/* * * Copyright (c) 2014-2020 The Khronos Group Inc. * Copyright (c) 2014-2020 Valve Corporation * Copyright (c) 2014-2020 LunarG, Inc. * Copyright (C) 2015 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Jon Ashburn * Author: Courtney Goeltzenleuchter * Author: Mark Young * Author: Lenny Komow * */ // This needs to be defined first, or else we'll get redefinitions on NTSTATUS values #ifdef _WIN32 #define UMDF_USING_NTSTATUS #include #endif #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #if defined(__APPLE__) #include #include #endif // Time related functions #include #include #if defined(_WIN32) #include "dirent_on_windows.h" #else // _WIN32 #include #endif // _WIN32 #include "vk_loader_platform.h" #include "loader.h" #include "gpa_helper.h" #include "debug_utils.h" #include "wsi.h" #include "vulkan/vk_icd.h" #include "cJSON.h" #include "murmurhash.h" #if defined(_WIN32) #include #include #include #include #include #ifdef __MINGW32__ #undef strcpy // fix error with redfined strcpy when building with MinGW-w64 #endif #include #include "adapters.h" typedef HRESULT (APIENTRY *PFN_CreateDXGIFactory1)(REFIID riid, void **ppFactory); static PFN_CreateDXGIFactory1 fpCreateDXGIFactory1; #endif // This is a CMake generated file with #defines for any functions/includes // that it found present. This is currently necessary to properly determine // if secure_getenv or __secure_getenv are present #if !defined(VULKAN_NON_CMAKE_BUILD) #include "loader_cmake_config.h" #endif // !defined(VULKAN_NON_CMAKE_BUILD) // Generated file containing all the extension data #include "vk_loader_extensions.c" // Environment Variable information #define VK_ICD_FILENAMES_ENV_VAR "VK_ICD_FILENAMES" #define VK_LAYER_PATH_ENV_VAR "VK_LAYER_PATH" // Override layer information #define VK_OVERRIDE_LAYER_NAME "VK_LAYER_LUNARG_override" struct loader_struct loader = {0}; // TLS for instance for alloc/free callbacks THREAD_LOCAL_DECL struct loader_instance *tls_instance; static size_t loader_platform_combine_path(char *dest, size_t len, ...); struct loader_phys_dev_per_icd { uint32_t count; VkPhysicalDevice *phys_devs; struct loader_icd_term *this_icd_term; }; enum loader_debug { LOADER_INFO_BIT = 0x01, LOADER_WARN_BIT = 0x02, LOADER_PERF_BIT = 0x04, LOADER_ERROR_BIT = 0x08, LOADER_DEBUG_BIT = 0x10, }; uint32_t g_loader_debug = 0; uint32_t g_loader_log_msgs = 0; enum loader_data_files_type { LOADER_DATA_FILE_MANIFEST_ICD = 0, LOADER_DATA_FILE_MANIFEST_LAYER, LOADER_DATA_FILE_NUM_TYPES // Not a real field, used for possible loop terminator }; // thread safety lock for accessing global data structures such as "loader" // all entrypoints on the instance chain need to be locked except GPA // additionally CreateDevice and DestroyDevice needs to be locked loader_platform_thread_mutex loader_lock; loader_platform_thread_mutex loader_json_lock; loader_platform_thread_mutex loader_preload_icd_lock; // A list of ICDs that gets initialized when the loader does its global initialization. This list should never be used by anything // other than EnumerateInstanceExtensionProperties(), vkDestroyInstance, and loader_release(). This list does not change // functionality, but the fact that the libraries already been loaded causes any call that needs to load ICD libraries to speed up // significantly. This can have a huge impact when making repeated calls to vkEnumerateInstanceExtensionProperties and // vkCreateInstance. static struct loader_icd_tramp_list scanned_icds; LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init); void *loader_instance_heap_alloc(const struct loader_instance *instance, size_t size, VkSystemAllocationScope alloc_scope) { void *pMemory = NULL; #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) { #else if (instance && instance->alloc_callbacks.pfnAllocation) { // These are internal structures, so it's best to align everything to // the largest unit size which is the size of a uint64_t. pMemory = instance->alloc_callbacks.pfnAllocation(instance->alloc_callbacks.pUserData, size, sizeof(uint64_t), alloc_scope); } else { #endif pMemory = malloc(size); } return pMemory; } void loader_instance_heap_free(const struct loader_instance *instance, void *pMemory) { if (pMemory != NULL) { #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) { #else if (instance && instance->alloc_callbacks.pfnFree) { instance->alloc_callbacks.pfnFree(instance->alloc_callbacks.pUserData, pMemory); } else { #endif free(pMemory); } } } void *loader_instance_heap_realloc(const struct loader_instance *instance, void *pMemory, size_t orig_size, size_t size, VkSystemAllocationScope alloc_scope) { void *pNewMem = NULL; if (pMemory == NULL || orig_size == 0) { pNewMem = loader_instance_heap_alloc(instance, size, alloc_scope); } else if (size == 0) { loader_instance_heap_free(instance, pMemory); #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) #else } else if (instance && instance->alloc_callbacks.pfnReallocation) { // These are internal structures, so it's best to align everything to // the largest unit size which is the size of a uint64_t. pNewMem = instance->alloc_callbacks.pfnReallocation(instance->alloc_callbacks.pUserData, pMemory, size, sizeof(uint64_t), alloc_scope); #endif } else { pNewMem = realloc(pMemory, size); } return pNewMem; } void *loader_instance_tls_heap_alloc(size_t size) { return loader_instance_heap_alloc(tls_instance, size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); } void loader_instance_tls_heap_free(void *pMemory) { loader_instance_heap_free(tls_instance, pMemory); } void *loader_device_heap_alloc(const struct loader_device *device, size_t size, VkSystemAllocationScope alloc_scope) { void *pMemory = NULL; #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) { #else if (device && device->alloc_callbacks.pfnAllocation) { // These are internal structures, so it's best to align everything to // the largest unit size which is the size of a uint64_t. pMemory = device->alloc_callbacks.pfnAllocation(device->alloc_callbacks.pUserData, size, sizeof(uint64_t), alloc_scope); } else { #endif pMemory = malloc(size); } return pMemory; } void loader_device_heap_free(const struct loader_device *device, void *pMemory) { if (pMemory != NULL) { #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) { #else if (device && device->alloc_callbacks.pfnFree) { device->alloc_callbacks.pfnFree(device->alloc_callbacks.pUserData, pMemory); } else { #endif free(pMemory); } } } void *loader_device_heap_realloc(const struct loader_device *device, void *pMemory, size_t orig_size, size_t size, VkSystemAllocationScope alloc_scope) { void *pNewMem = NULL; if (pMemory == NULL || orig_size == 0) { pNewMem = loader_device_heap_alloc(device, size, alloc_scope); } else if (size == 0) { loader_device_heap_free(device, pMemory); #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) #else } else if (device && device->alloc_callbacks.pfnReallocation) { // These are internal structures, so it's best to align everything to // the largest unit size which is the size of a uint64_t. pNewMem = device->alloc_callbacks.pfnReallocation(device->alloc_callbacks.pUserData, pMemory, size, sizeof(uint64_t), alloc_scope); #endif } else { pNewMem = realloc(pMemory, size); } return pNewMem; } // Environment variables #if defined(__linux__) || defined(__APPLE__) static inline bool IsHighIntegrity() { return geteuid() != getuid() || getegid() != getgid(); } static inline char *loader_getenv(const char *name, const struct loader_instance *inst) { // No allocation of memory necessary for Linux, but we should at least touch // the inst pointer to get rid of compiler warnings. (void)inst; return