/**************************************************************************/ /* mesh_storage.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "mesh_storage.h" #include "core/math/transform_interpolator.h" #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) #include "core/config/project_settings.h" #endif RID RendererMeshStorage::multimesh_allocate() { return _multimesh_allocate(); } void RendererMeshStorage::multimesh_initialize(RID p_rid) { _multimesh_initialize(p_rid); } void RendererMeshStorage::multimesh_free(RID p_rid) { _multimesh_free(p_rid); } void RendererMeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->_transform_format = p_transform_format; mmi->_use_colors = p_use_colors; mmi->_use_custom_data = p_use_custom_data; mmi->_num_instances = p_instances; mmi->_vf_size_xform = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; mmi->_vf_size_color = p_use_colors ? 4 : 0; mmi->_vf_size_data = p_use_custom_data ? 4 : 0; mmi->_stride = mmi->_vf_size_xform + mmi->_vf_size_color + mmi->_vf_size_data; int size_in_floats = p_instances * mmi->_stride; mmi->_data_curr.resize_zeroed(size_in_floats); mmi->_data_prev.resize_zeroed(size_in_floats); mmi->_data_interpolated.resize_zeroed(size_in_floats); } _multimesh_allocate_data(p_multimesh, p_instances, p_transform_format, p_use_colors, p_use_custom_data); } int RendererMeshStorage::multimesh_get_instance_count(RID p_multimesh) const { return _multimesh_get_instance_count(p_multimesh); } void RendererMeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { _multimesh_set_mesh(p_multimesh, p_mesh); } void RendererMeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi && mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_xform != 12); int start = p_index * mmi->_stride; float *ptr = mmi->_data_curr.ptrw(); ptr += start; const Transform3D &t = p_transform; ptr[0] = t.basis.rows[0][0]; ptr[1] = t.basis.rows[0][1]; ptr[2] = t.basis.rows[0][2]; ptr[3] = t.origin.x; ptr[4] = t.basis.rows[1][0]; ptr[5] = t.basis.rows[1][1]; ptr[6] = t.basis.rows[1][2]; ptr[7] = t.origin.y; ptr[8] = t.basis.rows[2][0]; ptr[9] = t.basis.rows[2][1]; ptr[10] = t.basis.rows[2][2]; ptr[11] = t.origin.z; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { PHYSICS_INTERPOLATION_WARNING("MultiMesh interpolation is being triggered from outside physics process, this might lead to issues"); } #endif return; } _multimesh_instance_set_transform(p_multimesh, p_index, p_transform); } void RendererMeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { _multimesh_instance_set_transform_2d(p_multimesh, p_index, p_transform); } void RendererMeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi && mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_color == 0); int start = (p_index * mmi->_stride) + mmi->_vf_size_xform; float *ptr = mmi->_data_curr.ptrw(); ptr += start; if (mmi->_vf_size_color == 4) { for (int n = 0; n < 4; n++) { ptr[n] = p_color.components[n]; } } else { #ifdef DEV_ENABLED // The options are currently 4 or zero, but just in case this changes in future... ERR_FAIL_COND(mmi->_vf_size_color != 0); #endif } _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); return; } _multimesh_instance_set_color(p_multimesh, p_index, p_color); } void RendererMeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi && mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_data == 0); int start = (p_index * mmi->_stride) + mmi->_vf_size_xform + mmi->_vf_size_color; float *ptr = mmi->_data_curr.ptrw(); ptr += start; if (mmi->_vf_size_data == 4) { for (int n = 0; n < 4; n++) { ptr[n] = p_color.components[n]; } } else { #ifdef DEV_ENABLED // The options are currently 4 or zero, but just in case this changes in future... ERR_FAIL_COND(mmi->_vf_size_data != 0); #endif } _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); return; } _multimesh_instance_set_custom_data(p_multimesh, p_index, p_color); } void RendererMeshStorage::multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) { _multimesh_set_custom_aabb(p_multimesh, p_aabb); } AABB RendererMeshStorage::multimesh_get_custom_aabb(RID p_multimesh) const { return _multimesh_get_custom_aabb(p_multimesh); } RID RendererMeshStorage::multimesh_get_mesh(RID p_multimesh) const { return _multimesh_get_mesh(p_multimesh); } Transform3D RendererMeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return _multimesh_instance_get_transform(p_multimesh, p_index); } Transform2D RendererMeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { return _multimesh_instance_get_transform_2d(p_multimesh, p_index); } Color RendererMeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const { return _multimesh_instance_get_color(p_multimesh, p_index); } Color RendererMeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { return _multimesh_instance_get_custom_data(p_multimesh, p_index); } void RendererMeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi && mmi->interpolated) { ERR_FAIL_COND_MSG(p_buffer.size() != mmi->_data_curr.size(), vformat("Buffer should have %d elements, got %d instead.", mmi->_data_curr.size(), p_buffer.size())); mmi->_data_curr = p_buffer; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { PHYSICS_INTERPOLATION_WARNING("MultiMesh interpolation is being triggered from outside physics process, this might lead to issues"); } #endif return; } _multimesh_set_buffer(p_multimesh, p_buffer); } Vector RendererMeshStorage::multimesh_get_buffer(RID p_multimesh) const { return _multimesh_get_buffer(p_multimesh); } void RendererMeshStorage::multimesh_set_buffer_interpolated(RID p_multimesh, const Vector &p_buffer, const Vector &p_buffer_prev) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { ERR_FAIL_COND_MSG(p_buffer.size() != mmi->_data_curr.size(), vformat("Buffer for current frame should have %d elements, got %d instead.", mmi->_data_curr.size(), p_buffer.size())); ERR_FAIL_COND_MSG(p_buffer_prev.size() != mmi->_data_prev.size(), vformat("Buffer for previous frame should have %d elements, got %d instead.", mmi->_data_prev.size(), p_buffer_prev.size())); // We are assuming that mmi->interpolated is the case. (Can possibly assert this?) // Even if this flag hasn't been set - just calling this function suggests interpolation is desired. mmi->_data_prev = p_buffer_prev; mmi->_data_curr = p_buffer; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { PHYSICS_INTERPOLATION_WARNING("MultiMesh interpolation is being triggered from outside physics process, this might lead to issues"); } #endif } } void RendererMeshStorage::multimesh_set_physics_interpolated(RID p_multimesh, bool p_interpolated) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->interpolated = p_interpolated; } } void RendererMeshStorage::multimesh_set_physics_interpolation_quality(RID p_multimesh, RS::MultimeshPhysicsInterpolationQuality p_quality) { ERR_FAIL_COND((p_quality < 0) || (p_quality > 1)); MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->quality = (int)p_quality; } } void RendererMeshStorage::multimesh_instance_reset_physics_interpolation(RID p_multimesh, int p_index) { MultiMeshInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { ERR_FAIL_INDEX(p_index, mmi->_num_instances); float *w = mmi->_data_prev.ptrw(); const float *r = mmi->_data_curr.ptr(); int start = p_index * mmi->_stride; for (int n = 0; n < mmi->_stride; n++) { w[start + n] = r[start + n]; } } } void RendererMeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { return _multimesh_set_visible_instances(p_multimesh, p_visible); } int RendererMeshStorage::multimesh_get_visible_instances(RID p_multimesh) const { return _multimesh_get_visible_instances(p_multimesh); } AABB RendererMeshStorage::multimesh_get_aabb(RID p_multimesh) { return _multimesh_get_aabb(p_multimesh); } void RendererMeshStorage::_multimesh_add_to_interpolation_lists(RID p_multimesh, MultiMeshInterpolator &r_mmi) { if (!r_mmi.on_interpolate_update_list) { r_mmi.on_interpolate_update_list = true; _interpolation_data.multimesh_interpolate_update_list.push_back(p_multimesh); } if (!r_mmi.on_transform_update_list) { r_mmi.on_transform_update_list = true; _interpolation_data.multimesh_transform_update_list_curr->push_back(p_multimesh); } } void RendererMeshStorage::InterpolationData::notify_free_multimesh(RID p_rid) { // If the instance was on any of the lists, remove. multimesh_interpolate_update_list.erase_multiple_unordered(p_rid); multimesh_transform_update_lists[0].erase_multiple_unordered(p_rid); multimesh_transform_update_lists[1].erase_multiple_unordered(p_rid); } void RendererMeshStorage::update_interpolation_tick(bool p_process) { // Detect any that were on the previous transform list that are no longer active, // we should remove them from the interpolate list. for (unsigned int n = 0; n < _interpolation_data.multimesh_transform_update_list_prev->size(); n++) { const RID &rid = (*_interpolation_data.multimesh_transform_update_list_prev)[n]; bool active = true; // No longer active? (Either the instance deleted or no longer being transformed.) MultiMeshInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi && !mmi->on_transform_update_list) { active = false; mmi->on_interpolate_update_list = false; // Make sure the most recent transform is