); } RD::Uniform u_ssil_pong_slice(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ deinterleaved_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 1, u_ssil_pong_slice), 1); } else { if (ssil_quality == RS::ENV_SSIL_QUALITY_VERY_LOW) { RD::Uniform u_ssil_pong_slice(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, deinterleaved_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ssil_pong_slice), 0); } else { RD::Uniform u_ssil_pong_slice(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ ss_effects.mirror_sampler, deinterleaved_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ssil_pong_slice), 0); } RD::Uniform u_ssil_slice(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 1, u_ssil_slice), 1); } RD::Uniform u_edges_slice(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ edges_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 2, u_edges_slice), 2); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssil.blur_push_constant, sizeof(SSILBlurPushConstant)); // Use the size of the actual buffer we're processing here or we won't cover the entire image. int x_groups = p_ssil_buffers.buffer_width; int y_groups = p_ssil_buffers.buffer_height; RD::get_singleton()->compute_list_dispatch_threads(compute_list, x_groups, y_groups, 1); } RD::get_singleton()->compute_list_add_barrier(compute_list); } RD::get_singleton()->draw_command_end_label(); // Blur } { RD::get_singleton()->draw_command_begin_label("Interleave Buffers"); ssil.interleave_push_constant.inv_sharpness = 1.0 - p_settings.sharpness; ssil.interleave_push_constant.pixel_size[0] = 1.0 / p_settings.full_screen_size.x; ssil.interleave_push_constant.pixel_size[1] = 1.0 / p_settings.full_screen_size.y; ssil.interleave_push_constant.size_modifier = uint32_t(ssil_half_size ? 4 : 2); int interleave_pipeline = SSIL_INTERLEAVE_HALF; if (ssil_quality == RS::ENV_SSIL_QUALITY_LOW) { interleave_pipeline = SSIL_INTERLEAVE; } else if (ssil_quality >= RS::ENV_SSIL_QUALITY_MEDIUM) { interleave_pipeline = SSIL_INTERLEAVE_SMART; } shader = ssil.interleave_shader.version_get_shader(ssil.interleave_shader_version, 0); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssil.pipelines[interleave_pipeline]); RID final = p_render_buffers->get_texture_slice(RB_SCOPE_SSIL, RB_FINAL, p_view, 0); RD::Uniform u_destination(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ final })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_destination), 0); if (ssil_quality > RS::ENV_SSIL_QUALITY_VERY_LOW && ssil_blur_passes % 2 == 0) { RD::Uniform u_ssil(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, deinterleaved })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_ssil), 1); } else { RD::Uniform u_ssil_pong(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, deinterleaved_pong })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_ssil_pong), 1); } RD::Uniform u_edges(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ edges })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_edges), 2); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssil.interleave_push_constant, sizeof(SSILInterleavePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_settings.full_screen_size.x, p_settings.full_screen_size.y, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); // Interleave } RD::get_singleton()->draw_command_end_label(); // SSIL RD::get_singleton()->compute_list_end(); int zero[1] = { 0 }; RD::get_singleton()->buffer_update(ssil.importance_map_load_counter, 0, sizeof(uint32_t), &zero); } /* SSAO */ void SSEffects::ssao_set_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { ssao_quality = p_quality; ssao_half_size = p_half_size; ssao_adaptive_target = p_adaptive_target; ssao_blur_passes = p_blur_passes; ssao_fadeout_from = p_fadeout_from; ssao_fadeout_to = p_fadeout_to; } void SSEffects::gather_ssao(RD::ComputeListID p_compute_list, const RID *p_ao_slices, const SSAOSettings &p_settings, bool p_adaptive_base_pass, RID p_gather_uniform_set, RID p_importance_map_uniform_set) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, p_gather_uniform_set, 0); if ((ssao_quality == RS::ENV_SSAO_QUALITY_ULTRA) && !p_adaptive_base_pass) { RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, p_importance_map_uniform_set, 1); } RID shader = ssao.gather_shader.version_get_shader(ssao.gather_shader_version, 1); // for (int i = 0; i < 4; i++) { if ((ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { continue; } RD::Uniform u_ao_slice(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ p_ao_slices[i] })); ssao.gather_push_constant.pass_coord_offset[0] = i % 2; ssao.gather_push_constant.pass_coord_offset[1] = i / 2; ssao.gather_push_constant.pass_uv_offset[0] = ((i % 2) - 0.0) / p_settings.full_screen_size.x; ssao.gather_push_constant.pass_uv_offset[1] = ((i / 2) - 0.0) / p_settings.full_screen_size.y; ssao.gather_push_constant.pass = i; RD::get_singleton()->compute_list_bind_uniform_set(p_compute_list, uniform_set_cache->get_cache(shader, 2, u_ao_slice), 2); RD::get_singleton()->compute_list_set_push_constant(p_compute_list, &ssao.gather_push_constant, sizeof(SSAOGatherPushConstant)); Size2i size; // Make sure we use the same size as with which our buffer was created if (ssao_half_size) { size.x = (p_settings.full_screen_size.x + 3) / 4; size.y = (p_settings.full_screen_size.y + 3) / 4; } else { size.x = (p_settings.full_screen_size.x + 1) / 2; size.y = (p_settings.full_screen_size.y + 1) / 2; } RD::get_singleton()->compute_list_dispatch_threads(p_compute_list, size.x, size.y, 1); } RD::get_singleton()->compute_list_add_barrier(p_compute_list); } void SSEffects::ssao_allocate_buffers(Ref p_render_buffers, SSAORenderBuffers &p_ssao_buffers, const SSAOSettings &p_settings) { if (p_ssao_buffers.half_size != ssao_half_size) { p_render_buffers->clear_context(RB_SCOPE_SSAO); } p_ssao_buffers.half_size = ssao_half_size; if (ssao_half_size) { p_ssao_buffers.buffer_width = (p_settings.full_screen_size.x + 3) / 4; p_ssao_buffers.buffer_height = (p_settings.full_screen_size.y + 3) / 4; p_ssao_buffers.half_buffer_width = (p_settings.full_screen_size.x + 7) / 8; p_ssao_buffers.half_buffer_height = (p_settings.full_screen_size.y + 7) / 8; } else { p_ssao_buffers.buffer_width = (p_settings.full_screen_size.x + 1) / 2; p_ssao_buffers.buffer_height = (p_settings.full_screen_size.y + 1) / 2; p_ssao_buffers.half_buffer_width = (p_settings.full_screen_size.x + 3) / 4; p_ssao_buffers.half_buffer_height = (p_settings.full_screen_size.y + 3) / 4; } uint32_t view_count = p_render_buffers->get_view_count(); Size2i full_size = Size2i(p_ssao_buffers.buffer_width, p_ssao_buffers.buffer_height); Size2i half_size = Size2i(p_ssao_buffers.half_buffer_width, p_ssao_buffers.half_buffer_height); // As we're not clearing these, and render buffers will return the cached texture if it already exists, // we don't first check has_texture here p_render_buffers->create_texture(RB_SCOPE_SSAO, RB_DEINTERLEAVED, RD::DATA_FORMAT_R8G8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, full_size, 4 * view_count); p_render_buffers->create_texture(RB_SCOPE_SSAO, RB_DEINTERLEAVED_PONG, RD::DATA_FORMAT_R8G8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, full_size, 4 * view_count); p_render_buffers->create_texture(RB_SCOPE_SSAO, RB_IMPORTANCE_MAP, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, half_size); p_render_buffers->create_texture(RB_SCOPE_SSAO, RB_IMPORTANCE_PONG, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, half_size); p_render_buffers->create_texture(RB_SCOPE_SSAO, RB_FINAL, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1); } void SSEffects::generate_ssao(Ref p_render_buffers, SSAORenderBuffers &p_ssao_buffers, uint32_t p_view, RID p_normal_buffer, const Projection &p_projection, const SSAOSettings &p_settings) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); // Obtain our (cached) buffer slices for the view we are rendering. RID ao_deinterleaved = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_DEINTERLEAVED, p_view * 4, 0, 4, 1); RID ao_pong = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_DEINTERLEAVED_PONG, p_view * 4, 0, 4, 1); RID importance_map = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_IMPORTANCE_MAP, p_view, 0); RID importance_pong = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_IMPORTANCE_PONG, p_view, 0); RID ao_final = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_FINAL, p_view, 0); RID ao_deinterleaved_slices[4]; RID ao_pong_slices[4]; for (uint32_t i = 0; i < 4; i++) { ao_deinterleaved_slices[i] = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_DEINTERLEAVED, p_view * 4 + i, 0); ao_pong_slices[i] = p_render_buffers->get_texture_slice(RB_SCOPE_SSAO, RB_DEINTERLEAVED_PONG, p_view * 4 + i, 0); } RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); memset(&ssao.gather_push_constant, 0, sizeof(SSAOGatherPushConstant)); /* FIRST PASS */ RID shader = ssao.gather_shader.version_get_shader(ssao.gather_shader_version, SSAO_GATHER); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RD::get_singleton()->draw_command_begin_label("Process Screen Space Ambient Occlusion"); /* SECOND PASS */ // Sample SSAO { RD::get_singleton()->draw_command_begin_label("Gather Samples"); ssao.gather_push_constant.screen_size[0] = p_settings.full_screen_size.x; ssao.gather_push_constant.screen_size[1] = p_settings.full_screen_size.y; ssao.gather_push_constant.half_screen_pixel_size[0] = 2.0 / p_settings.full_screen_size.x; ssao.gather_push_constant.half_screen_pixel_size[1] = 