getenv(name); } static inline char *loader_secure_getenv(const char *name, const struct loader_instance *inst) { char *out; #if defined(__APPLE__) // Apple does not appear to have a secure getenv implementation. // The main difference between secure getenv and getenv is that secure getenv // returns NULL if the process is being run with elevated privileges by a normal user. // The idea is to prevent the reading of malicious environment variables by a process // that can do damage. // This algorithm is derived from glibc code that sets an internal // variable (__libc_enable_secure) if the process is running under setuid or setgid. return IsHighIntegrity() ? NULL : loader_getenv(name, inst); #else // Linux #if defined(HAVE_SECURE_GETENV) && !defined(USE_UNSAFE_FILE_SEARCH) (void)inst; out = secure_getenv(name); #elif defined(HAVE___SECURE_GETENV) && !defined(USE_UNSAFE_FILE_SEARCH) (void)inst; out = __secure_getenv(name); #else out = loader_getenv(name, inst); #endif #endif if (out == NULL) { loader_log(inst, LOADER_INFO_BIT, 0, "Loader is running with elevated permissions. Environment variable %s will be ignored.", name); } return out; } static inline void loader_free_getenv(char *val, const struct loader_instance *inst) { // No freeing of memory necessary for Linux, but we should at least touch // the val and inst pointers to get rid of compiler warnings. (void)val; (void)inst; } #elif defined(WIN32) static inline bool IsHighIntegrity() { HANDLE process_token; if (OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY | TOKEN_QUERY_SOURCE, &process_token)) { // Maximum possible size of SID_AND_ATTRIBUTES is maximum size of a SID + size of attributes DWORD. uint8_t mandatory_label_buffer[SECURITY_MAX_SID_SIZE + sizeof(DWORD)]; DWORD buffer_size; if (GetTokenInformation(process_token, TokenIntegrityLevel, mandatory_label_buffer, sizeof(mandatory_label_buffer), &buffer_size) != 0) { const TOKEN_MANDATORY_LABEL *mandatory_label = (const TOKEN_MANDATORY_LABEL *)mandatory_label_buffer; const DWORD sub_authority_count = *GetSidSubAuthorityCount(mandatory_label->Label.Sid); const DWORD integrity_level = *GetSidSubAuthority(mandatory_label->Label.Sid, sub_authority_count - 1); CloseHandle(process_token); return integrity_level > SECURITY_MANDATORY_MEDIUM_RID; } CloseHandle(process_token); } return false; } static inline char *loader_getenv(const char *name, const struct loader_instance *inst) { char *retVal; DWORD valSize; valSize = GetEnvironmentVariableA(name, NULL, 0); // valSize DOES include the null terminator, so for any set variable // will always be at least 1. If it's 0, the variable wasn't set. if (valSize == 0) return NULL; // Allocate the space necessary for the registry entry if (NULL != inst && NULL != inst->alloc_callbacks.pfnAllocation) { retVal = (char *)inst->alloc_callbacks.pfnAllocation(inst->alloc_callbacks.pUserData, valSize, sizeof(char *), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); } else { retVal = (char *)malloc(valSize); } if (NULL != retVal) { GetEnvironmentVariableA(name, retVal, valSize); } return retVal; } static inline char *loader_secure_getenv(const char *name, const struct loader_instance *inst) { #if !defined(USE_UNSAFE_FILE_SEARCH) if (IsHighIntegrity()) { loader_log(inst, LOADER_INFO_BIT, 0, "Loader is running with elevated permissions. Environment variable %s will be ignored.", name); return NULL; } #endif return loader_getenv(name, inst); } static inline void loader_free_getenv(char *val, const struct loader_instance *inst) { if (NULL != inst && NULL != inst->alloc_callbacks.pfnFree) { inst->alloc_callbacks.pfnFree(inst->alloc_callbacks.pUserData, val); } else { free((void *)val); } } #else static inline char *loader_getenv(const char *name, const struct loader_instance *inst) { // stub func (void)inst; (void)name; return NULL; } static inline void loader_free_getenv(char *val, const struct loader_instance *inst) { // stub func (void)val; (void)inst; } #endif void loader_log(const struct loader_instance *inst, VkFlags msg_type, int32_t msg_code, const char *format, ...) { char msg[512]; char cmd_line_msg[512]; size_t cmd_line_size = sizeof(cmd_line_msg); va_list ap; int ret; va_start(ap, format); ret = vsnprintf(msg, sizeof(msg), format, ap); if ((ret >= (int)sizeof(msg)) || ret < 0) { msg[sizeof(msg) - 1] = '\0'; } va_end(ap); if (inst) { VkDebugUtilsMessageSeverityFlagBitsEXT severity = 0; VkDebugUtilsMessageTypeFlagsEXT type; VkDebugUtilsMessengerCallbackDataEXT callback_data; VkDebugUtilsObjectNameInfoEXT object_name; if ((msg_type & LOADER_INFO_BIT) != 0) { severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT; } else if ((msg_type & LOADER_WARN_BIT) != 0) { severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT; } else if ((msg_type & LOADER_ERROR_BIT) != 0) { severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; } else if ((msg_type & LOADER_DEBUG_BIT) != 0) { severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT; } if ((msg_type & LOADER_PERF_BIT) != 0) { type = VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; } else { type = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT; } callback_data.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT; callback_data.pNext = NULL; callback_data.flags = 0; callback_data.pMessageIdName = "Loader Message"; callback_data.messageIdNumber = 0; callback_data.pMessage = msg; callback_data.queueLabelCount = 0; callback_data.pQueueLabels = NULL; callback_data.cmdBufLabelCount = 0; callback_data.pCmdBufLabels = NULL; callback_data.objectCount = 1; callback_data.pObjects = &object_name; object_name.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT; object_name.pNext = NULL; object_name.objectType = VK_OBJECT_TYPE_INSTANCE; object_name.objectHandle = (uint64_t)(uintptr_t)inst; object_name.pObjectName = NULL; util_SubmitDebugUtilsMessageEXT(inst, severity, type, &callback_data); } if (!(msg_type & g_loader_log_msgs)) { return; } cmd_line_msg[0] = '\0'; cmd_line_size -= 1; size_t original_size = cmd_line_size; if ((msg_type & LOADER_INFO_BIT) != 0) { strncat(cmd_line_msg, "INFO", cmd_line_size); cmd_line_size -= 4; } if ((msg_type & LOADER_WARN_BIT) != 0) { if (cmd_line_size != original_size) { strncat(cmd_line_msg, " | ", cmd_line_size); cmd_line_size -= 3; } strncat(cmd_line_msg, "WARNING", cmd_line_size); cmd_line_size -= 7; } if ((msg_type & LOADER_PERF_BIT) != 0) { if (cmd_line_size != original_size) { strncat(cmd_line_msg, " | ", cmd_line_size); cmd_line_size -= 3; } strncat(cmd_line_msg, "PERF", cmd_line_size); cmd_line_size -= 4; } if ((msg_type & LOADER_ERROR_BIT) != 0) { if (cmd_line_size != original_size) { strncat(cmd_line_msg, " | ", cmd_line_size); cmd_line_size -= 3; } strncat(cmd_line_msg, "ERROR", cmd_line_size); cmd_line_size -= 5; } if ((msg_type & LOADER_DEBUG_BIT) != 0) { if (cmd_line_size != original_size) { strncat(cmd_line_msg, " | ", cmd_line_size); cmd_line_size -= 3; } strncat(cmd_line_msg, "DEBUG", cmd_line_size); cmd_line_size -= 5; } if (cmd_line_size != original_size) { strncat(cmd_line_msg, ": ", cmd_line_size); cmd_line_size -= 2; } if (0 < cmd_line_size) { // If the message is too long, trim it down if (strlen(msg) > cmd_line_size) { msg[cmd_line_size - 1] = '\0'; } strncat(cmd_line_msg, msg, cmd_line_size); } else { // Shouldn't get here, but check to make sure if we've already overrun // the string boundary assert(false); } #if defined(WIN32) OutputDebugString(cmd_line_msg); OutputDebugString("\n"); #endif fputs(cmd_line_msg, stderr); fputc('\n', stderr); } VKAPI_ATTR VkResult VKAPI_CALL vkSetInstanceDispatch(VkInstance instance, void *object) { struct