/*************************************************************************/ /* shape_bullet.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "shape_bullet.h" #include "btRayShape.h" #include "bullet_physics_server.h" #include "bullet_types_converter.h" #include "bullet_utilities.h" #include "shape_owner_bullet.h" #include #include #include /** @author AndreaCatania */ ShapeBullet::ShapeBullet() {} ShapeBullet::~ShapeBullet() {} btCollisionShape *ShapeBullet::create_bt_shape(const Vector3 &p_implicit_scale, real_t p_margin) { btVector3 s; G_TO_B(p_implicit_scale, s); return create_bt_shape(s, p_margin); } btCollisionShape *ShapeBullet::prepare(btCollisionShape *p_btShape) const { p_btShape->setUserPointer(const_cast(this)); p_btShape->setMargin(0.); return p_btShape; } void ShapeBullet::notifyShapeChanged() { for (Map::Element *E = owners.front(); E; E = E->next()) { static_cast(E->key())->on_shape_changed(this); } } void ShapeBullet::add_owner(ShapeOwnerBullet *p_owner) { Map::Element *E = owners.find(p_owner); if (E) { E->get()++; } else { owners[p_owner] = 1; // add new owner } } void ShapeBullet::remove_owner(ShapeOwnerBullet *p_owner, bool p_permanentlyFromThisBody) { Map::Element *E = owners.find(p_owner); if (!E) return; E->get()--; if (p_permanentlyFromThisBody || 0 >= E->get()) { owners.erase(E); } } bool ShapeBullet::is_owner(ShapeOwnerBullet *p_owner) const { return owners.has(p_owner); } const Map &ShapeBullet::get_owners() const { return owners; } btEmptyShape *ShapeBullet::create_shape_empty() { return bulletnew(btEmptyShape); } btStaticPlaneShape *ShapeBullet::create_shape_plane(const btVector3 &planeNormal, btScalar planeConstant) { return bulletnew(btStaticPlaneShape(planeNormal, planeConstant)); } btSphereShape *ShapeBullet::create_shape_sphere(btScalar radius) { return bulletnew(btSphereShape(radius)); } btBoxShape *ShapeBullet::create_shape_box(const btVector3 &boxHalfExtents) { return bulletnew(btBoxShape(boxHalfExtents)); } btCapsuleShapeZ *ShapeBullet::create_shape_capsule(btScalar radius, btScalar height) { return bulletnew(btCapsuleShapeZ(radius, height)); } btConvexPointCloudShape *ShapeBullet::create_shape_convex(btAlignedObjectArray &p_vertices, const btVector3 &p_local_scaling) { return bulletnew(btConvexPointCloudShape(&p_vertices[0], p_vertices.size(), p_local_scaling)); } btScaledBvhTriangleMeshShape *ShapeBullet::create_shape_concave(btBvhTriangleMeshShape *p_mesh_shape, const btVector3 &p_local_scaling) { if (p_mesh_shape) { return bulletnew(btScaledBvhTriangleMeshShape(p_mesh_shape, p_local_scaling)); } else { return NULL; } } btHeightfieldTerrainShape *ShapeBullet::create_shape_height_field(PoolVector &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { const btScalar ignoredHeightScale(1); const int YAxis = 1; // 0=X, 1=Y, 2=Z const bool flipQuadEdges = false; const void *heightsPtr = p_heights.read().ptr(); return bulletnew(btHeightfieldTerrainShape(p_width, p_depth, heightsPtr, ignoredHeightScale, p_min_height, p_max_height, YAxis, PHY_FLOAT, flipQuadEdges)); } btRayShape *ShapeBullet::create_shape_ray(real_t p_length) { return bulletnew(btRayShape(p_length)); } /* PLANE */ PlaneShapeBullet::PlaneShapeBullet() : ShapeBullet() {} void PlaneShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant PlaneShapeBullet::get_data() const { return plane; } PhysicsServer::ShapeType PlaneShapeBullet::get_type() const { return PhysicsServer::SHAPE_PLANE; } void PlaneShapeBullet::setup(const Plane &p_plane) { plane = p_plane; notifyShapeChanged(); } btCollisionShape *PlaneShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { btVector3 btPlaneNormal; G_TO_B(plane.normal, btPlaneNormal); return prepare(PlaneShapeBullet::create_shape_plane(btPlaneNormal, plane.d)); } /* Sphere */ SphereShapeBullet::SphereShapeBullet() : ShapeBullet() {} void SphereShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant SphereShapeBullet::get_data() const { return radius; } PhysicsServer::ShapeType SphereShapeBullet::get_type() const { return PhysicsServer::SHAPE_SPHERE; } void