// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/default.h" #include "../common/scene_curves.h" /* Implements Catmul Rom curves with control points p0, p1, p2, p3. At t=0 the curve goes through p1, with tangent (p2-p0)/3, and for t=1 the curve goes through p2 with tangent (p3-p2)/2. */ namespace embree { class CatmullRomBasis { public: template<typename T> static __forceinline Vec4<T> eval(const T& u) { const T t = u; const T s = T(1.0f) - u; const T n0 = - t * s * s; const T n1 = 2.0f + t * t * (3.0f * t - 5.0f); const T n2 = 2.0f + s * s * (3.0f * s - 5.0f); const T n3 = - s * t * t; return T(0.5f) * Vec4<T>(n0, n1, n2, n3); } template<typename T> static __forceinline Vec4<T> derivative(const T& u) { const T t = u; const T s = 1.0f - u; const T n0 = - s * s + 2.0f * s * t; const T n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t; const T n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s; const T n3 = -2.0f * s * t + t * t; return T(0.5f) * Vec4<T>(n0, n1, n2, n3); } template<typename T> static __forceinline Vec4<T> derivative2(const T& u) { const T t = u; const T n0 = -3.0f * t + 2.0f; const T n1 = 9.0f * t - 5.0f; const T n2 = -9.0f * t + 4.0f; const T n3 = 3.0f * t - 1.0f; return Vec4<T>(n0, n1, n2, n3); } }; struct PrecomputedCatmullRomBasis { enum { N = 16 }; public: PrecomputedCatmullRomBasis() {} PrecomputedCatmullRomBasis(int shift); /* basis for bspline evaluation */ public: float c0[N+1][N+1]; float c1[N+1][N+1]; float c2[N+1][N+1]; float c3[N+1][N+1]; /* basis for bspline derivative evaluation */ public: float d0[N+1][N+1]; float d1[N+1][N+1]; float d2[N+1][N+1]; float d3[N+1][N+1]; }; extern PrecomputedCatmullRomBasis catmullrom_basis0; extern PrecomputedCatmullRomBasis catmullrom_basis1; template<typename Vertex> struct CatmullRomCurveT { Vertex v0,v1,v2,v3; __forceinline CatmullRomCurveT() {} __forceinline CatmullRomCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) : v0(v0), v1(v1), v2(v2), v3(v3) {} __forceinline Vertex begin() const { return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2)); } __forceinline Vertex end() const { return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3)); } __forceinline Vertex center() const { return 0.25f*(v0+v1+v2+v3); } __forceinline BBox<Vertex> bounds() const { return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); } __forceinline friend CatmullRomCurveT operator -( const CatmullRomCurveT& a, const Vertex& b ) { return CatmullRomCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b); } __forceinline CatmullRomCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const { const Vec3ff q0(xfmVector(space,v0-p), v0.w); const Vec3ff q1(xfmVector(space,v1-p), v1.w); const Vec3ff q2(xfmVector(space,v2-p), v2.w); const Vec3ff q3(xfmVector(space,v3-p), v3.w); return CatmullRomCurveT<Vec3ff>(q0,q1,q2,q3); } __forceinline Vertex eval(const float t) const { const Vec4<float> b = CatmullRomBasis::eval(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_du(const float t) const { const Vec4<float> b = CatmullRomBasis::derivative(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_dudu(const float t) const { const Vec4<float> b = CatmullRomBasis::derivative2(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const { p = eval(t); dp = eval_du(t); ddp = eval_dudu(t); } template<int M> __forceinline Vec4vf<M> veval(const vfloat<M>& t) const { const Vec4vf<M> b = CatmullRomBasis::eval(t); return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); } template<int M> __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const { const Vec4vf<M> b = CatmullRomBasis::derivative(t); return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); } template<int M> __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const { const Vec4vf<M> b = CatmullRomBasis::derivative2(t); return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); } template<int