/**************************************************************************/ /* test_aabb.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_AABB_H #define TEST_AABB_H #include "core/math/aabb.h" #include "tests/test_macros.h" namespace TestAABB { TEST_CASE("[AABB] Constructor methods") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); const AABB aabb_copy = AABB(aabb); CHECK_MESSAGE( aabb == aabb_copy, "AABBs created with the same dimensions but by different methods should be equal."); } TEST_CASE("[AABB] String conversion") { CHECK_MESSAGE( String(AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6))) == "[P: (-1.5, 2, -2.5), S: (4, 5, 6)]", "The string representation should match the expected value."); } TEST_CASE("[AABB] Basic getters") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.get_position().is_equal_approx(Vector3(-1.5, 2, -2.5)), "get_position() should return the expected value."); CHECK_MESSAGE( aabb.get_size().is_equal_approx(Vector3(4, 5, 6)), "get_size() should return the expected value."); CHECK_MESSAGE( aabb.get_end().is_equal_approx(Vector3(2.5, 7, 3.5)), "get_end() should return the expected value."); CHECK_MESSAGE( aabb.get_center().is_equal_approx(Vector3(0.5, 4.5, 0.5)), "get_center() should return the expected value."); } TEST_CASE("[AABB] Basic setters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); aabb.set_end(Vector3(100, 0, 100)); CHECK_MESSAGE( aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(101.5, -2, 102.5))), "set_end() should result in the expected AABB."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); aabb.set_position(Vector3(-1000, -2000, -3000)); CHECK_MESSAGE( aabb.is_equal_approx(AABB(Vector3(-1000, -2000, -3000), Vector3(4, 5, 6))), "set_position() should result in the expected AABB."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); aabb.set_size(Vector3(0, 0, -50)); CHECK_MESSAGE( aabb.is_equal_approx(AABB(Vector3(-1.5, 2, -2.5), Vector3(0, 0, -50))), "set_size() should result in the expected AABB."); } TEST_CASE("[AABB] Volume getters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with positive size."); CHECK_MESSAGE( aabb.has_volume(), "Non-empty volumetric AABB should have a volume."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, 5, 6)); CHECK_MESSAGE( aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (1 component)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, 6)); CHECK_MESSAGE( aabb.get_volume() == doctest::Approx(120), "get_volume() should return the expected value with negative size (2 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(-4, -5, -6)); CHECK_MESSAGE( aabb.get_volume() == doctest::Approx(-120), "get_volume() should return the expected value with negative size (3 components)."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6)); CHECK_MESSAGE( !aabb.has_volume(), "Non-empty flat AABB should not have a volume."); CHECK_MESSAGE( !AABB().has_volume(), "Empty AABB should not have a volume."); } TEST_CASE("[AABB] Surface getters") { AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.has_surface(), "Non-empty volumetric AABB should have an surface."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 6)); CHECK_MESSAGE( aabb.has_surface(), "Non-empty flat AABB should have a surface."); aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 0, 0)); CHECK_MESSAGE( aabb.has_surface(), "Non-empty linear AABB should have a surface."); CHECK_MESSAGE( !AABB().has_surface(), "Empty AABB should not have an surface."); } TEST_CASE("[AABB] Intersection") { const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.intersects(aabb_small), "intersects() with fully contained AABB (touching the edge) should return the expected result."); aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.intersects(aabb_small), "intersects() with partially contained AABB (overflowing on Y axis) should return the expected result."); aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1)); CHECK_MESSAGE( !aabb_big.intersects(aabb_small), "intersects() with non-contained AABB should return the expected result."); aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.intersection(aabb_small).is_equal_approx(aabb_small), "intersection() with fully contained AABB (touching the edge) should return the expected