loader_instance *inst = loader_get_instance(instance); if (!inst) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkSetInstanceDispatch: Can not retrieve Instance " "dispatch table."); return VK_ERROR_INITIALIZATION_FAILED; } loader_set_dispatch(object, inst->disp); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkSetDeviceDispatch(VkDevice device, void *object) { struct loader_device *dev; struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); if (NULL == icd_term) { return VK_ERROR_INITIALIZATION_FAILED; } loader_set_dispatch(object, &dev->loader_dispatch); return VK_SUCCESS; } #if defined(_WIN32) // Append the JSON path data to the list and allocate/grow the list if it's not large enough. // Function returns true if filename was appended to reg_data list. // Caller should free reg_data. static bool loaderAddJsonEntry(const struct loader_instance *inst, char **reg_data, // list of JSON files PDWORD total_size, // size of reg_data LPCSTR key_name, // key name - used for debug prints - i.e. VulkanDriverName DWORD key_type, // key data type LPSTR json_path, // JSON string to add to the list reg_data DWORD json_size, // size in bytes of json_path VkResult *result) { // Check for and ignore duplicates. if (*reg_data && strstr(*reg_data, json_path)) { // Success. The json_path is already in the list. return true; } if (NULL == *reg_data) { *reg_data = loader_instance_heap_alloc(inst, *total_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == *reg_data) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddJsonEntry: Failed to allocate space for registry data for key %s", json_path); *result = VK_ERROR_OUT_OF_HOST_MEMORY; return false; } *reg_data[0] = '\0'; } else if (strlen(*reg_data) + json_size + 1 > *total_size) { void *new_ptr = loader_instance_heap_realloc(inst, *reg_data, *total_size, *total_size * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddJsonEntry: Failed to reallocate space for registry value of size %d for key %s", *total_size * 2, json_path); *result = VK_ERROR_OUT_OF_HOST_MEMORY; return false; } *reg_data = new_ptr; *total_size *= 2; } for (char *curr_filename = json_path; curr_filename[0] != '\0'; curr_filename += strlen(curr_filename) + 1) { if (strlen(*reg_data) == 0) { (void)snprintf(*reg_data, json_size + 1, "%s", curr_filename); } else { (void)snprintf(*reg_data + strlen(*reg_data), json_size + 2, "%c%s", PATH_SEPARATOR, curr_filename); } loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "%s: Located json file \"%s\" from PnP registry: %s", __FUNCTION__, curr_filename, key_name); if (key_type == REG_SZ) { break; } } return true; } // Find the list of registry files (names VulkanDriverName/VulkanDriverNameWow) in hkr. // // This function looks for filename in given device handle, filename is then added to return list // function return true if filename was appended to reg_data list // If error occurs result is updated with failure reason bool loaderGetDeviceRegistryEntry(const struct loader_instance *inst, char **reg_data, PDWORD total_size, DEVINST dev_id, LPCSTR value_name, VkResult *result) { HKEY hkrKey = INVALID_HANDLE_VALUE; DWORD requiredSize, data_type; char *manifest_path = NULL; bool found = false; if (NULL == total_size || NULL == reg_data) { *result = VK_ERROR_INITIALIZATION_FAILED; return false; } CONFIGRET status = CM_Open_DevNode_Key(dev_id, KEY_QUERY_VALUE, 0, RegDisposition_OpenExisting, &hkrKey, CM_REGISTRY_SOFTWARE); if (status != CR_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: Failed to open registry key for DeviceID(%d)", dev_id); *result = VK_ERROR_INITIALIZATION_FAILED; return false; } // query value LSTATUS ret = RegQueryValueEx( hkrKey, value_name, NULL, NULL, NULL, &requiredSize); if (ret != ERROR_SUCCESS) { if (ret == ERROR_FILE_NOT_FOUND) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: Device ID(%d) Does not contain a value for \"%s\"", dev_id, value_name); } else { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: DeviceID(%d) Failed to obtain %s size", dev_id, value_name); } goto out; } manifest_path = loader_instance_heap_alloc(inst, requiredSize, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (manifest_path == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: Failed to allocate space for DriverName."); *result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } ret = RegQueryValueEx( hkrKey, value_name, NULL, &data_type, (BYTE *)manifest_path, &requiredSize ); if (ret != ERROR_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: DeviceID(%d) Failed to obtain %s", value_name); *result = VK_ERROR_INITIALIZATION_FAILED; goto out; } if (data_type != REG_SZ && data_type != REG_MULTI_SZ) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryEntry: Invalid %s data type. Expected REG_SZ or REG_MULTI_SZ.", value_name); *result = VK_ERROR_INITIALIZATION_FAILED; goto out; } found = loaderAddJsonEntry(inst, reg_data, total_size, value_name, data_type, manifest_path, requiredSize, result); out: if (manifest_path != NULL) { loader_instance_heap_free(inst, manifest_path); } RegCloseKey(hkrKey); return found; } // Find the list of registry files (names VulkanDriverName/VulkanDriverNameWow) in hkr . // // This function looks for display devices and childish software components // for a list of files which are added to a returned list (function return // value). // Function return is a string with a ';' separated list of filenames. // Function return is NULL if no valid name/value pairs are found in the key, // or the key is not found. // // *reg_data contains a string list of filenames as pointer. // When done using the returned string list, the caller should free the pointer. VkResult loaderGetDeviceRegistryFiles(const struct loader_instance *inst, char **reg_data, PDWORD reg_data_size, LPCSTR value_name) { static const wchar_t *softwareComponentGUID = L"{5c4c3332-344d-483c-8739-259e934c9cc8}"; static const wchar_t *displayGUID = L"{4d36e968-e325-11ce-bfc1-08002be10318}"; #ifdef CM_GETIDLIST_FILTER_PRESENT const ULONG flags = CM_GETIDLIST_FILTER_CLASS | CM_GETIDLIST_FILTER_PRESENT; #else const ULONG flags = 0x300; #endif wchar_t childGuid[MAX_GUID_STRING_LEN + 2]; // +2 for brackets {} ULONG childGuidSize = sizeof(childGuid); DEVINST devID = 0, childID = 0; wchar_t *pDeviceNames = NULL; ULONG deviceNamesSize = 0; VkResult result = VK_SUCCESS; bool found = false; if (NULL == reg_data) { result = VK_ERROR_INITIALIZATION_FAILED; return result; } // if after obtaining the DeviceNameSize, new device is added start over do { CM_Get_Device_ID_List_SizeW(&deviceNamesSize, displayGUID, flags); if (pDeviceNames != NULL) { loader_instance_heap_free(inst, pDeviceNames); } pDeviceNames = loader_instance_heap_alloc(inst, deviceNamesSize * sizeof(wchar_t), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (pDeviceNames == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: Failed to allocate space for display device names."); result = VK_ERROR_OUT_OF_HOST_MEMORY; return result; } } while (CM_Get_Device_ID_ListW(displayGUID, pDeviceNames, deviceNamesSize, flags) == CR_BUFFER_SMALL); if (pDeviceNames) { for (wchar_t *deviceName = pDeviceNames; *deviceName; deviceName += wcslen(deviceName) + 1) { CONFIGRET status = CM_Locate_DevNodeW(&devID, deviceName, CM_LOCATE_DEVNODE_NORMAL); if (CR_SUCCESS != status) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: failed to open DevNode %ls", deviceName); continue; } ULONG ulStatus, ulProblem; status = CM_Get_DevNode_Status(&ulStatus, &ulProblem, devID, 0); if (CR_SUCCESS != status) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: failed to probe device status %ls", deviceName); continue; } if ((ulStatus & DN_HAS_PROBLEM) && (ulProblem == CM_PROB_NEED_RESTART || ulProblem == DN_NEED_RESTART)) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: device %ls is pending reboot, skipping ...", deviceName); continue; } loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: opening device %ls", deviceName); if (loaderGetDeviceRegistryEntry(inst, reg_data, reg_data_size, devID, value_name, &result)) { found = true; continue; } else if (result == VK_ERROR_OUT_OF_HOST_MEMORY) { break; } status = CM_Get_Child(&childID, devID, 0); if (status != CR_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: unable to open child-device error:%d", status); continue; } do { wchar_t buffer[MAX_DEVICE_ID_LEN]; CM_Get_Device_IDW(childID, buffer, MAX_DEVICE_ID_LEN, 0); loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: Opening child device %d - %ls", childID, buffer); status = CM_Get_DevNode_Registry_PropertyW(childID, CM_DRP_CLASSGUID, NULL, &childGuid, &childGuidSize, 0); if (status != CR_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: unable to obtain GUID for:%d error:%d", childID, status); result = VK_ERROR_INITIALIZATION_FAILED; continue; } if (wcscmp(childGuid, softwareComponentGUID) != 0) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: GUID for %d is not SoftwareComponent skipping", childID); continue; } if (loaderGetDeviceRegistryEntry(inst, reg_data, reg_data_size, childID, value_name, &result)) { found = true; break; // check next-display-device } } while (CM_Get_Sibling(&childID, childID, 0) == CR_SUCCESS); } loader_instance_heap_free(inst, pDeviceNames); } if (!found && result != VK_ERROR_OUT_OF_HOST_MEMORY) { result = VK_ERROR_INITIALIZATION_FAILED; } return result; } static char *loader_get_next_path(char *path); // Find the list of registry files (names within a key) in key "location". // // This function looks in the registry (hive = DEFAULT_VK_REGISTRY_HIVE) key as // given in "location" // for a list or name/values which are added to a returned list (function return // value). // The DWORD values within the key must be 0 or they are skipped. // Function return is a string with a ';' separated list of filenames. // Function return is NULL if no valid name/value pairs are found in the key, // or the key is not found. // // *reg_data contains a string list of filenames as pointer. // When done using the returned string list, the caller should free the pointer. VkResult loaderGetRegistryFiles(const struct loader_instance *inst, char *location, bool use_secondary_hive, char **reg_data, PDWORD reg_data_size) { // This list contains all of the allowed ICDs. This allows us to verify that a device is actually present from the vendor // specified. This does disallow other vendors, but any new driver should use the device-specific registries anyway. static const struct { const char *filename; int vendor_id; } known_drivers[] = { #if defined(_WIN64) { .filename = "igvk64.json", .vendor_id = 0x8086, }, { .filename = "nv-vk64.json", .vendor_id = 0x10de, }, { .filename = "amd-vulkan64.json", .vendor_id = 0x1002, }, { .filename = "amdvlk64.json", .vendor_id = 0x1002, }, #else { .filename = "igvk32.json", .vendor_id = 0x8086, }, { .filename = "nv-vk32.json", .vendor_id = 0x10de, }, { .filename = "amd-vulkan32.json", .vendor_id = 0x1002, }, { .filename = "amdvlk32.json", .vendor_id = 0x1002, }, #endif }; LONG rtn_value; HKEY hive = DEFAULT_VK_REGISTRY_HIVE, key; DWORD access_flags; char name[2048]; char *loc = location; char *next; DWORD name_size = sizeof(name); DWORD value; DWORD value_size = sizeof(value); VkResult result = VK_SUCCESS; bool found = false; IDXGIFactory1 *dxgi_factory = NULL; bool is_driver = !strcmp(location, VK_DRIVERS_INFO_REGISTRY_LOC); if (NULL == reg_data) { result = VK_ERROR_INITIALIZATION_FAILED; goto out; } if (is_driver) { HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory1, (void **)&dxgi_factory); if (hres != S_OK) { loader_log( inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderGetRegistryFiles: Failed to create dxgi factory for ICD registry verification. No ICDs will be added from " "legacy registry locations"); goto out; } } while (*loc) { next = loader_get_next_path(loc); access_flags = KEY_QUERY_VALUE; rtn_value = RegOpenKeyEx(hive, loc, 0, access_flags, &key); if (ERROR_SUCCESS == rtn_value) { for (DWORD idx = 0; (rtn_value = RegEnumValue(key, idx++, name, &name_size, NULL, NULL, (LPBYTE)&value, &value_size)) == ERROR_SUCCESS; name_size = sizeof(name), value_size = sizeof(value)) { if (value_size == sizeof(value) && value == 0) { if (NULL == *reg_data) { *reg_data = loader_instance_heap_alloc(inst, *reg_data_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == *reg_data) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetRegistryFiles: Failed to allocate space for registry data for key %s", name); RegCloseKey(key); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } *reg_data[0] = '\0'; } else if (strlen(*reg_data) + name_size + 1 > *reg_data_size) { void *new_ptr = loader_instance_heap_realloc(inst, *reg_data, *reg_data_size, *reg_data_size * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log( inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetRegistryFiles: Failed to reallocate space for registry value of size %d for key %s", *reg_data_size * 2, name); RegCloseKey(key); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } *reg_data = new_ptr; *reg_data_size *= 2; } // We've now found a json file. If this is an ICD, we still need to check if there is actually a device // that matches this ICD loader_log( inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Located json file \"%s\" from registry \"%s\\%s\"", name, hive == DEFAULT_VK_REGISTRY_HIVE ? DEFAULT_VK_REGISTRY_HIVE_STR : SECONDARY_VK_REGISTRY_HIVE_STR, location); if (is_driver) { int i; for (i = 0; i < sizeof(known_drivers) / sizeof(known_drivers[0]); ++i) { if (!strcmp(name + strlen(name) - strlen(known_drivers[i].filename), known_drivers[i].filename)) { break; } } if (i == sizeof(known_drivers) / sizeof(known_drivers[0])) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Driver %s is not recognized as a known driver. It will be assumed to be active", name); } else { bool found_gpu = false; for (int j = 0;; ++j) { IDXGIAdapter1 *adapter; HRESULT hres = dxgi_factory->lpVtbl->EnumAdapters1(dxgi_factory, j, &adapter); if (hres == DXGI_ERROR_NOT_FOUND) { break; } else if (hres != S_OK) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to enumerate DXGI adapters at index %d. As a result, drivers may be skipped", j); continue; } DXGI_ADAPTER_DESC1 description; hres = adapter->lpVtbl->GetDesc1(adapter, &description); if (hres != S_OK) { loader_log( inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Failed to get DXGI adapter information at index %d. As a result, drivers may be skipped", j); continue; } if (description.VendorId == known_drivers[i].vendor_id) { found_gpu = true; break; } } if (!found_gpu) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Dropping driver %s as no corresponding DXGI adapter was found", name); continue; } } } if (strlen(*reg_data) == 0) { // The list is emtpy. Add the first entry. (void)snprintf(*reg_data, name_size + 1, "%s", name); found = true; } else { // At this point the reg_data variable contains other JSON paths, likely from the PNP/device section // of the registry that we want to have precedence over this non-device specific section of the registry. // To make sure we avoid enumerating old JSON files/drivers that might be present in the non-device specific // area of the registry when a newer device specific JSON file is present, do a check