set... mmi->_data_interpolated = mmi->_data_curr; // TODO: Copy data rather than use Packed = function? // ... and that both prev and current are the same, just in case of any interpolations. mmi->_data_prev = mmi->_data_curr; } if (!mmi) { active = false; } if (!active) { _interpolation_data.multimesh_interpolate_update_list.erase(rid); } } if (p_process) { for (unsigned int i = 0; i < _interpolation_data.multimesh_transform_update_list_curr->size(); i++) { const RID &rid = (*_interpolation_data.multimesh_transform_update_list_curr)[i]; MultiMeshInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi) { // Reset for next tick. mmi->on_transform_update_list = false; mmi->_data_prev = mmi->_data_curr; } } } // If any have left the transform list, remove from the interpolate list. // We maintain a mirror list for the transform updates, so we can detect when an instance // is no longer being transformed, and remove it from the interpolate list. SWAP(_interpolation_data.multimesh_transform_update_list_curr, _interpolation_data.multimesh_transform_update_list_prev); // Prepare for the next iteration. _interpolation_data.multimesh_transform_update_list_curr->clear(); } void RendererMeshStorage::update_interpolation_frame(bool p_process) { if (p_process) { // Only need 32 bits for interpolation, don't use real_t. float f = Engine::get_singleton()->get_physics_interpolation_fraction(); for (unsigned int c = 0; c < _interpolation_data.multimesh_interpolate_update_list.size(); c++) { const RID &rid = _interpolation_data.multimesh_interpolate_update_list[c]; // We could use the TransformInterpolator here to slerp transforms, but that might be too expensive, // so just using a Basis lerp for now. MultiMeshInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi) { // Make sure arrays are the correct size. DEV_ASSERT(mmi->_data_prev.size() == mmi->_data_curr.size()); if (mmi->_data_interpolated.size() < mmi->_data_curr.size()) { mmi->_data_interpolated.resize(mmi->_data_curr.size()); } DEV_ASSERT(mmi->_data_interpolated.size() >= mmi->_data_curr.size()); DEV_ASSERT((mmi->_data_curr.size() % mmi->_stride) == 0); int num = mmi->_data_curr.size() / mmi->_stride; const float *pf_prev = mmi->_data_prev.ptr(); const float *pf_curr = mmi->_data_curr.ptr(); float *pf_int = mmi->_data_interpolated.ptrw(); bool use_lerp = mmi->quality == 0; // Temporary transform (needed for swizzling). Transform3D tp, tc, tr; // (transform prev, curr and result) // Test for cache friendliness versus doing branchless. for (int n = 0; n < num; n++) { // Transform. if (use_lerp) { for (int i = 0; i < mmi->_vf_size_xform; i++) { pf_int[i] = Math::lerp(pf_prev[i], pf_curr[i], f); } } else { // Silly swizzling, this will slow things down. // No idea why it is using this format... // ... maybe due to the shader. tp.basis.rows[0][0] = pf_prev[0]; tp.basis.rows[0][1] = pf_prev[1]; tp.basis.rows[0][2] = pf_prev[2]; tp.basis.rows[1][0] = pf_prev[4]; tp.basis.rows[1][1] = pf_prev[5]; tp.basis.rows[1][2] = pf_prev[6]; tp.basis.rows[2][0] = pf_prev[8]; tp.basis.rows[2][1] = pf_prev[9]; tp.basis.rows[2][2] = pf_prev[10]; tp.origin.x = pf_prev[3]; tp.origin.y = pf_prev[7]; tp.origin.z = pf_prev[11]; tc.basis.rows[0][0] = pf_curr[0]; tc.basis.rows[0][1] = pf_curr[1]; tc.basis.rows[0][2] = pf_curr[2]; tc.basis.rows[1][0] = pf_curr[4]; tc.basis.rows[1][1] = pf_curr[5]; tc.basis.rows[1][2] = pf_curr[6]; tc.basis.rows[2][0] = pf_curr[8]; tc.basis.rows[2][1] = pf_curr[9]; tc.basis.rows[2][2] = pf_curr[10]; tc.origin.x = pf_curr[3]; tc.origin.y = pf_curr[7]; tc.origin.z = pf_curr[11]; TransformInterpolator::interpolate_transform_3d(tp, tc, tr, f); pf_int[0] = tr.basis.rows[0][0]; pf_int[1] = tr.basis.rows[0][1]; pf_int[2] = tr.basis.rows[0][2]; pf_int[4] = tr.basis.rows[1][0]; pf_int[5] = tr.basis.rows[1][1]; pf_int[6] = tr.basis.rows[1][2]; pf_int[8] = tr.basis.rows[2][0]; pf_int[9] = tr.basis.rows[2][1]; pf_int[10] = tr.basis.rows[2][2]; pf_int[3] = tr.origin.x; pf_int[7] = tr.origin.y; pf_int[11] = tr.origin.z; } pf_prev += mmi->_vf_size_xform; pf_curr += mmi->_vf_size_xform; pf_int += mmi->_vf_size_xform; // Color. if (mmi->_vf_size_color == 4) { for (int i = 0; i < 4; i++) { pf_int[i] = Math::lerp(pf_prev[i], pf_curr[i], f); } pf_prev += 4; pf_curr += 4; pf_int += 4; } // Custom data. if (mmi->_vf_size_data == 4) { for (int i = 0; i < 4; i++) { pf_int[i] = Math::lerp(pf_prev[i], pf_curr[i], f); } pf_prev += 4; pf_curr += 4; pf_int += 4; } } _multimesh_set_buffer(rid, mmi->_data_interpolated); // TODO: Make sure AABBs are constantly up to date through the interpolation? // NYI. } } } }