/* clang-format off */ [vertex] #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else precision highp float; precision highp int; #endif uniform highp mat4 projection_matrix; /* clang-format on */ #include "stdlib.glsl" uniform highp mat4 modelview_matrix; uniform highp mat4 extra_matrix; attribute highp vec2 vertex; // attrib:0 #ifdef USE_ATTRIB_LIGHT_ANGLE // shared with tangent, not used in canvas shader attribute highp float light_angle; // attrib:2 #endif attribute vec4 color_attrib; // attrib:3 attribute vec2 uv_attrib; // attrib:4 #ifdef USE_ATTRIB_MODULATE attribute highp vec4 modulate_attrib; // attrib:5 #endif #ifdef USE_ATTRIB_LARGE_VERTEX // shared with skeleton attributes, not used in batched shader attribute highp vec2 translate_attrib; // attrib:6 attribute highp vec4 basis_attrib; // attrib:7 #endif #ifdef USE_SKELETON attribute highp vec4 bone_indices; // attrib:6 attribute highp vec4 bone_weights; // attrib:7 #endif #ifdef USE_INSTANCING attribute highp vec4 instance_xform0; //attrib:8 attribute highp vec4 instance_xform1; //attrib:9 attribute highp vec4 instance_xform2; //attrib:10 attribute highp vec4 instance_color; //attrib:11 #ifdef USE_INSTANCE_CUSTOM attribute highp vec4 instance_custom_data; //attrib:12 #endif #endif #ifdef USE_SKELETON uniform highp sampler2D skeleton_texture; // texunit:-3 uniform highp ivec2 skeleton_texture_size; uniform highp mat4 skeleton_transform; uniform highp mat4 skeleton_transform_inverse; #endif varying vec2 uv_interp; varying vec4 color_interp; #ifdef USE_ATTRIB_MODULATE // modulate doesn't need interpolating but we need to send it to the fragment shader varying vec4 modulate_interp; #endif #ifdef MODULATE_USED uniform vec4 final_modulate; #endif uniform highp vec2 color_texpixel_size; #ifdef USE_TEXTURE_RECT uniform vec4 dst_rect; uniform vec4 src_rect; #endif uniform highp float time; #ifdef USE_LIGHTING // light matrices uniform highp mat4 light_matrix; uniform highp mat4 light_matrix_inverse; uniform highp mat4 light_local_matrix; uniform highp mat4 shadow_matrix; uniform highp vec4 light_color; uniform highp vec4 light_shadow_color; uniform highp vec2 light_pos; uniform highp float shadowpixel_size; uniform highp float shadow_gradient; uniform highp float light_height; uniform highp float light_outside_alpha; uniform highp float shadow_distance_mult; varying vec4 light_uv_interp; varying vec2 transformed_light_uv; varying vec4 local_rot; #ifdef USE_SHADOWS varying highp vec2 pos; #endif const bool at_light_pass = true; #else const bool at_light_pass = false; #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ vec2 select(vec2 a, vec2 b, bvec2 c) { vec2 ret; ret.x = c.x ? b.x : a.x; ret.y = c.y ? b.y : a.y; return ret; } void main() { vec4 color = color_attrib; vec2 uv; #ifdef USE_INSTANCING mat4 extra_matrix_instance = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0))); color *= instance_color; #ifdef USE_INSTANCE_CUSTOM vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif #else mat4 extra_matrix_instance = extra_matrix; vec4 instance_custom = vec4(0.0); #endif #ifdef USE_TEXTURE_RECT if (dst_rect.z < 0.0) { // Transpose is encoded as negative dst_rect.z uv = src_rect.xy + abs(src_rect.zw) * vertex.yx; } else { uv = src_rect.xy + abs(src_rect.zw) * vertex; } vec4 outvec = vec4(0.0, 0.0, 0.0, 1.0); // This is what is done in the GLES 3 bindings and should // take care of flipped rects. // // But it doesn't. // I don't know why, will need to investigate further. outvec.xy = dst_rect.xy + abs(dst_rect.zw) * select(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0))); // outvec.xy = dst_rect.xy + abs(dst_rect.zw) * vertex; #else vec4 outvec = vec4(vertex.xy, 0.0, 1.0); uv = uv_attrib; #endif float point_size = 1.0; { vec2 src_vtx = outvec.xy; /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } gl_PointSize = point_size; #ifdef USE_ATTRIB_MODULATE // modulate doesn't need interpolating but we need to send it to the fragment shader modulate_interp = modulate_attrib; #endif #ifdef USE_ATTRIB_LARGE_VERTEX // transform is in attributes vec2 temp; temp = outvec.xy; temp.x = (outvec.x * basis_attrib.x) + (outvec.y * basis_attrib.z); temp.y = (outvec.x * basis_attrib.y) + (outvec.y * basis_attrib.w); temp += translate_attrib; outvec.xy = temp; #else // transform is in uniforms #if !defined(SKIP_TRANSFORM_USED) outvec = extra_matrix_instance * outvec; outvec = modelview_matrix * outvec; #endif #endif // not large integer color_interp = color; #ifdef USE_PIXEL_SNAP outvec.xy = floor(outvec + 0.5).xy; // precision issue on some hardware creates artifacts within texture // offset uv by a small amount to avoid uv += 1e-5; #endif #ifdef USE_SKELETON // look up transform from the "pose texture" if (bone_weights != vec4(0.0)) { highp mat4 bone_transform = mat4(0.0); for (int i = 0; i < 4; i++) { ivec2 tex_ofs = ivec2(int(bone_indices[i]) * 2, 0); highp mat4 b = mat4( texel2DFetch(skeleton_texture, skeleton_texture_size, tex_ofs + ivec2(0, 0)), texel2DFetch(skeleton_texture, skeleton_texture_size, tex_ofs + ivec2(1, 0)), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); bone_transform += b * bone_weights[i]; } mat4 bone_matrix = skeleton_transform * transpose(bone_transform) * skeleton_transform_inverse; outvec = bone_matrix * outvec; } #endif uv_interp = uv; gl_Position = projection_matrix * outvec; #ifdef USE_LIGHTING light_uv_interp.xy = (light_matrix * outvec).xy; light_uv_interp.zw = (light_local_matrix * outvec).xy; transformed_light_uv = (mat3(light_matrix_inverse) * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping #ifdef USE_SHADOWS pos = outvec.xy; #endif #ifdef USE_ATTRIB_LIGHT_ANGLE // we add a fixed offset because we are using the sign later, // and don't want floating point error around 0.0 float la = abs(light_angle) - 1.0; // vector light angle vec4 vla; vla.xy = vec2(cos(la), sin(la)); vla.zw = vec2(-vla.y, vla.x); // vertical flip encoded in the sign vla.zw *= sign(light_angle); // apply the transform matrix. // The rotate will be encoded in the transform matrix for single rects, // and just the flips in the light angle. // For batching we will encode the rotation and the flips // in the light angle, and can use the same shader. local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(vla.xy, 0.0, 0.0))).xy); local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(vla.zw, 0.0, 0.0))).xy); #else local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(1.0, 0.0, 0.0, 0.0))).xy); local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(0.0, 1.0, 0.0, 0.0))).xy); #ifdef USE_TEXTURE_RECT local_rot.xy *= sign(src_rect.z); local_rot.zw *= sign(src_rect.w); #endif #endif // not using light angle #endif } /* clang-format off */ [fragment] // texture2DLodEXT and textureCubeLodEXT are fragment shader specific. // Do not copy these defines in the vertex section. #ifndef USE_GLES_OVER_GL #ifdef GL_EXT_shader_texture_lod #extension GL_EXT_shader_texture_lod : enable #define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod) #define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod) #endif #endif // !USE_GLES_OVER_GL #ifdef GL_ARB_shader_texture_lod #extension GL_ARB_shader_texture_lod : enable #endif #if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod) #define texture2DLod(img, coord, lod) texture2D(img, coord, lod) #define textureCubeLod(img, coord, lod) textureCube(img, coord, lod) #endif #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else #if defined(USE_HIGHP_PRECISION) precision highp float; precision highp int; #else precision mediump float; precision mediump int; #endif #endif #include "stdlib.glsl" uniform sampler2D color_texture; // texunit:-1 /* clang-format on */ uniform highp vec2 color_texpixel_size; uniform mediump sampler2D normal_texture; // texunit:-2 varying mediump vec2 uv_interp; varying mediump vec4 color_interp; #ifdef USE_ATTRIB_MODULATE varying mediump vec4 modulate_interp; #endif uniform highp float time; uniform vec4 final_modulate; #ifdef SCREEN_TEXTURE_USED uniform sampler2D screen_texture; // texunit:-4 #endif #ifdef SCREEN_UV_USED uniform vec2 screen_pixel_size; #endif #ifdef USE_LIGHTING uniform highp mat4 light_matrix; uniform highp mat4 light_local_matrix; uniform highp mat4 shadow_matrix; uniform highp vec4 light_color; uniform highp vec4 light_shadow_color; uniform highp vec2 light_pos; uniform highp float shadowpixel_size; uniform highp float shadow_gradient; uniform highp float light_height; uniform highp float light_outside_alpha; uniform highp float shadow_distance_mult; uniform lowp sampler2D light_texture; // texunit:-6 varying vec4 light_uv_interp; varying vec2 transformed_light_uv; varying vec4 local_rot; #ifdef USE_SHADOWS uniform highp sampler2D shadow_texture; // texunit:-5 varying highp vec2 pos; #endif const bool at_light_pass = true; #else const bool at_light_pass = false; #endif uniform bool use_default_normal; /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ void light_compute( inout vec4 light, inout vec2 light_vec, inout float light_height, inout vec4 light_color, vec2 light_uv, inout vec4 shadow_color, inout vec2 shadow_vec, vec3 normal, vec2 uv, #if defined(SCREEN_UV_USED) vec2 screen_uv, #endif vec4 color) { #if defined(USE_LIGHT_SHADER_CODE) /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #endif } void main() { vec4 color = color_interp; vec2 uv = uv_interp; #ifdef USE_FORCE_REPEAT //needs to use this to workaround GLES2/WebGL1 forcing tiling that textures that don't support it uv = mod(uv, vec2(1.0, 1.0)); #endif #if !defined(COLOR_USED) //default behavior, texture by color color *= texture2D(color_texture, uv); #endif #ifdef SCREEN_UV_USED vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif vec3 normal; #if defined(NORMAL_USED) bool normal_used = true; #else bool normal_used = false; #endif if (use_default_normal) { normal.xy = texture2D(normal_texture, uv).xy * 2.0 - 1.0; normal.z = sqrt(1.0 - dot(normal.xy, normal.xy)); normal_used = true; } else { normal = vec3(0.0, 0.0, 1.0); } { float normal_depth = 1.0; #if defined(NORMALMAP_USED) vec3 normal_map = vec3(0.0, 0.0, 1.0); normal_used = true; #endif /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ #if defined(NORMALMAP_USED) normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth); #endif } #if !defined(MODULATE_USED) color *= final_modulate; #endif #ifdef USE_ATTRIB_MODULATE // todo .. this won't be used at the same time as MODULATE_USED color *= modulate_interp; #endif #ifdef USE_LIGHTING vec2 light_vec = transformed_light_uv; vec2 shadow_vec = transformed_light_uv; if (normal_used) { normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy; } float att = 1.0; vec2 light_uv = light_uv_interp.xy; vec4 light = texture2D(light_texture, light_uv); if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) { color.a *= light_outside_alpha; //invisible } else { float real_light_height = light_height; vec4 real_light_color = light_color; vec4 real_light_shadow_color = light_shadow_color; #if defined(USE_LIGHT_SHADER_CODE) //light is written by the light shader light_compute( light, light_vec, real_light_height, real_light_color, light_uv, real_light_shadow_color, shadow_vec, normal, uv, #if defined(SCREEN_UV_USED) screen_uv, #endif color); #endif light *= real_light_color; if (normal_used) { vec3 light_normal = normalize(vec3(light_vec, -real_light_height)); light *= max(dot(-light_normal, normal), 0.0); } color *= light; #ifdef USE_SHADOWS #ifdef SHADOW_VEC_USED mat3 inverse_light_matrix = mat3(light_matrix); inverse_light_matrix[0] = normalize(inverse_light_matrix[0]); inverse_light_matrix[1] = normalize(inverse_light_matrix[1]); inverse_light_matrix[2] = normalize(inverse_light_matrix[2]); shadow_vec = (inverse_light_matrix * vec3(shadow_vec, 0.0)).xy; #else shadow_vec = light_uv_interp.zw; #endif float angle_to_light = -atan(shadow_vec.x, shadow_vec.y); float PI = 3.14159265358979323846264; /*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays float ang*/ float su, sz; float abs_angle = abs(angle_to_light); vec2 point; float sh; if (abs_angle < 45.0 * PI / 180.0) { point = shadow_vec; sh = 0.0 + (1.0 / 8.0); } else if (abs_angle > 135.0 * PI / 180.0) { point = -shadow_vec; sh = 0.5 + (1.0 / 8.0); } else if (angle_to_light > 0.0) { point = vec2(shadow_vec.y, -shadow_vec.x); sh = 0.25 + (1.0 / 8.0); } else { point = vec2(-shadow_vec.y, shadow_vec.x); sh = 0.75 + (1.0 / 8.0); } highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0); s.xyz /= s.w; su = s.x * 0.5 + 0.5; sz = s.z * 0.5 + 0.5; //sz=lightlength(light_vec); highp float shadow_attenuation = 0.0; #ifdef USE_RGBA_SHADOWS #define SHADOW_DEPTH(m_tex, m_uv) dot(texture2D((m_tex), (m_uv)), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) #else #define SHADOW_DEPTH(m_tex, m_uv) (texture2D((m_tex), (m_uv)).r) #endif #ifdef SHADOW_USE_GRADIENT /* clang-format off */ /* GLSL es 100 doesn't support line continuation characters(backslashes) */ #define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); } #else #define SHADOW_TEST(m_ofs) { highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); shadow_attenuation += step(sz, sd); } /* clang-format on */ #endif #ifdef SHADOW_FILTER_NEAREST SHADOW_TEST(su); #endif #ifdef SHADOW_FILTER_PCF3 SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); shadow_attenuation /= 3.0; #endif #ifdef SHADOW_FILTER_PCF5 SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); shadow_attenuation /= 5.0; #endif #ifdef SHADOW_FILTER_PCF7 SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); shadow_attenuation /= 7.0; #endif #ifdef SHADOW_FILTER_PCF9 SHADOW_TEST(su + shadowpixel_size * 4.0); SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); SHADOW_TEST(su - shadowpixel_size * 4.0); shadow_attenuation /= 9.0; #endif #ifdef SHADOW_FILTER_PCF13 SHADOW_TEST(su + shadowpixel_size * 6.0); SHADOW_TEST(su + shadowpixel_size * 5.0); SHADOW_TEST(su + shadowpixel_size * 4.0); SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); SHADOW_TEST(su - shadowpixel_size * 4.0); SHADOW_TEST(su - shadowpixel_size * 5.0); SHADOW_TEST(su - shadowpixel_size * 6.0); shadow_attenuation /= 13.0; #endif //color *= shadow_attenuation; color = mix(real_light_shadow_color, color, shadow_attenuation); //use shadows #endif } //use lighting #endif gl_FragColor = color; }