before adding. // Find the file name, without path, of the JSON file found in the non-device specific registry location. // If the same JSON file name is already found in the list, don't add it again. bool foundDuplicate = false; char *pLastSlashName = strrchr(name, '\\'); if (pLastSlashName != NULL) { char *foundMatch = strstr(*reg_data, pLastSlashName + 1); if (foundMatch != NULL) { foundDuplicate = true; } } if (foundDuplicate == false) { // Add the new entry to the list. (void)snprintf(*reg_data + strlen(*reg_data), name_size + 2, "%c%s", PATH_SEPARATOR, name); found = true; } else { loader_log( inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Skipping adding of json file \"%s\" from registry \"%s\\%s\" to the list due to duplication", name, hive == DEFAULT_VK_REGISTRY_HIVE ? DEFAULT_VK_REGISTRY_HIVE_STR : SECONDARY_VK_REGISTRY_HIVE_STR, location); } } } } RegCloseKey(key); } // Advance the location - if the next location is in the secondary hive, then reset the locations and advance the hive if (use_secondary_hive && (hive == DEFAULT_VK_REGISTRY_HIVE) && (*next == '\0')) { loc = location; hive = SECONDARY_VK_REGISTRY_HIVE; } else { loc = next; } } if (!found && result != VK_ERROR_OUT_OF_HOST_MEMORY) { result = VK_ERROR_INITIALIZATION_FAILED; } out: if (is_driver && dxgi_factory != NULL) { dxgi_factory->lpVtbl->Release(dxgi_factory); } return result; } #endif // WIN32 // Combine path elements, separating each element with the platform-specific // directory separator, and save the combined string to a destination buffer, // not exceeding the given length. Path elements are given as variable args, // with a NULL element terminating the list. // // \returns the total length of the combined string, not including an ASCII // NUL termination character. This length may exceed the available storage: // in this case, the written string will be truncated to avoid a buffer // overrun, and the return value will greater than or equal to the storage // size. A NULL argument may be provided as the destination buffer in order // to determine the required string length without actually writing a string. static size_t loader_platform_combine_path(char *dest, size_t len, ...) { size_t required_len = 0; va_list ap; const char *component; va_start(ap, len); while ((component = va_arg(ap, const char *))) { if (required_len > 0) { // This path element is not the first non-empty element; prepend // a directory separator if space allows if (dest && required_len + 1 < len) { (void)snprintf(dest + required_len, len - required_len, "%c", DIRECTORY_SYMBOL); } required_len++; } if (dest && required_len < len) { strncpy(dest + required_len, component, len - required_len); } required_len += strlen(component); } va_end(ap); // strncpy(3) won't add a NUL terminating byte in the event of truncation. if (dest && required_len >= len) { dest[len - 1] = '\0'; } return required_len; } // Given string of three part form "maj.min.pat" convert to a vulkan version number. static uint32_t loader_make_version(char *vers_str) { uint32_t major = 0, minor = 0, patch = 0; char *vers_tok; if (!vers_str) { return 0; } vers_tok = strtok(vers_str, ".\"\n\r"); if (NULL != vers_tok) { major = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { minor = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { patch = (uint16_t)atoi(vers_tok); } } } return VK_MAKE_VERSION(major, minor, patch); } bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2) { return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false; } // Search the given ext_array for an extension matching the given vk_ext_prop bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop, const uint32_t count, const VkExtensionProperties *ext_array) { for (uint32_t i = 0; i < count; i++) { if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i])) return true; } return false; } // Search the given ext_list for an extension matching the given vk_ext_prop bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop, const struct loader_extension_list *ext_list) { for (uint32_t i = 0; i < ext_list->count; i++) { if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop)) return true; } return false; } // Search the given ext_list for a device extension matching the given ext_prop bool has_vk_dev_ext_property(const VkExtensionProperties *ext_prop, const struct loader_device_extension_list *ext_list) { for (uint32_t i = 0; i < ext_list->count; i++) { if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop)) return true; } return false; } // Get the next unused layer property in the list. Init the property to zero. static struct loader_layer_properties *loaderGetNextLayerPropertySlot(const struct loader_instance *inst, struct loader_layer_list *layer_list) { if (layer_list->capacity == 0) { layer_list->list = loader_instance_heap_alloc(inst, sizeof(struct loader_layer_properties) * 64, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (layer_list->list == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetNextLayerPropertySlot: Out of memory can " "not add any layer properties to list"); return NULL; } memset(layer_list->list, 0, sizeof(struct loader_layer_properties) * 64); layer_list->capacity = sizeof(struct loader_layer_properties) * 64; } // Ensure enough room to add an entry if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) > layer_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, layer_list->list, layer_list->capacity, layer_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetNextLayerPropertySlot: realloc failed for layer list"); return NULL; } layer_list->list = new_ptr; memset((uint8_t *)layer_list->list + layer_list->capacity, 0, layer_list->capacity); layer_list->capacity *= 2; } layer_list->count++; return &(layer_list->list[layer_list->count - 1]); } // Search the given layer list for a layer property matching the given layer name static struct loader_layer_properties *loaderFindLayerProperty(const char *name, const struct loader_layer_list *layer_list) { for (uint32_t i = 0; i < layer_list->count; i++) { const VkLayerProperties *item = &layer_list->list[i].info; if (strcmp(name, item->layerName) == 0) return &layer_list->list[i]; } return NULL; } // Search the given layer list for a layer matching the given layer name static bool loaderFindLayerNameInList(const char *name, const struct loader_layer_list *layer_list) { if (NULL == layer_list) { return false; } if (NULL != loaderFindLayerProperty(name, layer_list)) { return true; } return false; } // Search the given meta-layer's component list for a layer matching the given layer name static bool loaderFindLayerNameInMetaLayer(const struct loader_instance *inst, const char *layer_name, struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) { for (uint32_t comp_layer = 0; comp_layer < meta_layer_props->num_component_layers; comp_layer++) { if (!strcmp(meta_layer_props->component_layer_names[comp_layer], layer_name)) { return true; } struct loader_layer_properties *comp_layer_props = loaderFindLayerProperty(meta_layer_props->component_layer_names[comp_layer], layer_list); if (comp_layer_props->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { return loaderFindLayerNameInMetaLayer(inst, layer_name, layer_list, comp_layer_props); } } return false; } // Search the override layer's blacklist for a layer matching the given layer name static bool loaderFindLayerNameInBlacklist(const struct loader_instance *inst, const char *layer_name, struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) { for (uint32_t black_layer = 0; black_layer < meta_layer_props->num_blacklist_layers; ++black_layer) { if (!strcmp(meta_layer_props->blacklist_layer_names[black_layer], layer_name)) { return true; } } return false; } // Remove all layer properties entries from the list void loaderDeleteLayerListAndProperties(const struct loader_instance *inst, struct loader_layer_list *layer_list) { uint32_t i, j, k; struct loader_device_extension_list *dev_ext_list; struct loader_dev_ext_props *ext_props; if (!layer_list) return; for (i = 0; i < layer_list->count; i++) { if (NULL != layer_list->list[i].blacklist_layer_names) { loader_instance_heap_free(inst, layer_list->list[i].blacklist_layer_names); layer_list->list[i].blacklist_layer_names = NULL; } if (NULL != layer_list->list[i].component_layer_names) { loader_instance_heap_free(inst, layer_list->list[i].component_layer_names); layer_list->list[i].component_layer_names = NULL; } if (NULL != layer_list->list[i].override_paths) { loader_instance_heap_free(inst, layer_list->list[i].override_paths); layer_list->list[i].override_paths = NULL; } if (NULL != layer_list->list[i].app_key_paths) { loader_instance_heap_free(inst, layer_list->list[i].app_key_paths); layer_list->list[i].app_key_paths = NULL; } loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_list->list[i].instance_extension_list); dev_ext_list = &layer_list->list[i].device_extension_list; if (dev_ext_list->capacity > 0 && NULL != dev_ext_list->list) { for (j = 0; j < dev_ext_list->count; j++) { ext_props = &dev_ext_list->list[j]; if (ext_props->entrypoint_count > 0) { for (k = 0; k < ext_props->entrypoint_count; k++) { loader_instance_heap_free(inst, ext_props->entrypoints[k]); } loader_instance_heap_free(inst, ext_props->entrypoints); } } } loader_destroy_generic_list(inst, (struct loader_generic_list *)dev_ext_list); } layer_list->count = 0; if (layer_list->capacity > 0) { layer_list->capacity = 0; loader_instance_heap_free(inst, layer_list->list); } } void loaderRemoveLayerInList(const struct loader_instance *inst, struct loader_layer_list *layer_list, uint32_t layer_to_remove) { if (layer_list == NULL || layer_to_remove >= layer_list->count) { return; } if (layer_list->list[layer_to_remove].type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { // Delete the component layers loader_instance_heap_free(inst, layer_list->list[layer_to_remove].component_layer_names); loader_instance_heap_free(inst, layer_list->list[layer_to_remove].override_paths); loader_instance_heap_free(inst, layer_list->list[layer_to_remove].blacklist_layer_names); loader_instance_heap_free(inst, layer_list->list[layer_to_remove].app_key_paths); } // Remove the current invalid meta-layer from the layer list. Use memmove since we are // overlapping the source and destination addresses. memmove(&layer_list->list[layer_to_remove], &layer_list->list[layer_to_remove + 1], sizeof(struct loader_layer_properties) * (layer_list->count - 1 - layer_to_remove)); // Make sure to clear out the removed layer, in case new layers are added in the previous location memset(&layer_list->list[layer_list->count - 1], 0, sizeof(struct loader_layer_properties)); // Decrement the count (because we now have one less) and decrement the loop index since we need to // re-check this index. layer_list->count--; } // Remove all layers in the layer list that are blacklisted by the override layer. // NOTE: This should only be called if an override layer is found and not expired. void loaderRemoveLayersInBlacklist(const struct loader_instance *inst, struct loader_layer_list *layer_list) { struct loader_layer_properties *override_prop = loaderFindLayerProperty(VK_OVERRIDE_LAYER_NAME, layer_list); if (NULL == override_prop) { return; } for (int32_t j = 0; j < (int32_t)(layer_list->count); j++) { struct loader_layer_properties cur_layer_prop = layer_list->list[j]; const char *cur_layer_name = &cur_layer_prop.info.layerName[0]; // Skip the override layer itself. if (!strcmp(VK_OVERRIDE_LAYER_NAME, cur_layer_name)) { continue; } // If found in the override layer's blacklist, remove it if (loaderFindLayerNameInBlacklist(inst, cur_layer_name, layer_list, override_prop)) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "loaderRemoveLayersInBlacklist: Override layer is active and layer %s is in the blacklist" " inside of it. Removing that layer from current layer list.", cur_layer_name); if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { // Delete the component layers loader_instance_heap_free(inst, cur_layer_prop.component_layer_names); loader_instance_heap_free(inst, cur_layer_prop.override_paths); // Never need to free the blacklist, since it can only exist in the override layer } // Remove the current invalid meta-layer from the layer list. Use memmove since we are // overlapping the source and destination addresses. memmove(&layer_list->list[j], &layer_list->list[j + 1], sizeof(struct loader_layer_properties) * (layer_list->count - 1 - j)); // Decrement the count (because we now have one less) and decrement the loop index since we need to // re-check this index. layer_list->count--; j--; // Re-do the query for the override layer override_prop = loaderFindLayerProperty(VK_OVERRIDE_LAYER_NAME, layer_list); } } } // Remove all layers in the layer list that are not found inside any implicit meta-layers. void loaderRemoveLayersNotInImplicitMetaLayers(const struct loader_instance *inst, struct loader_layer_list *layer_list) { int32_t i; int32_t j; int32_t layer_count = (int32_t)(layer_list->count); for (i = 0; i < layer_count; i++) { layer_list->list[i].keep = false; } for (i = 0; i < layer_count; i++) { struct loader_layer_properties cur_layer_prop = layer_list->list[i]; if (0 == (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { cur_layer_prop.keep = true; } else { continue; } if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { for (j = 0; j < layer_count; j++) { struct loader_layer_properties layer_to_check = layer_list->list[j]; if (i == j) { continue; } // For all layers found in this meta layer, we want to keep them as well. if (loaderFindLayerNameInMetaLayer(inst, layer_to_check.info.layerName, layer_list, &cur_layer_prop)) { cur_layer_prop.keep = true; } } } } // Remove any layers we don't want to keep (Don't use layer_count here as we need it to be // dynamically updated if we delete a layer property in the list). for (i = 0; i < (int32_t)(layer_list->count); i++) { struct loader_layer_properties cur_layer_prop = layer_list->list[i]; if (!cur_layer_prop.keep) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "loaderRemoveLayersNotInImplicitMetaLayers : Implicit meta-layers are active, and layer %s is not list" " inside of any. So removing layer from current layer list.", cur_layer_prop.info.layerName); if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { // Delete the component layers loader_instance_heap_free(inst, cur_layer_prop.component_layer_names); loader_instance_heap_free(inst, cur_layer_prop.override_paths); } // Remove the current invalid meta-layer from the layer list. Use memmove since we are // overlapping the source and destination addresses. memmove(&layer_list->list[i], &layer_list->list[i + 1], sizeof(struct loader_layer_properties) * (layer_list->count - 1 - i)); // Decrement the count (because we now have one less) and decrement the loop index since we need to // re-check this index. layer_list->count--; i--; } } } static VkResult loader_add_instance_extensions(const struct loader_instance *inst, const PFN_vkEnumerateInstanceExtensionProperties fp_get_props, const char *lib_name, struct loader_extension_list *ext_list) { uint32_t i, count = 0; VkExtensionProperties *ext_props; VkResult res = VK_SUCCESS; if (!fp_get_props) { // No EnumerateInstanceExtensionProperties defined