result."); aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.intersection(aabb_small).is_equal_approx(AABB(Vector3(0.5, 2, -2), Vector3(1, 0.5, 1))), "intersection() with partially contained AABB (overflowing on Y axis) should return the expected result."); aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.intersection(aabb_small).is_equal_approx(AABB()), "intersection() with non-contained AABB should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 4)), "intersects_plane() should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_plane(Plane(Vector3(0, -1, 0), -4)), "intersects_plane() should return the expected result."); CHECK_MESSAGE( !aabb_big.intersects_plane(Plane(Vector3(0, 1, 0), 200)), "intersects_plane() should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_segment(Vector3(1, 3, 0), Vector3(0, 3, 0)), "intersects_segment() should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, -300, 0)), "intersects_segment() should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_segment(Vector3(-50, 3, -50), Vector3(50, 3, 50)), "intersects_segment() should return the expected result."); CHECK_MESSAGE( !aabb_big.intersects_segment(Vector3(-50, 25, -50), Vector3(50, 25, 50)), "intersects_segment() should return the expected result."); CHECK_MESSAGE( aabb_big.intersects_segment(Vector3(0, 3, 0), Vector3(0, 3, 0)), "intersects_segment() should return the expected result with segment of length 0."); CHECK_MESSAGE( !aabb_big.intersects_segment(Vector3(0, 300, 0), Vector3(0, 300, 0)), "intersects_segment() should return the expected result with segment of length 0."); CHECK_MESSAGE( // Simple ray intersection test. aabb_big.intersects_ray(Vector3(-100, 3, 0), Vector3(1, 0, 0)), "intersects_ray() should return true when ray points directly to AABB from outside."); CHECK_MESSAGE( // Ray parallel to an edge. !aabb_big.intersects_ray(Vector3(10, 10, 0), Vector3(0, 1, 0)), "intersects_ray() should return false for ray parallel and outside of AABB."); CHECK_MESSAGE( // Ray origin inside aabb. aabb_big.intersects_ray(Vector3(1, 1, 1), Vector3(0, 1, 0)), "intersects_ray() should return true for rays originating inside the AABB."); CHECK_MESSAGE( // Ray pointing away from aabb. !aabb_big.intersects_ray(Vector3(-10, 0, 0), Vector3(-1, 0, 0)), "intersects_ray() should return false when ray points away from AABB."); CHECK_MESSAGE( // Ray along a diagonal of aabb. aabb_big.intersects_ray(Vector3(0, 0, 0), Vector3(1, 1, 1)), "intersects_ray() should return true for rays along the AABB diagonal."); CHECK_MESSAGE( // Ray originating at aabb edge. aabb_big.intersects_ray(aabb_big.position, Vector3(-1, 0, 0)), "intersects_ray() should return true for rays starting on AABB's edge."); CHECK_MESSAGE( // Ray with zero direction inside. aabb_big.intersects_ray(Vector3(-1, 3, -2), Vector3(0, 0, 0)), "intersects_ray() should return true because its inside."); CHECK_MESSAGE( // Ray with zero direction outside. !aabb_big.intersects_ray(Vector3(-1000, 3, -2), Vector3(0, 0, 0)), "intersects_ray() should return false for being outside."); // Finding ray intersections. const AABB aabb_simple = AABB(Vector3(), Vector3(1, 1, 1)); bool inside = false; Vector3 intersection_point; Vector3 intersection_normal; // Borders. aabb_simple.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect."); aabb_simple.find_intersects_ray(Vector3(0.5, 1, 0.5), Vector3(0, -1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 1, 0.5)), "find_intersects_ray() border intersection point incorrect."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, 1, 0)), "find_intersects_ray() border intersection normal incorrect."); // Inside. aabb_simple.find_intersects_ray(Vector3(0.5, 0.1, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == true, "find_intersects_ray() should return inside when inside."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() inside backtracking intersection point incorrect."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() inside intersection normal incorrect."); // Zero sized AABB. const AABB aabb_zero = AABB(Vector3(), Vector3(1, 0, 1)); aabb_zero.