2.0 / p_settings.full_screen_size.y; if (ssao_half_size) { ssao.gather_push_constant.half_screen_pixel_size[0] *= 2.0; ssao.gather_push_constant.half_screen_pixel_size[1] *= 2.0; } ssao.gather_push_constant.half_screen_pixel_size_x025[0] = ssao.gather_push_constant.half_screen_pixel_size[0] * 0.75; ssao.gather_push_constant.half_screen_pixel_size_x025[1] = ssao.gather_push_constant.half_screen_pixel_size[1] * 0.75; float tan_half_fov_x = 1.0 / p_projection.columns[0][0]; float tan_half_fov_y = 1.0 / p_projection.columns[1][1]; ssao.gather_push_constant.NDC_to_view_mul[0] = tan_half_fov_x * 2.0; ssao.gather_push_constant.NDC_to_view_mul[1] = tan_half_fov_y * -2.0; ssao.gather_push_constant.NDC_to_view_add[0] = tan_half_fov_x * -1.0; ssao.gather_push_constant.NDC_to_view_add[1] = tan_half_fov_y; ssao.gather_push_constant.is_orthogonal = p_projection.is_orthogonal(); ssao.gather_push_constant.radius = p_settings.radius; float radius_near_limit = (p_settings.radius * 1.2f); if (ssao_quality <= RS::ENV_SSAO_QUALITY_LOW) { radius_near_limit *= 1.50f; if (ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { ssao.gather_push_constant.radius *= 0.8f; } } radius_near_limit /= tan_half_fov_y; ssao.gather_push_constant.intensity = p_settings.intensity; ssao.gather_push_constant.shadow_power = p_settings.power; ssao.gather_push_constant.shadow_clamp = 0.98; ssao.gather_push_constant.fade_out_mul = -1.0 / (ssao_fadeout_to - ssao_fadeout_from); ssao.gather_push_constant.fade_out_add = ssao_fadeout_from / (ssao_fadeout_to - ssao_fadeout_from) + 1.0; ssao.gather_push_constant.horizon_angle_threshold = p_settings.horizon; ssao.gather_push_constant.inv_radius_near_limit = 1.0f / radius_near_limit; ssao.gather_push_constant.neg_inv_radius = -1.0 / ssao.gather_push_constant.radius; ssao.gather_push_constant.load_counter_avg_div = 9.0 / float((p_ssao_buffers.half_buffer_width) * (p_ssao_buffers.half_buffer_height) * 255); ssao.gather_push_constant.adaptive_sample_limit = ssao_adaptive_target; ssao.gather_push_constant.detail_intensity = p_settings.detail; ssao.gather_push_constant.quality = MAX(0, ssao_quality - 1); ssao.gather_push_constant.size_multiplier = ssao_half_size ? 2 : 1; // We are using our uniform cache so our uniform sets are automatically freed when our textures are freed. // It also ensures that we're reusing the right cached entry in a multiview situation without us having to // remember each instance of the uniform set. RID gather_uniform_set; { RID depth_texture_view = p_render_buffers->get_texture_slice(RB_SCOPE_SSDS, RB_LINEAR_DEPTH, p_view * 4, ssao_half_size ? 1 : 0, 4, 4); RD::Uniform u_depth_texture_view; u_depth_texture_view.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; u_depth_texture_view.binding = 0; u_depth_texture_view.append_id(ss_effects.mirror_sampler); u_depth_texture_view.append_id(depth_texture_view); RD::Uniform u_normal_buffer; u_normal_buffer.uniform_type = RD::UNIFORM_TYPE_IMAGE; u_normal_buffer.binding = 1; u_normal_buffer.append_id(p_normal_buffer); RD::Uniform u_gather_constants_buffer; u_gather_constants_buffer.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u_gather_constants_buffer.binding = 2; u_gather_constants_buffer.append_id(ss_effects.gather_constants_buffer); gather_uniform_set = uniform_set_cache->get_cache(shader, 0, u_depth_texture_view, u_normal_buffer, u_gather_constants_buffer); } RID importance_map_uniform_set; { RD::Uniform u_pong; u_pong.uniform_type = RD::UNIFORM_TYPE_IMAGE; u_pong.binding = 0; u_pong.append_id(ao_pong); RD::Uniform u_importance_map; u_importance_map.uniform_type = RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE; u_importance_map.binding = 1; u_importance_map.append_id(default_sampler); u_importance_map.append_id(importance_map); RD::Uniform u_load_counter; u_load_counter.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u_load_counter.binding = 2; u_load_counter.append_id(ssao.importance_map_load_counter); RID shader_adaptive = ssao.gather_shader.version_get_shader(ssao.gather_shader_version, SSAO_GATHER_ADAPTIVE); importance_map_uniform_set = uniform_set_cache->get_cache(shader_adaptive, 1, u_pong, u_importance_map, u_load_counter); } if (ssao_quality == RS::ENV_SSAO_QUALITY_ULTRA) { RD::get_singleton()->draw_command_begin_label("Generate Importance Map"); ssao.importance_map_push_constant.half_screen_pixel_size[0] = 1.0 / p_ssao_buffers.buffer_width; ssao.importance_map_push_constant.half_screen_pixel_size[1] = 1.0 / p_ssao_buffers.buffer_height; ssao.importance_map_push_constant.intensity = p_settings.intensity; ssao.importance_map_push_constant.power = p_settings.power; //base pass RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER_BASE]); gather_ssao(compute_list, ao_pong_slices, p_settings, true, gather_uniform_set, RID()); //generate