goto out; } res = fp_get_props(NULL, &count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_instance_extensions: Error getting Instance " "extension count from %s", lib_name); goto out; } if (count == 0) { // No ExtensionProperties to report goto out; } ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties)); if (NULL == ext_props) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = fp_get_props(NULL, &count, ext_props); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_instance_extensions: Error getting Instance " "extensions from %s", lib_name); goto out; } for (i = 0; i < count; i++) { char spec_version[64]; bool ext_unsupported = wsi_unsupported_instance_extension(&ext_props[i]); if (!ext_unsupported) { (void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion), VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion)); loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Instance Extension: %s (%s) version %s", ext_props[i].extensionName, lib_name, spec_version); res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_instance_extensions: Failed to add %s " "to Instance extension list", lib_name); goto out; } } } out: return res; } // Initialize ext_list with the physical device extensions. // The extension properties are passed as inputs in count and ext_props. static VkResult loader_init_device_extensions(const struct loader_instance *inst, struct loader_physical_device_term *phys_dev_term, uint32_t count, VkExtensionProperties *ext_props, struct loader_extension_list *ext_list) { VkResult res; uint32_t i; res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { return res; } for (i = 0; i < count; i++) { char spec_version[64]; (void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion), VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion)); loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Device Extension: %s (%s) version %s", ext_props[i].extensionName, phys_dev_term->this_icd_term->scanned_icd->lib_name, spec_version); res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) return res; } return VK_SUCCESS; } VkResult loader_add_device_extensions(const struct loader_instance *inst, PFN_vkEnumerateDeviceExtensionProperties fpEnumerateDeviceExtensionProperties, VkPhysicalDevice physical_device, const char *lib_name, struct loader_extension_list *ext_list) { uint32_t i, count; VkResult res; VkExtensionProperties *ext_props; res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL); if (res == VK_SUCCESS && count > 0) { ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties)); if (!ext_props) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_device_extensions: Failed to allocate space" " for device extension properties."); return VK_ERROR_OUT_OF_HOST_MEMORY; } res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props); if (res != VK_SUCCESS) { return res; } for (i = 0; i < count; i++) { char spec_version[64]; (void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion), VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion)); loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Device Extension: %s (%s) version %s", ext_props[i].extensionName, lib_name, spec_version); res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]); if (res != VK_SUCCESS) { return res; } } } else { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_device_extensions: Error getting physical " "device extension info count from library %s", lib_name); return res; } return VK_SUCCESS; } VkResult loader_init_generic_list(const struct loader_instance *inst, struct loader_generic_list *list_info, size_t element_size) { size_t capacity = 32 * element_size; list_info->count = 0; list_info->capacity = 0; list_info->list = loader_instance_heap_alloc(inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list_info->list == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_init_generic_list: Failed to allocate space " "for generic list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } memset(list_info->list, 0, capacity); list_info->capacity = capacity; return VK_SUCCESS; } void loader_destroy_generic_list(const struct loader_instance *inst, struct loader_generic_list *list) { loader_instance_heap_free(inst, list->list); list->count = 0; list->capacity = 0; } // Append non-duplicate extension properties defined in props to the given ext_list. // Return - Vk_SUCCESS on success VkResult loader_add_to_ext_list(const struct loader_instance *inst, struct loader_extension_list *ext_list, uint32_t prop_list_count, const VkExtensionProperties *props) { uint32_t i; const VkExtensionProperties *cur_ext; if (ext_list->list == NULL || ext_list->capacity == 0) { VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { return res; } } for (i = 0; i < prop_list_count; i++) { cur_ext = &props[i]; // look for duplicates if (has_vk_extension_property(cur_ext, ext_list)) { continue; } // add to list at end // check for enough capacity if (ext_list->count * sizeof(VkExtensionProperties) >= ext_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (new_ptr == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_to_ext_list: Failed to reallocate " "space for extension list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } ext_list->list = new_ptr; // double capacity ext_list->capacity *= 2; } memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties)); ext_list->count++; } return VK_SUCCESS; } // Append one extension property defined in props with entrypoints defined in entries to the given // ext_list. Do not append if a duplicate. // Return - Vk_SUCCESS on success VkResult loader_add_to_dev_ext_list(const struct loader_instance *inst, struct loader_device_extension_list *ext_list, const VkExtensionProperties *props, uint32_t entry_count, char **entrys) { uint32_t idx; if (ext_list->list == NULL || ext_list->capacity == 0) { VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(struct loader_dev_ext_props)); if (VK_SUCCESS != res) { return res; } } // look for duplicates if (has_vk_dev_ext_property(props, ext_list)) { return VK_SUCCESS; } idx = ext_list->count; // add to list at end // check for enough capacity if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_to_dev_ext_list: Failed to reallocate space for device extension list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } ext_list->list = new_ptr; // double capacity ext_list->capacity *= 2; } memcpy(&ext_list->list[idx].props, props, sizeof(*props)); ext_list->list[idx].entrypoint_count = entry_count; if (entry_count == 0) { ext_list->list[idx].entrypoints = NULL; } else { ext_list->list[idx].entrypoints = loader_instance_heap_alloc(inst, sizeof(char *) * entry_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (ext_list->list[idx].entrypoints == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_to_dev_ext_list: Failed to allocate space " "for device extension entrypoint list in list %d", idx); ext_list->list[idx].entrypoint_count = 0; return VK_ERROR_OUT_OF_HOST_MEMORY; } for (uint32_t i = 0; i < entry_count; i++) { ext_list->list[idx].entrypoints[i] = loader_instance_heap_alloc(inst, strlen(entrys[i]) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (ext_list->list[idx].entrypoints[i] == NULL) { for (uint32_t j = 0; j < i; j++) { loader_instance_heap_free(inst, ext_list->list[idx].entrypoints[j]); } loader_instance_heap_free(inst, ext_list->list[idx].entrypoints); ext_list->list[idx].entrypoint_count = 0; ext_list->list[idx].entrypoints = NULL; loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_to_dev_ext_list: Failed to allocate space " "for device extension entrypoint %d name", i); return