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB."); aabb_zero.find_intersects_ray(Vector3(0.5, 0, 0.5), Vector3(0, -1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, 1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB."); aabb_zero.find_intersects_ray(Vector3(0.5, -1, 0.5), Vector3(0, 1, 0), inside, &intersection_point, &intersection_normal); CHECK_MESSAGE(inside == false, "find_intersects_ray() should return outside on borders of zero sized AABB."); CHECK_MESSAGE(intersection_point.is_equal_approx(Vector3(0.5, 0, 0.5)), "find_intersects_ray() border intersection point incorrect for zero sized AABB."); CHECK_MESSAGE(intersection_normal.is_equal_approx(Vector3(0, -1, 0)), "find_intersects_ray() border intersection normal incorrect for zero sized AABB."); } TEST_CASE("[AABB] Merging") { const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.merge(aabb_small).is_equal_approx(aabb_big), "merge() with fully contained AABB (touching the edge) should return the expected result."); aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, 1.5, -2.5), Vector3(4, 5.5, 6))), "merge() with partially contained AABB (overflowing on Y axis) should return the expected result."); aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.merge(aabb_small).is_equal_approx(AABB(Vector3(-1.5, -10, -10), Vector3(12.5, 17, 13.5))), "merge() with non-contained AABB should return the expected result."); } TEST_CASE("[AABB] Encloses") { const AABB aabb_big = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb_big.encloses(aabb_big), "encloses() with itself should return the expected result."); AABB aabb_small = AABB(Vector3(-1.5, 2, -2.5), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.encloses(aabb_small), "encloses() with fully contained AABB (touching the edge) should return the expected result."); aabb_small = AABB(Vector3(1.5, 6, 2.5), Vector3(1, 1, 1)); CHECK_MESSAGE( aabb_big.encloses(aabb_small), "encloses() with fully contained AABB (touching the edge) should return the expected result."); aabb_small = AABB(Vector3(0.5, 1.5, -2), Vector3(1, 1, 1)); CHECK_MESSAGE( !aabb_big.encloses(aabb_small), "encloses() with partially contained AABB (overflowing on Y axis) should return the expected result."); aabb_small = AABB(Vector3(10, -10, -10), Vector3(1, 1, 1)); CHECK_MESSAGE( !aabb_big.encloses(aabb_small), "encloses() with non-contained AABB should return the expected result."); } TEST_CASE("[AABB] Get endpoints") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.get_endpoint(0).is_equal_approx(Vector3(-1.5, 2, -2.5)), "The endpoint at index 0 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(1).is_equal_approx(Vector3(-1.5, 2, 3.5)), "The endpoint at index 1 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(2).is_equal_approx(Vector3(-1.5, 7, -2.5)), "The endpoint at index 2 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(3).is_equal_approx(Vector3(-1.5, 7, 3.5)), "The endpoint at index 3 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(4).is_equal_approx(Vector3(2.5, 2, -2.5)), "The endpoint at index 4 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(5).is_equal_approx(Vector3(2.5, 2, 3.5)), "The endpoint at index 5 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(6).is_equal_approx(Vector3(2.5, 7, -2.5)), "The endpoint at index 6 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(7).is_equal_approx(Vector3(2.5, 7, 3.5)), "The endpoint at index 7 should match the expected value."); ERR_PRINT_OFF; CHECK_MESSAGE( aabb.get_endpoint(8).is_equal_approx(Vector3()), "The endpoint at invalid index 8 should match the expected value."); CHECK_MESSAGE( aabb.get_endpoint(-1).is_equal_approx(Vector3()), "The endpoint at invalid index -1 should match the expected value."); ERR_PRINT_ON; } TEST_CASE("[AABB] Get longest/shortest axis") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.get_longest_axis() == Vector3(0, 0, 1), "get_longest_axis() should return the expected value."); CHECK_MESSAGE( aabb.get_longest_axis_index() == Vector3::AXIS_Z, "get_longest_axis_index() should return the expected value."); CHECK_MESSAGE( aabb.get_longest_axis_size() == 6, "get_longest_axis_size() should return the expected value."); CHECK_MESSAGE( aabb.get_shortest_axis() == Vector3(1, 0, 0), "get_shortest_axis() should return the expected value."); CHECK_MESSAGE( aabb.get_shortest_axis_index() == Vector3::AXIS_X, "get_shortest_axis_index() should return the