SphereShapeBullet::setup(real_t p_radius) { radius = p_radius; notifyShapeChanged(); } btCollisionShape *SphereShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { return prepare(ShapeBullet::create_shape_sphere(radius * p_implicit_scale[0] + p_margin)); } /* Box */ BoxShapeBullet::BoxShapeBullet() : ShapeBullet() {} void BoxShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant BoxShapeBullet::get_data() const { Vector3 g_half_extents; B_TO_G(half_extents, g_half_extents); return g_half_extents; } PhysicsServer::ShapeType BoxShapeBullet::get_type() const { return PhysicsServer::SHAPE_BOX; } void BoxShapeBullet::setup(const Vector3 &p_half_extents) { G_TO_B(p_half_extents, half_extents); notifyShapeChanged(); } btCollisionShape *BoxShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { return prepare(ShapeBullet::create_shape_box((half_extents * p_implicit_scale) + btVector3(p_margin, p_margin, p_margin))); } /* Capsule */ CapsuleShapeBullet::CapsuleShapeBullet() : ShapeBullet() {} void CapsuleShapeBullet::set_data(const Variant &p_data) { Dictionary d = p_data; ERR_FAIL_COND(!d.has("radius")); ERR_FAIL_COND(!d.has("height")); setup(d["height"], d["radius"]); } Variant CapsuleShapeBullet::get_data() const { Dictionary d; d["radius"] = radius; d["height"] = height; return d; } PhysicsServer::ShapeType CapsuleShapeBullet::get_type() const { return PhysicsServer::SHAPE_CAPSULE; } void CapsuleShapeBullet::setup(real_t p_height, real_t p_radius) { radius = p_radius; height = p_height; notifyShapeChanged(); } btCollisionShape *CapsuleShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { return prepare(ShapeBullet::create_shape_capsule(radius * p_implicit_scale[0] + p_margin, height * p_implicit_scale[1] + p_margin)); } /* Convex polygon */ ConvexPolygonShapeBullet::ConvexPolygonShapeBullet() : ShapeBullet() {} void ConvexPolygonShapeBullet::set_data(const Variant &p_data) { setup(p_data); } void ConvexPolygonShapeBullet::get_vertices(Vector &out_vertices) { const int n_of_vertices = vertices.size(); out_vertices.resize(n_of_vertices); for (int i = n_of_vertices - 1; 0 <= i; --i) { B_TO_G(vertices[i], out_vertices[i]); } } Variant ConvexPolygonShapeBullet::get_data() const { ConvexPolygonShapeBullet *variable_self = const_cast(this); Vector out_vertices; variable_self->get_vertices(out_vertices); return out_vertices; } PhysicsServer::ShapeType ConvexPolygonShapeBullet::get_type() const { return PhysicsServer::SHAPE_CONVEX_POLYGON; } void ConvexPolygonShapeBullet::setup(const Vector &p_vertices) { // Make a copy of vertices const int n_of_vertices = p_vertices.size(); vertices.resize(n_of_vertices); for (int i = n_of_vertices - 1; 0 <= i; --i) { G_TO_B(p_vertices[i], vertices[i]); } notifyShapeChanged(); } btCollisionShape *ConvexPolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { if (!vertices.size()) // This is necessary since 0 vertices return prepare(ShapeBullet::create_shape_empty()); btCollisionShape *cs(ShapeBullet::create_shape_convex(vertices)); cs->setLocalScaling(p_implicit_scale); prepare(cs); cs->setMargin(p_margin); return cs; } /* Concave polygon */ ConcavePolygonShapeBullet::ConcavePolygonShapeBullet() : ShapeBullet(), meshShape(NULL) {} ConcavePolygonShapeBullet::~ConcavePolygonShapeBullet() { if (meshShape) { delete meshShape->getMeshInterface(); delete meshShape; } faces = PoolVector(); } void ConcavePolygonShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant ConcavePolygonShapeBullet::get_data() const { return faces; } PhysicsServer::ShapeType ConcavePolygonShapeBullet::get_type() const { return PhysicsServer::SHAPE_CONCAVE_POLYGON; } void ConcavePolygonShapeBullet::setup(PoolVector p_faces) { faces = p_faces; if (meshShape) { /// Clear previous created shape delete meshShape->getMeshInterface(); bulletdelete(meshShape); } int src_face_count = faces.size(); if (0 < src_face_count) { // It counts the faces and assert the array contains the correct number of vertices. ERR_FAIL_COND(src_face_count % 3); btTriangleMesh *shapeInterface = bulletnew(btTriangleMesh); src_face_count /= 3; PoolVector::Read r = p_faces.read(); const Vector3 *facesr = r.ptr(); btVector3 supVec_0; btVector3 supVec_1; btVector3 supVec_2; for (int i = 0; i < src_face_count; ++i) { G_TO_B(facesr[i * 3], supVec_0); G_TO_B(facesr[i * 3 + 1], supVec_1); G_TO_B(facesr[i * 3 + 2], supVec_2); shapeInterface->addTriangle(supVec_0, supVec_1, supVec_2); } const bool useQuantizedAabbCompression = true; meshShape = bulletnew(btBvhTriangleMeshShape(shapeInterface, useQuantizedAabbCompression)); } else { meshShape = NULL; ERR_PRINT("The faces count are 0, the mesh shape cannot be created"); } notifyShapeChanged(); } btCollisionShape *ConcavePolygonShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { btCollisionShape *cs = ShapeBullet::create_shape_concave(meshShape); if (!cs) // This is necessary since if 0 faces the creation of concave return NULL cs = ShapeBullet::create_shape_empty(); cs->setLocalScaling(p_implicit_scale); prepare(cs); cs->setMargin(p_margin); return cs; } /* Height map shape */ HeightMapShapeBullet::HeightMapShapeBullet() : ShapeBullet() {} void HeightMapShapeBullet::set_data(const Variant &p_data) { ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY); Dictionary d = p_data; ERR_FAIL_COND(!d.has("width")); ERR_FAIL_COND(!d.has("depth")); ERR_FAIL_COND(!d.has("heights")); real_t l_min_height = 0.0; real_t l_max_height = 0.0; // If specified, min and max height will be used as precomputed values if (d.has("min_height")) l_min_height = d["min_height"]; if (d.has("max_height")) l_max_height = d["max_height"]; ERR_FAIL_COND(l_min_height > l_max_height); int l_width = d["width"]; int l_depth = d["depth"]; PoolVector l_heights = d["heights"]; ERR_FAIL_COND(l_width <= 0); ERR_FAIL_COND(l_depth <= 0); ERR_FAIL_COND(l_heights.size() != (l_width * l_depth)); // Compute min and max heights if not specified. if (!d.has("min_height") && !d.has("max_height")) { PoolVector::Read r = heights.read(); int heights_size = heights.size(); for (int i = 0; i < heights_size; ++i) { real_t h = r[i]; if (h < l_min_height) l_min_height = h; else if (h > l_max_height) l_max_height = h; } } setup(l_heights, l_width, l_depth, l_min_height, l_max_height); } Variant HeightMapShapeBullet::get_data() const { ERR_FAIL_V(Variant()); } PhysicsServer::ShapeType HeightMapShapeBullet::get_type() const { return PhysicsServer::SHAPE_HEIGHTMAP; } void HeightMapShapeBullet::setup(PoolVector &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { // TODO cell size must be tweaked using localScaling, which is a shared property for all Bullet shapes { // Copy // TODO If Godot supported 16-bit integer image format, we could share the same memory block for heightfields // without having to copy anything, optimizing memory and loading performance (Bullet only reads and doesn't take ownership of the data). const int heights_size = p_heights.size(); heights.resize(heights_size); PoolVector::Read p_heights_r = p_heights.read(); PoolVector::Write heights_w = heights.write(); for (int i = heights_size - 1; 0 <= i; --i) { heights_w[i] = p_heights_r[i]; } } width = p_width; depth = p_depth; min_height = p_min_height; max_height = p_max_height; notifyShapeChanged(); } btCollisionShape *HeightMapShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { btCollisionShape *cs(ShapeBullet::create_shape_height_field(heights, width, depth, min_height, max_height)); cs->setLocalScaling(p_implicit_scale); prepare(cs); cs->setMargin(p_margin); return cs; } /* Ray shape */ RayShapeBullet::RayShapeBullet() : ShapeBullet(), length(1) {} void RayShapeBullet::set_data(const Variant &p_data) { setup(p_data); } Variant RayShapeBullet::get_data() const { return length; } PhysicsServer::ShapeType RayShapeBullet::get_type() const { return PhysicsServer::SHAPE_RAY; } void RayShapeBullet::setup(real_t p_length) { length = p_length; notifyShapeChanged(); } btCollisionShape *RayShapeBullet::create_bt_shape(const btVector3 &p_implicit_scale, real_t p_margin) { return prepare(ShapeBullet::create_shape_ray(length * p_implicit_scale[1] + p_margin)); }