/* * The LMS stateful-hash public-key signature scheme * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later */ /* * The following sources were referenced in the design of this implementation * of the LMS algorithm: * * [1] IETF RFC8554 * D. McGrew, M. Curcio, S.Fluhrer * https://datatracker.ietf.org/doc/html/rfc8554 * * [2] NIST Special Publication 800-208 * David A. Cooper et. al. * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf */ #include "common.h" #if defined(MBEDTLS_LMS_C) #include #include "lmots.h" #include "psa/crypto.h" #include "psa_util_internal.h" #include "mbedtls/lms.h" #include "mbedtls/error.h" #include "mbedtls/platform_util.h" #include "mbedtls/platform.h" /* Define a local translating function to save code size by not using too many * arguments in each translating place. */ static int local_err_translation(psa_status_t status) { return psa_status_to_mbedtls(status, psa_to_lms_errors, ARRAY_LENGTH(psa_to_lms_errors), psa_generic_status_to_mbedtls); } #define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status) #define SIG_Q_LEAF_ID_OFFSET (0) #define SIG_OTS_SIG_OFFSET (SIG_Q_LEAF_ID_OFFSET + \ MBEDTLS_LMOTS_Q_LEAF_ID_LEN) #define SIG_TYPE_OFFSET(otstype) (SIG_OTS_SIG_OFFSET + \ MBEDTLS_LMOTS_SIG_LEN(otstype)) #define SIG_PATH_OFFSET(otstype) (SIG_TYPE_OFFSET(otstype) + \ MBEDTLS_LMS_TYPE_LEN) #define PUBLIC_KEY_TYPE_OFFSET (0) #define PUBLIC_KEY_OTSTYPE_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \ MBEDTLS_LMS_TYPE_LEN) #define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_OTSTYPE_OFFSET + \ MBEDTLS_LMOTS_TYPE_LEN) #define PUBLIC_KEY_ROOT_NODE_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \ MBEDTLS_LMOTS_I_KEY_ID_LEN) /* Currently only support H=10 */ #define H_TREE_HEIGHT_MAX 10 #define MERKLE_TREE_NODE_AM(type) ((size_t) 1 << (MBEDTLS_LMS_H_TREE_HEIGHT(type) + 1u)) #define MERKLE_TREE_LEAF_NODE_AM(type) ((size_t) 1 << MBEDTLS_LMS_H_TREE_HEIGHT(type)) #define MERKLE_TREE_INTERNAL_NODE_AM(type) ((unsigned int) \ (1u << MBEDTLS_LMS_H_TREE_HEIGHT(type))) #define D_CONST_LEN (2) static const unsigned char D_LEAF_CONSTANT_BYTES[D_CONST_LEN] = { 0x82, 0x82 }; static const unsigned char D_INTR_CONSTANT_BYTES[D_CONST_LEN] = { 0x83, 0x83 }; /* Calculate the value of a leaf node of the Merkle tree (which is a hash of a * public key and some other parameters like the leaf index). This function * implements RFC8554 section 5.3, in the case where r >= 2^h. * * params The LMS parameter set, the underlying LMOTS * parameter set, and I value which describe the key * being used. * * pub_key The public key of the private whose index * corresponds to the index of this leaf node. This * is a hash output. * * r_node_idx The index of this node in the Merkle tree. Note * that the root node of the Merkle tree is * 1-indexed. * * out The output node value, which is a hash output. */ static int create_merkle_leaf_value(const mbedtls_lms_parameters_t *params, unsigned char *pub_key, unsigned int r_node_idx, unsigned char *out) { psa_hash_operation_t op; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned char r_node_idx_bytes[4]; op = psa_hash_operation_init(); status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0); status = psa_hash_update(&op, r_node_idx_bytes, 4); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, D_LEAF_CONSTANT_BYTES, D_CONST_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, pub_key, MBEDTLS_LMOTS_N_HASH_LEN(params->otstype)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type), &output_hash_len); if (status != PSA_SUCCESS) { goto exit; } exit: psa_hash_abort(&op); return PSA_TO_MBEDTLS_ERR(status); } /* Calculate the value of an internal node of the Merkle tree (which is a hash * of a public key and some other parameters like the node index). This function * implements RFC8554 section 5.3, in the case where r < 2^h. * * params The LMS parameter set, the underlying LMOTS * parameter set, and I value which describe the key * being used. * * left_node The value of the child of this node which is on * the left-hand side. As with all nodes on the * Merkle tree, this is a hash output. * * right_node The value of the child of this node which is on * the right-hand side. As with all nodes on the * Merkle tree, this is a hash output. * * r_node_idx The index of this node in the Merkle tree. Note * that the root node of the Merkle tree is * 1-indexed. * * out The output node value, which is a hash output. */ static int create_merkle_internal_value(const mbedtls_lms_parameters_t *params, const unsigned char *left_node, const unsigned char *right_node, unsigned int r_node_idx, unsigned char *out) { psa_hash_operation_t op; psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED; size_t output_hash_len; unsigned char r_node_idx_bytes[4]; op = psa_hash_operation_init(); status = psa_hash_setup(&op, PSA_ALG_SHA_256); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, params->I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (status != PSA_SUCCESS) { goto exit; } MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0); status = psa_hash_update(&op, r_node_idx_bytes, 4); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, D_INTR_CONSTANT_BYTES, D_CONST_LEN); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, left_node, MBEDTLS_LMS_M_NODE_BYTES(params->type)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_update(&op, right_node, MBEDTLS_LMS_M_NODE_BYTES(params->type)); if (status != PSA_SUCCESS) { goto exit; } status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type), &output_hash_len); if (status != PSA_SUCCESS) { goto exit; } exit: psa_hash_abort(&op); return PSA_TO_MBEDTLS_ERR(status); } void mbedtls_lms_public_init(mbedtls_lms_public_t *ctx) { memset(ctx, 0, sizeof(*ctx)); } void mbedtls_lms_public_free(mbedtls_lms_public_t *ctx) { if (ctx == NULL) { return; } mbedtls_platform_zeroize(ctx, sizeof(*ctx)); } int mbedtls_lms_import_public_key(mbedtls_lms_public_t *ctx, const unsigned char *key, size_t key_size) { mbedtls_lms_algorithm_type_t type; mbedtls_lmots_algorithm_type_t otstype; type = (mbedtls_lms_algorithm_type_t) MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_TYPE_OFFSET); if (type != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ctx->params.type = type; if (key_size != MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } otstype = (mbedtls_lmots_algorithm_type_t) MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_OTSTYPE_OFFSET); if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ctx->params.otstype = otstype; memcpy(ctx->params.I_key_identifier, key + PUBLIC_KEY_I_KEY_ID_OFFSET, MBEDTLS_LMOTS_I_KEY_ID_LEN); memcpy(ctx->T_1_pub_key, key + PUBLIC_KEY_ROOT_NODE_OFFSET, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)); ctx->have_public_key = 1; return 0; } int mbedtls_lms_export_public_key(const mbedtls_lms_public_t *ctx, unsigned char *key, size_t key_size, size_t *key_len) { if (key_size < MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) { return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL; } if (!ctx->have_public_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, PUBLIC_KEY_TYPE_OFFSET); MBEDTLS_PUT_UINT32_BE(ctx->params.otstype, key, PUBLIC_KEY_OTSTYPE_OFFSET); memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); memcpy(key +PUBLIC_KEY_ROOT_NODE_OFFSET, ctx->T_1_pub_key, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)); if (key_len != NULL) { *key_len = MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type); } return 0; } int mbedtls_lms_verify(const mbedtls_lms_public_t *ctx, const unsigned char *msg, size_t msg_size, const unsigned char *sig, size_t sig_size) { unsigned int q_leaf_identifier; unsigned char Kc_candidate_ots_pub_key[MBEDTLS_LMOTS_N_HASH_LEN_MAX]; unsigned char Tc_candidate_root_node[MBEDTLS_LMS_M_NODE_BYTES_MAX]; unsigned int height; unsigned int curr_node_id; unsigned int parent_node_id; const unsigned char *left_node; const unsigned char *right_node; mbedtls_lmots_parameters_t ots_params; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (!ctx->have_public_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (sig_size != MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (sig_size < SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (MBEDTLS_GET_UINT32_BE(sig, SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_SIG_TYPE_OFFSET) != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (sig_size < SIG_TYPE_OFFSET(ctx->params.otstype) + MBEDTLS_LMS_TYPE_LEN) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } if (MBEDTLS_GET_UINT32_BE(sig, SIG_TYPE_OFFSET(ctx->params.otstype)) != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } q_leaf_identifier = MBEDTLS_GET_UINT32_BE(sig, SIG_Q_LEAF_ID_OFFSET); if (q_leaf_identifier >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } memcpy(ots_params.I_key_identifier, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ots_params.q_leaf_identifier, 0); ots_params.type = ctx->params.otstype; ret = mbedtls_lmots_calculate_public_key_candidate(&ots_params, msg, msg_size, sig + SIG_OTS_SIG_OFFSET, MBEDTLS_LMOTS_SIG_LEN(ctx->params.otstype), Kc_candidate_ots_pub_key, sizeof(Kc_candidate_ots_pub_key), NULL); if (ret != 0) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } create_merkle_leaf_value( &ctx->params, Kc_candidate_ots_pub_key, MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier, Tc_candidate_root_node); curr_node_id = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier; for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type); height++) { parent_node_id = curr_node_id / 2; /* Left/right node ordering matters for the hash */ if (curr_node_id & 1) { left_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) + height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type); right_node = Tc_candidate_root_node; } else { left_node = Tc_candidate_root_node; right_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) + height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type); } create_merkle_internal_value(&ctx->params, left_node, right_node, parent_node_id, Tc_candidate_root_node); curr_node_id /= 2; } if (memcmp(Tc_candidate_root_node, ctx->T_1_pub_key, MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type))) { return MBEDTLS_ERR_LMS_VERIFY_FAILED; } return 0; } #if defined(MBEDTLS_LMS_PRIVATE) /* Calculate a full Merkle tree based on a private key. This function * implements RFC8554 section 5.3, and is used to generate a public key (as the * public key is the root node of the Merkle tree). * * ctx The LMS private context, containing a parameter * set and private key material consisting of both * public and private OTS. * * tree The output tree, which is 2^(H + 1) hash outputs. * In the case of H=10 we have 2048 tree nodes (of * which 1024 of them are leaf nodes). Note that * because the Merkle tree root is 1-indexed, the 0 * index tree node is never used. */ static int calculate_merkle_tree(const mbedtls_lms_private_t *ctx, unsigned char *tree) { unsigned int priv_key_idx; unsigned int r_node_idx; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; /* First create the leaf nodes, in ascending order */ for (priv_key_idx = 0; priv_key_idx < MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type); priv_key_idx++) { r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + priv_key_idx; ret = create_merkle_leaf_value(&ctx->params, ctx->ots_public_keys[priv_key_idx].public_key, r_node_idx, &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES( ctx->params.type)]); if (ret != 0) { return ret; } } /* Then the internal nodes, in reverse order so that we can guarantee the * parent has been created */ for (r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) - 1; r_node_idx > 0; r_node_idx--) { ret = create_merkle_internal_value(&ctx->params, &tree[(r_node_idx * 2) * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)], &tree[(r_node_idx * 2 + 1) * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)], r_node_idx, &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)]); if (ret != 0) { return ret; } } return 0; } /* Calculate a path from a leaf node of the Merkle tree to the root of the tree, * and return the full path. This function implements RFC8554 section 5.4.1, as * the Merkle path is the main component of an LMS signature. * * ctx The LMS private context, containing a parameter * set and private key material consisting of both * public and private OTS. * * leaf_node_id Which leaf node to calculate the path from. * * path The output path, which is H hash outputs. */ static int get_merkle_path(mbedtls_lms_private_t *ctx, unsigned int leaf_node_id, unsigned char *path) { const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type); unsigned int curr_node_id = leaf_node_id; unsigned int adjacent_node_id; unsigned char *tree = NULL; unsigned int height; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(ctx->params.type), node_bytes); if (tree == NULL) { return MBEDTLS_ERR_LMS_ALLOC_FAILED; } ret = calculate_merkle_tree(ctx, tree); if (ret != 0) { goto exit; } for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type); height++) { adjacent_node_id = curr_node_id ^ 1; memcpy(&path[height * node_bytes], &tree[adjacent_node_id * node_bytes], node_bytes); curr_node_id >>= 1; } ret = 0; exit: mbedtls_zeroize_and_free(tree, node_bytes * (size_t) MERKLE_TREE_NODE_AM(ctx->params.type)); return ret; } void mbedtls_lms_private_init(mbedtls_lms_private_t *ctx) { memset(ctx, 0, sizeof(*ctx)); } void mbedtls_lms_private_free(mbedtls_lms_private_t *ctx) { if (ctx == NULL) { return; } unsigned int idx; if (ctx->have_private_key) { if (ctx->ots_private_keys != NULL) { for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) { mbedtls_lmots_private_free(&ctx->ots_private_keys[idx]); } } if (ctx->ots_public_keys != NULL) { for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) { mbedtls_lmots_public_free(&ctx->ots_public_keys[idx]); } } mbedtls_free(ctx->ots_private_keys); mbedtls_free(ctx->ots_public_keys); } mbedtls_platform_zeroize(ctx, sizeof(*ctx)); } int mbedtls_lms_generate_private_key(mbedtls_lms_private_t *ctx, mbedtls_lms_algorithm_type_t type, mbedtls_lmots_algorithm_type_t otstype, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, const unsigned char *seed, size_t seed_size) { unsigned int idx = 0; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (type != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ctx->params.type = type; ctx->params.otstype = otstype; ctx->have_private_key = 1; ret = f_rng(p_rng, ctx->params.I_key_identifier, MBEDTLS_LMOTS_I_KEY_ID_LEN); if (ret != 0) { goto exit; } /* Requires a cast to size_t to avoid an implicit cast warning on certain * platforms (particularly Windows) */ ctx->ots_private_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type), sizeof(*ctx->ots_private_keys)); if (ctx->ots_private_keys == NULL) { ret = MBEDTLS_ERR_LMS_ALLOC_FAILED; goto exit; } /* Requires a cast to size_t to avoid an implicit cast warning on certain * platforms (particularly Windows) */ ctx->ots_public_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type), sizeof(*ctx->ots_public_keys)); if (ctx->ots_public_keys == NULL) { ret = MBEDTLS_ERR_LMS_ALLOC_FAILED; goto exit; } for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) { mbedtls_lmots_private_init(&ctx->ots_private_keys[idx]); mbedtls_lmots_public_init(&ctx->ots_public_keys[idx]); } for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) { ret = mbedtls_lmots_generate_private_key(&ctx->ots_private_keys[idx], otstype, ctx->params.I_key_identifier, idx, seed, seed_size); if (ret != 0) { goto exit; } ret = mbedtls_lmots_calculate_public_key(&ctx->ots_public_keys[idx], &ctx->ots_private_keys[idx]); if (ret != 0) { goto exit; } } ctx->q_next_usable_key = 0; exit: if (ret != 0) { mbedtls_lms_private_free(ctx); } return ret; } int mbedtls_lms_calculate_public_key(mbedtls_lms_public_t *ctx, const mbedtls_lms_private_t *priv_ctx) { const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(priv_ctx->params.type); int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char *tree = NULL; if (!priv_ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (priv_ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (priv_ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type), node_bytes); if (tree == NULL) { return MBEDTLS_ERR_LMS_ALLOC_FAILED; } memcpy(&ctx->params, &priv_ctx->params, sizeof(mbedtls_lmots_parameters_t)); ret = calculate_merkle_tree(priv_ctx, tree); if (ret != 0) { goto exit; } /* Root node is always at position 1, due to 1-based indexing */ memcpy(ctx->T_1_pub_key, &tree[node_bytes], node_bytes); ctx->have_public_key = 1; ret = 0; exit: mbedtls_zeroize_and_free(tree, node_bytes * (size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type)); return ret; } int mbedtls_lms_sign(mbedtls_lms_private_t *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, const unsigned char *msg, unsigned int msg_size, unsigned char *sig, size_t sig_size, size_t *sig_len) { uint32_t q_leaf_identifier; int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (!ctx->have_private_key) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (sig_size < MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) { return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL; } if (ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->params.otstype != MBEDTLS_LMOTS_SHA256_N32_W8) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } if (ctx->q_next_usable_key >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) { return MBEDTLS_ERR_LMS_OUT_OF_PRIVATE_KEYS; } q_leaf_identifier = ctx->q_next_usable_key; /* This new value must _always_ be written back to the disk before the * signature is returned. */ ctx->q_next_usable_key += 1; if (MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) < SIG_OTS_SIG_OFFSET) { return MBEDTLS_ERR_LMS_BAD_INPUT_DATA; } ret = mbedtls_lmots_sign(&ctx->ots_private_keys[q_leaf_identifier], f_rng, p_rng, msg, msg_size, sig + SIG_OTS_SIG_OFFSET, MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype) - SIG_OTS_SIG_OFFSET, NULL); if (ret != 0) { return ret; } MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, SIG_TYPE_OFFSET(ctx->params.otstype)); MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, sig, SIG_Q_LEAF_ID_OFFSET); ret = get_merkle_path(ctx, MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier, sig + SIG_PATH_OFFSET(ctx->params.otstype)); if (ret != 0) { return ret; } if (sig_len != NULL) { *sig_len = MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype); } return 0; } #endif /* defined(MBEDTLS_LMS_PRIVATE) */ #endif /* defined(MBEDTLS_LMS_C) */