importance map RID gen_imp_shader = ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, 0); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GENERATE_IMPORTANCE_MAP]); RD::Uniform u_ao_pong_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, ao_pong })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(gen_imp_shader, 0, u_ao_pong_with_sampler), 0); RD::Uniform u_importance_map(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ importance_map })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(gen_imp_shader, 1, u_importance_map), 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssao_buffers.half_buffer_width, p_ssao_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); //process importance map A RID proc_imp_shader_a = ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, 1); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_PROCESS_IMPORTANCE_MAPA]); RD::Uniform u_importance_map_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, importance_map })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_a, 0, u_importance_map_with_sampler), 0); RD::Uniform u_importance_map_pong(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ importance_pong })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_a, 1, u_importance_map_pong), 1); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssao_buffers.half_buffer_width, p_ssao_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); //process Importance Map B RID proc_imp_shader_b = ssao.importance_map_shader.version_get_shader(ssao.importance_map_shader_version, 2); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_PROCESS_IMPORTANCE_MAPB]); RD::Uniform u_importance_map_pong_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, importance_pong })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_b, 0, u_importance_map_pong_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(proc_imp_shader_b, 1, u_importance_map), 1); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, ssao.counter_uniform_set, 2); RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.importance_map_push_constant, sizeof(SSAOImportanceMapPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssao_buffers.half_buffer_width, p_ssao_buffers.half_buffer_height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER_ADAPTIVE]); RD::get_singleton()->draw_command_end_label(); // Importance Map } else { RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[SSAO_GATHER]); } gather_ssao(compute_list, ao_deinterleaved_slices, p_settings, false, gather_uniform_set, importance_map_uniform_set); RD::get_singleton()->draw_command_end_label(); // Gather SSAO } // /* THIRD PASS */ // // Blur // { RD::get_singleton()->draw_command_begin_label("Edge Aware Blur"); ssao.blur_push_constant.edge_sharpness = 1.0 - p_settings.sharpness; ssao.blur_push_constant.half_screen_pixel_size[0] = 1.0 / p_ssao_buffers.buffer_width; ssao.blur_push_constant.half_screen_pixel_size[1] = 1.0 / p_ssao_buffers.buffer_height; int blur_passes = ssao_quality > RS::ENV_SSAO_QUALITY_VERY_LOW ? ssao_blur_passes : 1; shader = ssao.blur_shader.version_get_shader(ssao.blur_shader_version, 0); for (int pass = 0; pass < blur_passes; pass++) { int blur_pipeline = SSAO_BLUR_PASS; if (ssao_quality > RS::ENV_SSAO_QUALITY_VERY_LOW) { if (pass < blur_passes - 2) { blur_pipeline = SSAO_BLUR_PASS_WIDE; } else { blur_pipeline = SSAO_BLUR_PASS_SMART; } } for (int i = 0; i < 4; i++) { if ((ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW) && ((i == 1) || (i == 2))) { continue; } RID blur_shader = ssao.blur_shader.version_get_shader(ssao.blur_shader_version, blur_pipeline - SSAO_BLUR_PASS); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[blur_pipeline]); if (pass % 2 == 0) { if (ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { RD::Uniform u_ao_slices_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, ao_deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ao_slices_with_sampler), 0); } else { RD::Uniform u_ao_slices_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ ss_effects.mirror_sampler, ao_deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ao_slices_with_sampler), 0); } RD::Uniform u_ao_pong_slices(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ ao_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 1, u_ao_pong_slices), 1); } else { if (ssao_quality == RS::ENV_SSAO_QUALITY_VERY_LOW) { RD::Uniform u_ao_pong_slices_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, ao_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ao_pong_slices_with_sampler), 0); } else { RD::Uniform u_ao_pong_slices_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ ss_effects.mirror_sampler, ao_pong_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 