/*************************************************************************/ /* broad_phase_2d_hash_grid.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "broad_phase_2d_hash_grid.h" #include "globals.h" #define LARGE_ELEMENT_FI 1.01239812 void BroadPhase2DHashGrid::_pair_attempt(Element *p_elem, Element* p_with) { Map::Element *E=p_elem->paired.find(p_with); ERR_FAIL_COND(p_elem->_static && p_with->_static); if (!E) { PairData *pd = memnew( PairData ); p_elem->paired[p_with]=pd; p_with->paired[p_elem]=pd; } else { E->get()->rc++; } } void BroadPhase2DHashGrid::_unpair_attempt(Element *p_elem, Element* p_with) { Map::Element *E=p_elem->paired.find(p_with); ERR_FAIL_COND(!E); //this should really be paired.. E->get()->rc--; if (E->get()->rc==0) { if (E->get()->colliding) { //uncollide if (unpair_callback) { unpair_callback(p_elem->owner,p_elem->subindex,p_with->owner,p_with->subindex,E->get()->ud,unpair_userdata); } } memdelete(E->get()); p_elem->paired.erase(E); p_with->paired.erase(p_elem); } } void BroadPhase2DHashGrid::_check_motion(Element *p_elem) { for (Map::Element *E=p_elem->paired.front();E;E=E->next()) { bool pairing = p_elem->aabb.intersects( E->key()->aabb ); if (pairing!=E->get()->colliding) { if (pairing) { if (pair_callback) { E->get()->ud=pair_callback(p_elem->owner,p_elem->subindex,E->key()->owner,E->key()->subindex,pair_userdata); } } else { if (unpair_callback) { unpair_callback(p_elem->owner,p_elem->subindex,E->key()->owner,E->key()->subindex,E->get()->ud,unpair_userdata); } } E->get()->colliding=pairing; } } } void BroadPhase2DHashGrid::_enter_grid( Element* p_elem, const Rect2& p_rect,bool p_static) { Vector2 sz = (p_rect.size/cell_size*LARGE_ELEMENT_FI); //use magic number to avoid floating point issues if (sz.width*sz.height > large_object_min_surface) { //large object, do not use grid, must check against all elements for (Map::Element *E=element_map.front();E;E=E->next()) { if (E->key()==p_elem->self) continue; // do not pair against itself if (E->get().owner == p_elem->owner) continue; if (E->get()._static && p_static) continue; _pair_attempt(p_elem,&E->get()); } large_elements[p_elem].inc(); return; } Point2i from = (p_rect.pos/cell_size).floor(); Point2i to = ((p_rect.pos+p_rect.size)/cell_size).floor(); for(int i=from.x;i<=to.x;i++) { for(int j=from.y;j<=to.y;j++) { PosKey pk; pk.x=i; pk.y=j; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb=pb->next; } bool entered=false; if (!pb) { //does not exist, create! pb = memnew( PosBin ); pb->key=pk; pb->next=hash_table[idx]; hash_table[idx]=pb; } if (p_static) { if (pb->static_object_set[p_elem].inc()==1) { entered=true; } } else { if (pb->object_set[p_elem].inc()==1) { entered=true; } } if (entered) { for(Map::Element *E=pb->object_set.front();E;E=E->next()) { if (E->key()->owner==p_elem->owner) continue; _pair_attempt(p_elem,E->key()); } if (!p_static) { for(Map::Element *E=pb->static_object_set.front();E;E=E->next()) { if (E->key()->owner==p_elem->owner) continue; _pair_attempt(p_elem,E->key()); } } } } } //pair separatedly with large elements for (Map::Element *E=large_elements.front();E;E=E->next()) { if (E->key()==p_elem) continue; // do not pair against itself if (E->key()->owner == p_elem->owner) continue; if (E->key()->_static && p_static) continue; _pair_attempt(E->key(),p_elem); } } void BroadPhase2DHashGrid::_exit_grid( Element* p_elem, const Rect2& p_rect,bool p_static) { Vector2 sz = (p_rect.size/cell_size*LARGE_ELEMENT_FI); if (sz.width*sz.height > large_object_min_surface) { //unpair all elements, instead of checking all, just check what is already paired, so we at least save from checking static vs static for (Map::Element *E=p_elem->paired.front();E;E=E->next()) { _unpair_attempt(p_elem,E->key()); } if (large_elements[p_elem].dec()==0) { large_elements.erase(p_elem); } return; } Point2i from = (p_rect.pos/cell_size).floor(); Point2i to = ((p_rect.pos+p_rect.size)/cell_size).floor(); for(int i=from.x;i<=to.x;i++) { for(int j=from.y;j<=to.y;j++) { PosKey pk; pk.x=i; pk.y=j; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb=pb->next; } ERR_CONTINUE(!pb); //should exist!! bool exited=false; if (p_static) { if (pb->static_object_set[p_elem].dec()==0) { pb->static_object_set.erase(p_elem); exited=true; } } else { if (pb->object_set[p_elem].dec()==0) { pb->object_set.erase(p_elem); exited=true; } } if (exited) { for(Map::Element *E=pb->object_set.front();E;E=E->next()) { if (E->key()->owner==p_elem->owner) continue; _unpair_attempt(p_elem,E->key()); } if (!p_static) { for(Map::Element *E=pb->static_object_set.front();E;E=E->next()) { if (E->key()->owner==p_elem->owner) continue; _unpair_attempt(p_elem,E->key()); } } } if (pb->object_set.empty() && pb->static_object_set.empty()) { if (hash_table[idx]==pb) { hash_table[idx]=pb->next; } else { PosBin *px = hash_table[idx]; while (px) { if (px->next==pb) { px->next=pb->next; break; } px=px->next; } ERR_CONTINUE(!px); } memdelete(pb); } } } for (Map::Element *E=large_elements.front();E;E=E->next()) { if (E->key()==p_elem) continue; // do not pair against itself if (E->key()->owner == p_elem->owner) continue; if (E->key()->_static && p_static) continue; //unpair from large elements _unpair_attempt(p_elem,E->key()); } } BroadPhase2DHashGrid::ID BroadPhase2DHashGrid::create(CollisionObject2DSW *p_object, int p_subindex) { current++; Element e; e.owner=p_object; e._static=false; e.subindex=p_subindex; e.self=current; e.pass=0; element_map[current]=e; return current; } void BroadPhase2DHashGrid::move(ID p_id, const Rect2& p_aabb) { Map::Element *E=element_map.find(p_id); ERR_FAIL_COND(!E); Element &e=E->get(); if (p_aabb==e.aabb) return; if (p_aabb!=Rect2()) { _enter_grid(&e,p_aabb,e._static); } if (e.aabb!=Rect2()) { _exit_grid(&e,e.aabb,e._static); } e.aabb=p_aabb; _check_motion(&e); e.aabb=p_aabb; } void BroadPhase2DHashGrid::set_static(ID p_id, bool p_static) { Map::Element *E=element_map.find(p_id); ERR_FAIL_COND(!E); Element &e=E->get(); if (e._static==p_static) return; if (e.aabb!=Rect2()) _exit_grid(&e,e.aabb,e._static); e._static=p_static; if (e.aabb!=Rect2()) { _enter_grid(&e,e.aabb,e._static); _check_motion(&e); } } void BroadPhase2DHashGrid::remove(ID p_id) { Map::Element *E=element_map.find(p_id); ERR_FAIL_COND(!E); Element &e=E->get(); if (e.aabb!=Rect2()) _exit_grid(&e,e.aabb,e._static); element_map.erase(p_id); } CollisionObject2DSW *BroadPhase2DHashGrid::get_object(ID p_id) const { const Map::Element *E=element_map.find(p_id); ERR_FAIL_COND_V(!E,NULL); return E->get().owner; } bool BroadPhase2DHashGrid::is_static(ID p_id) const { const Map::Element *E=element_map.find(p_id); ERR_FAIL_COND_V(!E,false); return E->get()._static; } int BroadPhase2DHashGrid::get_subindex(ID p_id) const { const Map::Element *E=element_map.find(p_id); ERR_FAIL_COND_V(!E,-1); return E->get().subindex; } template void BroadPhase2DHashGrid::_cull(const Point2i p_cell,const Rect2& p_aabb,const Point2& p_from, const Point2& p_to,CollisionObject2DSW** p_results,int p_max_results,int *p_result_indices,int &index) { PosKey pk; pk.x=p_cell.x; pk.y=p_cell.y; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb=pb->next; } if (!pb) return; for(Map::Element *E=pb->object_set.front();E;E=E->next()) { if (index>=p_max_results) break; if (E->key()->pass==pass) continue; E->key()->pass=pass; if (use_aabb && !p_aabb.intersects(E->key()->aabb)) continue; if (use_segment && !E->key()->aabb.intersects_segment(p_from,p_to)) continue; p_results[index]=E->key()->owner; p_result_indices[index]=E->key()->subindex; index++; } for(Map::Element *E=pb->static_object_set.front();E;E=E->next()) { if (index>=p_max_results) break; if (E->key()->pass==pass) continue; if (use_aabb && !p_aabb.intersects(E->key()->aabb)) { continue; } if (use_segment && !E->key()->aabb.intersects_segment(p_from,p_to)) continue; E->key()->pass=pass; p_results[index]=E->key()->owner; p_result_indices[index]=E->key()->subindex; index++; } } int BroadPhase2DHashGrid::cull_segment(const Vector2& p_from, const Vector2& p_to,CollisionObject2DSW** p_results,int p_max_results,int *p_result_indices) { pass++; Vector2 dir = (p_to-p_from); if (dir==Vector2()) return 0; //avoid divisions by zero dir.normalize(); if (dir.x==0.0) dir.x=0.000001; if (dir.y==0.0) dir.y=0.000001; Vector2 delta = dir.abs(); delta.x=cell_size/delta.x; delta.y=cell_size/delta.y; Point2i pos = (p_from/cell_size).floor(); Point2i end = (p_to/cell_size).floor(); Point2i step = Vector2( SGN(dir.x), SGN(dir.y) ); Vector2 max; if (dir.x<0) max.x= (Math::floor(pos.x)*cell_size - p_from.x) / dir.x; else max.x= (Math::floor(pos.x + 1)*cell_size - p_from.x) / dir.x; if (dir.y<0) max.y= (Math::floor(pos.y)*cell_size - p_from.y) / dir.y; else max.y= (Math::floor(pos.y + 1)*cell_size - p_from.y) / dir.y; int cullcount=0; _cull(pos,Rect2(),p_from,p_to,p_results,p_max_results,p_result_indices,cullcount); bool reached_x=false; bool reached_y=false; while(true) { if (max.x < max.y) { max.x+=delta.x; pos.x+=step.x; } else { max.y+=delta.y; pos.y+=step.y; } if (step.x>0) { if (pos.x>=end.x) reached_x=true; } else if (pos.x<=end.x) { reached_x=true; } if (step.y>0) { if (pos.y>=end.y) reached_y=true; } else if (pos.y<=end.y) { reached_y=true; } _cull(pos,Rect2(),p_from,p_to,p_results,p_max_results,p_result_indices,cullcount); if (reached_x && reached_y) break; } for (Map::Element *E=large_elements.front();E;E=E->next()) { if (cullcount>=p_max_results) break; if (E->key()->pass==pass) continue; E->key()->pass=pass; // if (use_aabb && !p_aabb.intersects(E->key()->aabb)) // continue; if (!E->key()->aabb.intersects_segment(p_from,p_to)) continue; p_results[cullcount]=E->key()->owner; p_result_indices[cullcount]=E->key()->subindex; cullcount++; } return cullcount; } int BroadPhase2DHashGrid::cull_aabb(const Rect2& p_aabb,CollisionObject2DSW** p_results,int p_max_results,int *p_result_indices) { pass++; Point2i from = (p_aabb.pos/cell_size).floor(); Point2i to = ((p_aabb.pos+p_aabb.size)/cell_size).floor(); int cullcount=0; for(int i=from.x;i<=to.x;i++) { for(int j=from.y;j<=to.y;j++) { _cull(Point2i(i,j),p_aabb,Point2(),Point2(),p_results,p_max_results,p_result_indices,cullcount); } } for (Map::Element *E=large_elements.front();E;E=E->next()) { if (cullcount>=p_max_results) break; if (E->key()->pass==pass) continue; E->key()->pass=pass; if (!p_aabb.intersects(E->key()->aabb)) continue; // if (!E->key()->aabb.intersects_segment(p_from,p_to)) // continue; p_results[cullcount]=E->key()->owner; p_result_indices[cullcount]=E->key()->subindex; cullcount++; } return cullcount; } void BroadPhase2DHashGrid::set_pair_callback(PairCallback p_pair_callback,void *p_userdata) { pair_callback=p_pair_callback; pair_userdata=p_userdata; } void BroadPhase2DHashGrid::set_unpair_callback(UnpairCallback p_unpair_callback,void *p_userdata) { unpair_callback=p_unpair_callback; unpair_userdata=p_userdata; } void BroadPhase2DHashGrid::update() { } BroadPhase2DSW *BroadPhase2DHashGrid::_create() { return memnew( BroadPhase2DHashGrid ); } BroadPhase2DHashGrid::BroadPhase2DHashGrid() { hash_table_size = GLOBAL_DEF("physics_2d/bp_hash_table_size",4096); hash_table_size = Math::larger_prime(hash_table_size); hash_table = memnew_arr( PosBin*, hash_table_size); cell_size = GLOBAL_DEF("physics_2d/cell_size",128); large_object_min_surface = GLOBAL_DEF("physics_2d/large_object_surface_treshold_in_cells",512); for(int i=0;inext; memdelete(pb); } } memdelete_arr( hash_table ); } /* 3D version of voxel traversal: public IEnumerable GetCellsOnRay(Ray ray, int maxDepth) { // Implementation is based on: // "A Fast Voxel Traversal Algorithm for Ray Tracing" // John Amanatides, Andrew Woo // http://www.cse.yorku.ca/~amana/research/grid.pdf // http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf // NOTES: // * This code assumes that the ray's position and direction are in 'cell coordinates', which means // that one unit equals one cell in all directions. // * When the ray doesn't start within the voxel grid, calculate the first position at which the // ray could enter the grid. If it never enters the grid, there is nothing more to do here. // * Also, it is important to test when the ray exits the voxel grid when the grid isn't infinite. // * The Point3D structure is a simple structure having three integer fields (X, Y and Z). // The cell in which the ray starts. Point3D start = GetCellAt(ray.Position); // Rounds the position's X, Y and Z down to the nearest integer values. int x = start.X; int y = start.Y; int z = start.Z; // Determine which way we go. int stepX = Math.Sign(ray.Direction.X); int stepY = Math.Sign(ray.Direction.Y); int stepZ = Math.Sign(ray.Direction.Z); // Calculate cell boundaries. When the step (i.e. direction sign) is positive, // the next boundary is AFTER our current position, meaning that we have to add 1. // Otherwise, it is BEFORE our current position, in which case we add nothing. Point3D cellBoundary = new Point3D( x + (stepX > 0 ? 1 : 0), y + (stepY > 0 ? 1 : 0), z + (stepZ > 0 ? 1 : 0)); // NOTE: For the following calculations, the result will be Single.PositiveInfinity // when ray.Direction.X, Y or Z equals zero, which is OK. However, when the left-hand // value of the division also equals zero, the result is Single.NaN, which is not OK. // Determine how far we can travel along the ray before we hit a voxel boundary. Vector3 tMax = new Vector3( (cellBoundary.X - ray.Position.X) / ray.Direction.X, // Boundary is a plane on the YZ axis. (cellBoundary.Y - ray.Position.Y) / ray.Direction.Y, // Boundary is a plane on the XZ axis. (cellBoundary.Z - ray.Position.Z) / ray.Direction.Z); // Boundary is a plane on the XY axis. if (Single.IsNaN(tMax.X)) tMax.X = Single.PositiveInfinity; if (Single.IsNaN(tMax.Y)) tMax.Y = Single.PositiveInfinity; if (Single.IsNaN(tMax.Z)) tMax.Z = Single.PositiveInfinity; // Determine how far we must travel along the ray before we have crossed a gridcell. Vector3 tDelta = new Vector3( stepX / ray.Direction.X, // Crossing the width of a cell. stepY / ray.Direction.Y, // Crossing the height of a cell. stepZ / ray.Direction.Z); // Crossing the depth of a cell. if (Single.IsNaN(tDelta.X)) tDelta.X = Single.PositiveInfinity; if (Single.IsNaN(tDelta.Y)) tDelta.Y = Single.PositiveInfinity; if (Single.IsNaN(tDelta.Z)) tDelta.Z = Single.PositiveInfinity; // For each step, determine which distance to the next voxel boundary is lowest (i.e. // which voxel boundary is nearest) and walk that way. for (int i = 0; i < maxDepth; i++) { // Return it. yield return new Point3D(x, y, z); // Do the next step. if (tMax.X < tMax.Y && tMax.X < tMax.Z) { // tMax.X is the lowest, an YZ cell boundary plane is nearest. x += stepX; tMax.X += tDelta.X; } else if (tMax.Y < tMax.Z) { // tMax.Y is the lowest, an XZ cell boundary plane is nearest. y += stepY; tMax.Y += tDelta.Y; } else { // tMax.Z is the lowest, an XY cell boundary plane is nearest. z += stepZ; tMax.Z += tDelta.Z; } } */