/*************************************************************************/ /* matrix3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "matrix3.h" #include "math_funcs.h" #include "os/copymem.h" #include "print_string.h" #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Matrix3::from_z(const Vector3 &p_z) { if (Math::abs(p_z.z) > Math_SQRT12) { // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); } else { // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; real_t k = 1.0 / Math::sqrt(a); elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); } elements[2] = p_z; } void Matrix3::invert() { real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = elements[0][0] * co[0] + elements[0][1] * co[1] + elements[0][2] * co[2]; ERR_FAIL_COND(det == 0); real_t s = 1.0 / det; set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); } void Matrix3::orthonormalize() { // Gram-Schmidt Process Vector3 x = get_axis(0); Vector3 y = get_axis(1); Vector3 z = get_axis(2); x.normalize(); y = (y - x * (x.dot(y))); y.normalize(); z = (z - x * (x.dot(z)) - y * (y.dot(z))); z.normalize(); set_axis(0, x); set_axis(1, y); set_axis(2, z); } Matrix3 Matrix3::orthonormalized() const { Matrix3 c = *this; c.orthonormalize(); return c; } Matrix3 Matrix3::inverse() const { Matrix3 inv = *this; inv.invert(); return inv; } void Matrix3::transpose() { SWAP(elements[0][1], elements[1][0]); SWAP(elements[0][2], elements[2][0]); SWAP(elements[1][2], elements[2][1]); } Matrix3 Matrix3::transposed() const { Matrix3 tr = *this; tr.transpose(); return tr; } void Matrix3::scale(const Vector3 &p_scale) { elements[0][0] *= p_scale.x; elements[1][0] *= p_scale.x; elements[2][0] *= p_scale.x; elements[0][1] *= p_scale.y; elements[1][1] *= p_scale.y; elements[2][1] *= p_scale.y; elements[0][2] *= p_scale.z; elements[1][2] *= p_scale.z; elements[2][2] *= p_scale.z; } Matrix3 Matrix3::scaled(const Vector3 &p_scale) const { Matrix3 m = *this; m.scale(p_scale); return m; } Vector3 Matrix3::get_scale() const { return Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } void Matrix3::rotate(const Vector3 &p_axis, real_t p_phi) { *this = *this * Matrix3(p_axis, p_phi); } Matrix3 Matrix3::rotated(const Vector3 &p_axis, real_t p_phi) const { return *this * Matrix3(p_axis, p_phi); } Vector3 Matrix3::get_euler() const { // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Matrix3 m = *this; m.orthonormalize(); Vector3 euler; euler.y = Math::asin(m[0][2]); if (euler.y < Math_PI * 0.5) { if (euler.y > -Math_PI * 0.5) { //if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case. if (m[1][0] == 0.0 && m[0][1] == 0.0 && m[0][0] < 0.0) { if (euler.y > 0.0) euler.y = Math_PI - euler.y; else euler.y = -(Math_PI + euler.y); } else { euler.x = Math::atan2(-m[1][2], m[2][2]); euler.z = Math::atan2(-m[0][1], m[0][0]); } } else { real_t r = Math::atan2(m[1][0], m[1][1]); euler.z = 0.0; euler.x = euler.z - r; } } else { real_t r = Math::atan2(m[0][1], m[1][1]); euler.z = 0; euler.x = r - euler.z; } return euler; } void Matrix3::set_euler(const Vector3 &p_euler) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); Matrix3 xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); Matrix3 ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); Matrix3 zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway *this = xmat * (ymat * zmat); } bool Matrix3::operator==(const Matrix3 &p_matrix) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (elements[i][j] != p_matrix.elements[i][j]) return false; } } return true; } bool Matrix3::operator!=(const Matrix3 &p_matrix) const { return (!(*this == p_matrix)); } Matrix3::operator String() const { String mtx; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (i != 0 || j != 0) mtx += ", "; mtx += rtos(elements[i][j]); } } return mtx; } Matrix3::operator Quat() const { Matrix3 m = *this; m.orthonormalize(); real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; real_t temp[4]; if (trace > 0.0) { real_t s = Math::sqrt(trace + 1.0); temp[3] = (s * 0.5); s = 0.5 / s; temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); } else { int i = m.elements[0][0] < m.elements[1][1] ? (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : (m.elements[0][0] < m.elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; } return Quat(temp[0], temp[1], temp[2], temp[3]); } static const Matrix3 _ortho_bases[24] = { Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1), Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1), Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1), Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0), Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0), Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0), Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0), Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1), Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1), Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1), Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1), Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0), Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0), Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0), Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0), Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0), Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0), Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0), Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0), Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0), Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0), Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0), Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0) }; int Matrix3::get_orthogonal_index() const { //could be sped up if i come up with a way Matrix3 orth = *this; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { float v = orth[i][j]; if (v > 0.5) v = 1.0; else if (v < -0.5) v = -1.0; else v = 0; orth[i][j] = v; } } for (int i = 0; i < 24; i++) { if (_ortho_bases[i] == orth) return i; } return 0; } void Matrix3::set_orthogonal_index(int p_index) { //there only exist 24 orthogonal bases in r3 ERR_FAIL_INDEX(p_index, 24); *this = _ortho_bases[p_index]; } void Matrix3::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const { double angle, x, y, z; // variables for result double epsilon = 0.01; // margin to allow for rounding errors double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonaland zero in other terms if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); r_angle = 0; return; } // otherwise this singularity is angle = 180 angle = Math_PI; double xx = (elements[0][0] + 1) / 2; double yy = (elements[1][1] + 1) / 2; double zz = (elements[2][2] + 1) / 2; double xy = (elements[1][0] + elements[0][1]) / 4; double xz = (elements[2][0] + elements[0][2]) / 4; double yz = (elements[2][1] + elements[1][2]) / 4; if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term if (xx < epsilon) { x = 0; y = 0.7071; z = 0.7071; } else { x = Math::sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { // elements[1][1] is the largest diagonal term if (yy < epsilon) { x = 0.7071; y = 0; z = 0.7071; } else { y = Math::sqrt(yy); x = xy / y; z = yz / y; } } else { // elements[2][2] is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.7071; y = 0.7071; z = 0; } else { z = Math::sqrt(zz); x = xz / z; y = yz / z; } } r_axis = Vector3(x, y, z); r_angle = angle; return; } // as we have reached here there are no singularities so we can handle normally double s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // used to normalise if (Math::abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); x = (elements[1][2] - elements[2][1]) / s; y = (elements[2][0] - elements[0][2]) / s; z = (elements[0][1] - elements[1][0]) / s; r_axis = Vector3(x, y, z); r_angle = angle; } Matrix3::Matrix3(const Vector3 &p_euler) { set_euler(p_euler); } Matrix3::Matrix3(const Quat &p_quat) { real_t d = p_quat.length_squared(); real_t s = 2.0 / d; real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; set(1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)); } Matrix3::Matrix3(const Vector3 &p_axis, real_t p_phi) { Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); real_t cosine = Math::cos(p_phi); real_t sine = Math::sin(p_phi); elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine; elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine; elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine; elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine; elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine; elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); }