0, u_ao_pong_slices_with_sampler), 0); } RD::Uniform u_ao_slices(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ ao_deinterleaved_slices[i] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(blur_shader, 1, u_ao_slices), 1); } RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.blur_push_constant, sizeof(SSAOBlurPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssao_buffers.buffer_width, p_ssao_buffers.buffer_height, 1); } RD::get_singleton()->compute_list_add_barrier(compute_list); } RD::get_singleton()->draw_command_end_label(); // Blur } /* FOURTH PASS */ // Interleave buffers // back to full size { RD::get_singleton()->draw_command_begin_label("Interleave Buffers"); ssao.interleave_push_constant.inv_sharpness = 1.0 - p_settings.sharpness; ssao.interleave_push_constant.pixel_size[0] = 1.0 / p_settings.full_screen_size.x; ssao.interleave_push_constant.pixel_size[1] = 1.0 / p_settings.full_screen_size.y; ssao.interleave_push_constant.size_modifier = uint32_t(ssao_half_size ? 4 : 2); shader = ssao.interleave_shader.version_get_shader(ssao.interleave_shader_version, 0); int interleave_pipeline = SSAO_INTERLEAVE_HALF; if (ssao_quality == RS::ENV_SSAO_QUALITY_LOW) { interleave_pipeline = SSAO_INTERLEAVE; } else if (ssao_quality >= RS::ENV_SSAO_QUALITY_MEDIUM) { interleave_pipeline = SSAO_INTERLEAVE_SMART; } RID interleave_shader = ssao.interleave_shader.version_get_shader(ssao.interleave_shader_version, interleave_pipeline - SSAO_INTERLEAVE); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssao.pipelines[interleave_pipeline]); RD::Uniform u_upscale_buffer(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ ao_final })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(interleave_shader, 0, u_upscale_buffer), 0); if (ssao_quality > RS::ENV_SSAO_QUALITY_VERY_LOW && ssao_blur_passes % 2 == 0) { RD::Uniform u_ao(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, ao_deinterleaved })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(interleave_shader, 1, u_ao), 1); } else { RD::Uniform u_ao(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, ao_pong })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(interleave_shader, 1, u_ao), 1); } RD::get_singleton()->compute_list_set_push_constant(compute_list, &ssao.interleave_push_constant, sizeof(SSAOInterleavePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_settings.full_screen_size.x, p_settings.full_screen_size.y, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); // Interleave } RD::get_singleton()->draw_command_end_label(); //SSAO RD::get_singleton()->compute_list_end(); int zero[1] = { 0 }; RD::get_singleton()->buffer_update(ssao.importance_map_load_counter, 0, sizeof(uint32_t), &zero); } /* Screen Space Reflection */ void SSEffects::ssr_set_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { ssr_roughness_quality = p_quality; } void SSEffects::ssr_allocate_buffers(Ref p_render_buffers, SSRRenderBuffers &p_ssr_buffers, const RenderingDevice::DataFormat p_color_format) { if (p_ssr_buffers.roughness_quality != ssr_roughness_quality) { // Buffers will already be cleared if view count or viewport size has changed, also cleared them if we change roughness. p_render_buffers->clear_context(RB_SCOPE_SSR); } Size2i internal_size = p_render_buffers->get_internal_size(); p_ssr_buffers.size = Size2i(internal_size.x / 2, internal_size.y / 2); p_ssr_buffers.roughness_quality = ssr_roughness_quality; // We are using barriers so we do not need to allocate textures for both views on anything but output... p_render_buffers->create_texture(RB_SCOPE_SSR, RB_DEPTH_SCALED, RD::DATA_FORMAT_R32_SFLOAT, RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, p_ssr_buffers.size, 1); p_render_buffers->create_texture(RB_SCOPE_SSR, RB_NORMAL_SCALED, RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, p_ssr_buffers.size, 1); if (ssr_roughness_quality != RS::ENV_SSR_ROUGHNESS_QUALITY_DISABLED && !p_render_buffers->has_texture(RB_SCOPE_SSR, RB_BLUR_RADIUS)) { p_render_buffers->create_texture(RB_SCOPE_SSR, RB_BLUR_RADIUS, RD::DATA_FORMAT_R8_UNORM, RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT, RD::TEXTURE_SAMPLES_1, p_ssr_buffers.size, 2); // 2 layers, for our two blur stages } p_render_buffers->create_texture(RB_SCOPE_SSR, RB_INTERMEDIATE, p_color_format, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, p_ssr_buffers.size, 1); p_render_buffers->create_texture(RB_SCOPE_SSR, RB_OUTPUT, p_color_format, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT, RD::TEXTURE_SAMPLES_1, p_ssr_buffers.size); } void SSEffects::screen_space_reflection(Ref p_render_buffers, SSRRenderBuffers &p_ssr_buffers, const RID *p_normal_roughness_slices, const RID *p_metallic_slices, int p_max_steps, float