M> __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const { p = veval<M>(t); dp = veval_du<M>(t); } template<int M> __forceinline Vec4vf<M> eval0(const int ofs, const int size) const { assert(size <= PrecomputedCatmullRomBasis::N); assert(ofs <= size); return madd(vfloat<M>::loadu(&catmullrom_basis0.c0[size][ofs]), Vec4vf<M>(v0), madd(vfloat<M>::loadu(&catmullrom_basis0.c1[size][ofs]), Vec4vf<M>(v1), madd(vfloat<M>::loadu(&catmullrom_basis0.c2[size][ofs]), Vec4vf<M>(v2), vfloat<M>::loadu(&catmullrom_basis0.c3[size][ofs]) * Vec4vf<M>(v3)))); } template<int M> __forceinline Vec4vf<M> eval1(const int ofs, const int size) const { assert(size <= PrecomputedCatmullRomBasis::N); assert(ofs <= size); return madd(vfloat<M>::loadu(&catmullrom_basis1.c0[size][ofs]), Vec4vf<M>(v0), madd(vfloat<M>::loadu(&catmullrom_basis1.c1[size][ofs]), Vec4vf<M>(v1), madd(vfloat<M>::loadu(&catmullrom_basis1.c2[size][ofs]), Vec4vf<M>(v2), vfloat<M>::loadu(&catmullrom_basis1.c3[size][ofs]) * Vec4vf<M>(v3)))); } template<int M> __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const { assert(size <= PrecomputedCatmullRomBasis::N); assert(ofs <= size); return madd(vfloat<M>::loadu(&catmullrom_basis0.d0[size][ofs]), Vec4vf<M>(v0), madd(vfloat<M>::loadu(&catmullrom_basis0.d1[size][ofs]), Vec4vf<M>(v1), madd(vfloat<M>::loadu(&catmullrom_basis0.d2[size][ofs]), Vec4vf<M>(v2), vfloat<M>::loadu(&catmullrom_basis0.d3[size][ofs]) * Vec4vf<M>(v3)))); } template<int M> __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const { assert(size <= PrecomputedCatmullRomBasis::N); assert(ofs <= size); return madd(vfloat<M>::loadu(&catmullrom_basis1.d0[size][ofs]), Vec4vf<M>(v0), madd(vfloat<M>::loadu(&catmullrom_basis1.d1[size][ofs]), Vec4vf<M>(v1), madd(vfloat<M>::loadu(&catmullrom_basis1.d2[size][ofs]), Vec4vf<M>(v2), vfloat<M>::loadu(&catmullrom_basis1.d3[size][ofs]) * Vec4vf<M>(v3)))); } /* calculates bounds of catmull-rom curve geometry */ __forceinline BBox3fa accurateRoundBounds() const { const int N = 7; const float scale = 1.0f/(3.0f*(N-1)); Vec4vfx pl(pos_inf), pu(neg_inf); for (int i=0; i<=N; i+=VSIZEX) { vintx vi = vintx(i)+vintx(step); vboolx valid = vi <= vintx(N); const Vec4vfx p = eval0<VSIZEX>(i,N); const Vec4vfx dp = derivative0<VSIZEX>(i,N); const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const float r_min = reduce_min(pl.w); const float r_max = reduce_max(pu.w); const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); return enlarge(BBox3fa(lower,upper),upper_r); } /* calculates bounds when tessellated into N line segments */ __forceinline BBox3fa accurateFlatBounds(int N) const { if (likely(N == 4)) { const Vec4vf4 pi = eval0<4>(0,4); const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); const Vec3ff pe = end(); return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w)))); } else { Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); for (int i=0; i<=N; i+=VSIZEX) { vboolx valid = vintx(i)+vintx(step) <= vintx(N); const Vec4vfx pi = eval0<VSIZEX>(i,N); pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min pl.y = select(valid,min(pl.y,pi.y),pl.y); pl.z = select(valid,min(pl.z,pi.z),pl.z); pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min pu.y = select(valid,max(pu.y,pi.y),pu.y); pu.z = select(valid,max(pu.z,pi.z),pu.z); ru = select(valid,max(ru,abs(pi.w)),ru); } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r(reduce_max(ru)); return enlarge(BBox3fa(lower,upper),upper_r); } } friend __forceinline embree_ostream operator<<(embree_ostream cout, const CatmullRomCurveT& curve) { return cout << "CatmullRomCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; } }; template<typename CurveGeometry> __forceinline CatmullRomCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CatmullRomCurveT<Vec3ff>& curve) { return CatmullRomCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); } typedef CatmullRomCurveT<Vec3fa> CatmullRomCurve3fa; }