expected value."); CHECK_MESSAGE( aabb.get_shortest_axis_size() == 4, "get_shortest_axis_size() should return the expected value."); } TEST_CASE("[AABB] Get support") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.get_support(Vector3(1, 0, 0)).is_equal_approx(Vector3(2.5, 2, -2.5)), "get_support() should return the expected value."); CHECK_MESSAGE( aabb.get_support(Vector3(0.5, 1, 0)).is_equal_approx(Vector3(2.5, 7, -2.5)), "get_support() should return the expected value."); CHECK_MESSAGE( aabb.get_support(Vector3(0.5, 1, -400)).is_equal_approx(Vector3(2.5, 7, -2.5)), "get_support() should return the expected value."); CHECK_MESSAGE( aabb.get_support(Vector3(0, -1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)), "get_support() should return the expected value."); CHECK_MESSAGE( aabb.get_support(Vector3(0, -0.1, 0)).is_equal_approx(Vector3(-1.5, 2, -2.5)), "get_support() should return the expected value."); CHECK_MESSAGE( aabb.get_support(Vector3()).is_equal_approx(Vector3(-1.5, 2, -2.5)), "get_support() should return the expected value with a null vector."); } TEST_CASE("[AABB] Grow") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.grow(0.25).is_equal_approx(AABB(Vector3(-1.75, 1.75, -2.75), Vector3(4.5, 5.5, 6.5))), "grow() with positive value should return the expected AABB."); CHECK_MESSAGE( aabb.grow(-0.25).is_equal_approx(AABB(Vector3(-1.25, 2.25, -2.25), Vector3(3.5, 4.5, 5.5))), "grow() with negative value should return the expected AABB."); CHECK_MESSAGE( aabb.grow(-10).is_equal_approx(AABB(Vector3(8.5, 12, 7.5), Vector3(-16, -15, -14))), "grow() with large negative value should return the expected AABB."); } TEST_CASE("[AABB] Has point") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.has_point(Vector3(-1, 3, 0)), "has_point() with contained point should return the expected value."); CHECK_MESSAGE( aabb.has_point(Vector3(2, 3, 0)), "has_point() with contained point should return the expected value."); CHECK_MESSAGE( !aabb.has_point(Vector3(-20, 0, 0)), "has_point() with non-contained point should return the expected value."); CHECK_MESSAGE( aabb.has_point(Vector3(-1.5, 3, 0)), "has_point() with positive size should include point on near face (X axis)."); CHECK_MESSAGE( aabb.has_point(Vector3(2.5, 3, 0)), "has_point() with positive size should include point on far face (X axis)."); CHECK_MESSAGE( aabb.has_point(Vector3(0, 2, 0)), "has_point() with positive size should include point on near face (Y axis)."); CHECK_MESSAGE( aabb.has_point(Vector3(0, 7, 0)), "has_point() with positive size should include point on far face (Y axis)."); CHECK_MESSAGE( aabb.has_point(Vector3(0, 3, -2.5)), "has_point() with positive size should include point on near face (Z axis)."); CHECK_MESSAGE( aabb.has_point(Vector3(0, 3, 3.5)), "has_point() with positive size should include point on far face (Z axis)."); } TEST_CASE("[AABB] Expanding") { const AABB aabb = AABB(Vector3(-1.5, 2, -2.5), Vector3(4, 5, 6)); CHECK_MESSAGE( aabb.expand(Vector3(-1, 3, 0)).is_equal_approx(aabb), "expand() with contained point should return the expected AABB."); CHECK_MESSAGE( aabb.expand(Vector3(2, 3, 0)).is_equal_approx(aabb), "expand() with contained point should return the expected AABB."); CHECK_MESSAGE( aabb.expand(Vector3(-1.5, 3, 0)).is_equal_approx(aabb), "expand() with contained point on negative edge should return the expected AABB."); CHECK_MESSAGE( aabb.expand(Vector3(2.5, 3, 0)).is_equal_approx(aabb), "expand() with contained point on positive edge should return the expected AABB."); CHECK_MESSAGE( aabb.expand(Vector3(-20, 0, 0)).is_equal_approx(AABB(Vector3(-20, 0, -2.5), Vector3(22.5, 7, 6))), "expand() with non-contained point should return the expected AABB."); } TEST_CASE("[AABB] Finite number checks") { const Vector3 x(0, 1, 2); const Vector3 infinite(NAN, NAN, NAN); CHECK_MESSAGE( AABB(x, x).is_finite(), "AABB with all components finite should be finite"); CHECK_FALSE_MESSAGE( AABB(infinite, x).is_finite(), "AABB with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( AABB(x, infinite).is_finite(), "AABB with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( AABB(infinite, infinite).is_finite(), "AABB with two components infinite should not be finite."); } } // namespace TestAABB #endif // TEST_AABB_H