p_fade_in, float p_fade_out, float p_tolerance, const Projection *p_projections, const Vector3 *p_eye_offsets) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); uint32_t view_count = p_render_buffers->get_view_count(); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); { // Store some scene data in a UBO, in the near future we will use a UBO shared with other shaders ScreenSpaceReflectionSceneData scene_data; if (ssr.ubo.is_null()) { ssr.ubo = RD::get_singleton()->uniform_buffer_create(sizeof(ScreenSpaceReflectionSceneData)); } for (uint32_t v = 0; v < view_count; v++) { store_camera(p_projections[v], scene_data.projection[v]); store_camera(p_projections[v].inverse(), scene_data.inv_projection[v]); scene_data.eye_offset[v][0] = p_eye_offsets[v].x; scene_data.eye_offset[v][1] = p_eye_offsets[v].y; scene_data.eye_offset[v][2] = p_eye_offsets[v].z; scene_data.eye_offset[v][3] = 0.0; } RD::get_singleton()->buffer_update(ssr.ubo, 0, sizeof(ScreenSpaceReflectionSceneData), &scene_data); } uint32_t pipeline_specialization = 0; if (view_count > 1) { pipeline_specialization |= SSR_MULTIVIEW; } RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); for (uint32_t v = 0; v < view_count; v++) { // get buffers we need to use for this view RID diffuse_slice = p_render_buffers->get_internal_texture(v); RID depth_slice = p_render_buffers->get_depth_texture(v); RID depth_scaled = p_render_buffers->get_texture(RB_SCOPE_SSR, RB_DEPTH_SCALED); RID normal_scaled = p_render_buffers->get_texture(RB_SCOPE_SSR, RB_NORMAL_SCALED); RID intermediate = p_render_buffers->get_texture(RB_SCOPE_SSR, RB_INTERMEDIATE); RID output = p_render_buffers->get_texture_slice(RB_SCOPE_SSR, RB_OUTPUT, v, 0); RID blur_radius[2]; if (ssr_roughness_quality != RS::ENV_SSR_ROUGHNESS_QUALITY_DISABLED) { blur_radius[0] = p_render_buffers->get_texture_slice(RB_SCOPE_SSR, RB_BLUR_RADIUS, 0, 0); blur_radius[1] = p_render_buffers->get_texture_slice(RB_SCOPE_SSR, RB_BLUR_RADIUS, 1, 0); } RD::get_singleton()->draw_command_begin_label(String("SSR View ") + itos(v)); { //scale color and depth to half RD::get_singleton()->draw_command_begin_label("SSR Scale"); ScreenSpaceReflectionScalePushConstant push_constant; push_constant.view_index = v; push_constant.camera_z_far = p_projections[v].get_z_far(); push_constant.camera_z_near = p_projections[v].get_z_near(); push_constant.orthogonal = p_projections[v].is_orthogonal(); push_constant.filter = false; // Enabling causes artifacts. push_constant.screen_size[0] = p_ssr_buffers.size.x; push_constant.screen_size[1] = p_ssr_buffers.size.y; RID shader = ssr_scale.shader.version_get_shader(ssr_scale.shader_version, 0); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssr_scale.pipelines[pipeline_specialization]); RD::Uniform u_diffuse(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, diffuse_slice })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_diffuse), 0); RD::Uniform u_depth(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, depth_slice })); RD::Uniform u_normal_roughness(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 1, Vector({ default_sampler, p_normal_roughness_slices[v] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_depth, u_normal_roughness), 1); RD::Uniform u_intermediate(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ intermediate })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_intermediate), 2); RD::Uniform u_scale_depth(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ depth_scaled })); RD::Uniform u_scale_normal(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ normal_scaled })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 3, u_scale_depth, u_scale_normal), 3); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ScreenSpaceReflectionScalePushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssr_buffers.size.width, p_ssr_buffers.size.height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); RD::get_singleton()->draw_command_end_label(); } { RD::get_singleton()->draw_command_begin_label("SSR main"); ScreenSpaceReflectionPushConstant push_constant; push_constant.view_index = v; push_constant.camera_z_far = p_projections[v].get_z_far(); push_constant.camera_z_near = p_projections[v].get_z_near(); push_constant.orthogonal = p_projections[v].is_orthogonal(); push_constant.screen_size[0] = p_ssr_buffers.size.x; push_constant.screen_size[1] = p_ssr_buffers.size.y; push_constant.curve_fade_in = p_fade_in; push_constant.distance_fade = p_fade_out; push_constant.num_steps = p_max_steps; push_constant.depth_tolerance = p_tolerance; push_constant.use_half_res = true; push_constant.proj_info[0] = -2.0f / (p_ssr_buffers.size.width * p_projections[v].columns[0][0]); push_constant.proj_info[1] = -2.0f / (p_ssr_buffers.size.height * p_projections[v].columns[1][1]); push_constant.proj_info[2] = (1.0f - p_projections[v].columns[0][2]) / p_projections[v].columns[0][0]; push_constant.proj_info[3] = (1.0f + p_projections[v].columns[1][2]) / p_projections[v].columns[1][1]; ScreenSpaceReflectionMode mode = (ssr_roughness_quality != RS::ENV_SSR_ROUGHNESS_QUALITY_DISABLED) ? SCREEN_SPACE_REFLECTION_ROUGH : SCREEN_SPACE_REFLECTION_NORMAL; RID shader = ssr.shader.version_get_shader(ssr.shader_version, mode); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssr.pipelines[pipeline_specialization][mode]); RD::Uniform u_scene_data(RD::UNIFORM_TYPE_UNIFORM_BUFFER, 0, ssr.ubo); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 4, u_scene_data), 4); // read from intermediate RD::Uniform u_intermediate(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ intermediate })); RD::Uniform u_scale_depth(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ depth_scaled })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_intermediate, u_scale_depth), 0); if (ssr_roughness_quality != RS::ENV_SSR_ROUGHNESS_QUALITY_DISABLED) { // write to output and blur radius RD::Uniform u_output(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ output })); RD::Uniform u_blur_radius(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ blur_radius[0] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_output, u_blur_radius), 1); } else { // We are only writing output RD::Uniform u_output(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ output })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_output), 1); } RD::Uniform u_scale_normal(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ normal_scaled })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_scale_normal), 2); RD::Uniform u_metallic(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, p_metallic_slices[v] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 3, u_metallic), 3); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ScreenSpaceReflectionPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssr_buffers.size.width, p_ssr_buffers.size.height, 1); RD::get_singleton()->draw_command_end_label(); } if (ssr_roughness_quality != RS::ENV_SSR_ROUGHNESS_QUALITY_DISABLED) { RD::get_singleton()->draw_command_begin_label("SSR filter"); //blur RD::get_singleton()->compute_list_add_barrier(compute_list); ScreenSpaceReflectionFilterPushConstant push_constant; push_constant.view_index = v; push_constant.orthogonal = p_projections[v].is_orthogonal(); push_constant.edge_tolerance = Math::sin(Math::deg_to_rad(15.0)); push_constant.proj_info[0] = -2.0f / (p_ssr_buffers.size.width * p_projections[v].columns[0][0]); push_constant.proj_info[1] = -2.0f / (p_ssr_buffers.size.height * p_projections[v].columns[1][1]); push_constant.proj_info[2] = (1.0f - p_projections[v].columns[0][2]) / p_projections[v].columns[0][0]; push_constant.proj_info[3] = (1.0f + p_projections[v].columns[1][2]) / p_projections[v].columns[1][1]; push_constant.vertical = 0; if (ssr_roughness_quality == RS::ENV_SSR_ROUGHNESS_QUALITY_LOW) { push_constant.steps = p_max_steps / 3; push_constant.increment = 3; } else if (ssr_roughness_quality == RS::ENV_SSR_ROUGHNESS_QUALITY_MEDIUM) { push_constant.steps = p_max_steps / 2; push_constant.increment = 2; } else { push_constant.steps = p_max_steps; push_constant.increment = 1; } push_constant.screen_size[0] = p_ssr_buffers.size.width; push_constant.screen_size[1] = p_ssr_buffers.size.height; // Horizontal pass SSRReflectionMode mode = SCREEN_SPACE_REFLECTION_FILTER_HORIZONTAL; RID shader = ssr_filter.shader.version_get_shader(ssr_filter.shader_version, mode); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssr_filter.pipelines[pipeline_specialization][mode]); RD::Uniform u_output(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ output })); RD::Uniform u_blur_radius(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ blur_radius[0] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_output, u_blur_radius), 0); RD::Uniform u_scale_normal(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ normal_scaled })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_scale_normal), 1); RD::Uniform u_intermediate(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ intermediate })); RD::Uniform u_blur_radius2(RD::UNIFORM_TYPE_IMAGE, 1, Vector({ blur_radius[1] })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_intermediate, u_blur_radius2), 2); RD::Uniform u_scale_depth(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ depth_scaled })); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 3, u_scale_depth), 3); RD::Uniform u_scene_data(RD::UNIFORM_TYPE_UNIFORM_BUFFER, 0, ssr.ubo); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 4, u_scene_data), 4); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ScreenSpaceReflectionFilterPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssr_buffers.size.width, p_ssr_buffers.size.height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); // Vertical pass mode = SCREEN_SPACE_REFLECTION_FILTER_VERTICAL; shader = ssr_filter.shader.version_get_shader(ssr_filter.shader_version, mode); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, ssr_filter.pipelines[pipeline_specialization][mode]); push_constant.vertical = 1; RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_intermediate, u_blur_radius2), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_scale_normal), 1); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_output), 2); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 3, u_scale_depth), 3); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 4, u_scene_data), 4); RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ScreenSpaceReflectionFilterPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_ssr_buffers.size.width, p_ssr_buffers.size.height, 1); if (v != view_count - 1) { RD::get_singleton()->compute_list_add_barrier(compute_list); } RD::get_singleton()->draw_command_end_label(); } RD::get_singleton()->draw_command_end_label(); } RD::get_singleton()->compute_list_end(); } /* Subsurface scattering */ void SSEffects::sss_set_quality(RS::SubSurfaceScatteringQuality p_quality) { sss_quality = p_quality; } RS::SubSurfaceScatteringQuality SSEffects::sss_get_quality() const { return sss_quality; } void SSEffects::sss_set_scale(float p_scale, float p_depth_scale) { sss_scale = p_scale; sss_depth_scale = p_depth_scale; } void SSEffects::sub_surface_scattering(Ref p_render_buffers, RID p_diffuse, RID p_depth, const Projection &p_camera, const Size2i &p_screen_size) { UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); // Our intermediate buffer is only created if we haven't created it already. RD::DataFormat format = p_render_buffers->get_base_data_format(); uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; uint32_t layers = 1; // We only need one layer, we're handling one view at a time uint32_t mipmaps = 1; // Image::get_image_required_mipmaps(p_screen_size.x, p_screen_size.y, Image::FORMAT_RGBAH); RID intermediate = p_render_buffers->create_texture(SNAME("SSR"), SNAME("intermediate"), format, usage_bits, RD::TEXTURE_SAMPLES_1, p_screen_size, layers, mipmaps); Plane p = p_camera.xform4(Plane(1, 0, -1, 1)); p.normal /= p.d; float unit_size = p.normal.x; { //scale color and depth to half RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); sss.push_constant.camera_z_far = p_camera.get_z_far(); sss.push_constant.camera_z_near = p_camera.get_z_near(); sss.push_constant.orthogonal = p_camera.is_orthogonal(); sss.push_constant.unit_size = unit_size; sss.push_constant.screen_size[0] = p_screen_size.x; sss.push_constant.screen_size[1] = p_screen_size.y; sss.push_constant.vertical = false; sss.push_constant.scale = sss_scale; sss.push_constant.depth_scale = sss_depth_scale; RID shader = sss.shader.version_get_shader(sss.shader_version, sss_quality - 1); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sss.pipelines[sss_quality - 1]); RD::Uniform u_diffuse_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, p_diffuse })); RD::Uniform u_diffuse(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ p_diffuse })); RD::Uniform u_intermediate_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, intermediate })); RD::Uniform u_intermediate(RD::UNIFORM_TYPE_IMAGE, 0, Vector({ intermediate })); RD::Uniform u_depth_with_sampler(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, p_depth })); // horizontal RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_diffuse_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_intermediate), 1); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_depth_with_sampler), 2); RD::get_singleton()->compute_list_set_push_constant(compute_list, &sss.push_constant, sizeof(SubSurfaceScatteringPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_screen_size.width, p_screen_size.height, 1); RD::get_singleton()->compute_list_add_barrier(compute_list); // vertical RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 0, u_intermediate_with_sampler), 0); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 1, u_diffuse), 1); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set_cache->get_cache(shader, 2, u_depth_with_sampler), 2); sss.push_constant.vertical = true; RD::get_singleton()->compute_list_set_push_constant(compute_list, &sss.push_constant, sizeof(SubSurfaceScatteringPushConstant)); RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_screen_size.width, p_screen_size.height, 1); RD::get_singleton()->compute_list_end(); } }