VK_ERROR_OUT_OF_HOST_MEMORY; } strcpy(ext_list->list[idx].entrypoints[i], entrys[i]); } } ext_list->count++; return VK_SUCCESS; } // Prototypes needed. bool loaderAddMetaLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list); // Manage lists of VkLayerProperties static bool loaderInitLayerList(const struct loader_instance *inst, struct loader_layer_list *list) { list->capacity = 32 * sizeof(struct loader_layer_properties); list->list = loader_instance_heap_alloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list->list == NULL) { return false; } memset(list->list, 0, list->capacity); list->count = 0; return true; } // Search the given layer list for a list matching the given VkLayerProperties bool loaderListHasLayerProperty(const VkLayerProperties *vk_layer_prop, const struct loader_layer_list *list) { for (uint32_t i = 0; i < list->count; i++) { if (strcmp(vk_layer_prop->layerName, list->list[i].info.layerName) == 0) return true; } return false; } void loaderDestroyLayerList(const struct loader_instance *inst, struct loader_device *device, struct loader_layer_list *layer_list) { if (device) { loader_device_heap_free(device, layer_list->list); } else { loader_instance_heap_free(inst, layer_list->list); } layer_list->count = 0; layer_list->capacity = 0; } // Append non-duplicate layer properties defined in prop_list to the given layer_info list VkResult loaderAddLayerPropertiesToList(const struct loader_instance *inst, struct loader_layer_list *list, uint32_t prop_list_count, const struct loader_layer_properties *props) { uint32_t i; struct loader_layer_properties *layer; if (list->list == NULL || list->capacity == 0) { if (!loaderInitLayerList(inst, list)) { return VK_ERROR_OUT_OF_HOST_MEMORY; } } if (list->list == NULL) return VK_SUCCESS; for (i = 0; i < prop_list_count; i++) { layer = (struct loader_layer_properties *)&props[i]; // Look for duplicates, and skip if (loaderListHasLayerProperty(&layer->info, list)) { continue; } // Check for enough capacity if (((list->count + 1) * sizeof(struct loader_layer_properties)) >= list->capacity) { size_t new_capacity = list->capacity * 2; void *new_ptr = loader_instance_heap_realloc(inst, list->list, list->capacity, new_capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddLayerPropertiesToList: Realloc failed for when attempting to add new layer"); return VK_ERROR_OUT_OF_HOST_MEMORY; } list->list = new_ptr; list->capacity = new_capacity; } memcpy(&list->list[list->count], layer, sizeof(struct loader_layer_properties)); list->count++; } return VK_SUCCESS; } // Search the given search_list for any layers in the props list. Add these to the // output layer_list. Don't add duplicates to the output layer_list. static VkResult loaderAddLayerNamesToList(const struct loader_instance *inst, struct loader_layer_list *output_list, struct loader_layer_list *expanded_output_list, uint32_t name_count, const char *const *names, const struct loader_layer_list *source_list) { struct loader_layer_properties *layer_prop; VkResult err = VK_SUCCESS; for (uint32_t i = 0; i < name_count; i++) { const char *source_name = names[i]; layer_prop = loaderFindLayerProperty(source_name, source_list); if (NULL == layer_prop) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddLayerNamesToList: Unable to find layer %s", source_name); err = VK_ERROR_LAYER_NOT_PRESENT; continue; } // If not a meta-layer, simply add it. if (0 == (layer_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { if (!loaderListHasLayerProperty(&layer_prop->info, output_list)) { loaderAddLayerPropertiesToList(inst, output_list, 1, layer_prop); } if (!loaderListHasLayerProperty(&layer_prop->info, expanded_output_list)) { loaderAddLayerPropertiesToList(inst, expanded_output_list, 1, layer_prop); } } else { if (!loaderListHasLayerProperty(&layer_prop->info, output_list) || !loaderListHasLayerProperty(&layer_prop->info, expanded_output_list)) { loaderAddMetaLayer(inst, layer_prop, output_list, expanded_output_list, source_list); } } } return err; } static bool checkExpiration(const struct loader_instance *inst, const struct loader_layer_properties *prop) { time_t current = time(NULL); struct tm tm_current = *localtime(¤t); struct tm tm_expiration = { .tm_sec = 0, .tm_min = prop->expiration.minute, .tm_hour = prop->expiration.hour, .tm_mday = prop->expiration.day, .tm_mon = prop->expiration.month - 1, .tm_year = prop->expiration.year - 1900, .tm_isdst = tm_current.tm_isdst, // wday and yday are ignored by mktime }; time_t expiration = mktime(&tm_expiration); return current < expiration; } // Determine if the provided implicit layer should be enabled by querying the appropriate environmental variables. // For an implicit layer, at least a disable environment variable is required. bool loaderImplicitLayerIsEnabled(const struct loader_instance *inst, const struct loader_layer_properties *prop) { bool enable = false; char *env_value = NULL; // If no enable_environment variable is specified, this implicit layer is always be enabled by default. if (prop->enable_env_var.name[0] == 0) { enable = true; } else { // Otherwise, only enable this layer if the enable environment variable is defined env_value = loader_getenv(prop->enable_env_var.name, inst); if (env_value && !strcmp(prop->enable_env_var.value, env_value)) { enable = true; } loader_free_getenv(env_value, inst); } // The disable_environment has priority over everything else. If it is defined, the layer is always // disabled. env_value = loader_getenv(prop->disable_env_var.name, inst); if (env_value) { enable = false; } loader_free_getenv(env_value, inst); // If this layer has an expiration, check it to determine if this layer has expired. if (prop->has_expiration) { enable = checkExpiration(inst, prop); } // Enable this layer if it is included in the override layer if (inst != NULL && inst->override_layer_present) { struct loader_layer_properties *override = NULL; for (uint32_t i = 0; i < inst->instance_layer_list.count; ++i) { if (strcmp(inst->instance_layer_list.list[i].info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) { override = &inst->instance_layer_list.list[i]; break; } } if (override != NULL) { for (uint32_t i = 0; i < override->num_component_layers; ++i) { if (strcmp(override->component_layer_names[i], prop->info.layerName) == 0) { enable = true; break; } } } } return enable; } // Check the individual implicit layer for the enable/disable environment variable settings. Only add it after // every check has passed indicating it should be used. static void loaderAddImplicitLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { bool enable = loaderImplicitLayerIsEnabled(inst, prop); // If the implicit layer is supposed to be enable, make sure the layer supports at least the same API version // that the application is asking (i.e. layer's API >= app's API). If it's not, disable this layer. if (enable) { uint16_t layer_api_major_version = VK_VERSION_MAJOR(prop->info.specVersion); uint16_t layer_api_minor_version = VK_VERSION_MINOR(prop->info.specVersion); if (inst->app_api_major_version > layer_api_major_version || (inst->app_api_major_version == layer_api_major_version && inst->app_api_minor_version > layer_api_minor_version)) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loader_add_implicit_layer: Disabling implicit layer %s for using an old API version %d.%d versus " "application requested %d.%d", prop->info.layerName, layer_api_major_version, layer_api_minor_version, inst->app_api_major_version, inst->app_api_minor_version); enable = false; } } if (enable) { if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { if (!loaderListHasLayerProperty(&prop->info, target_list)) { loaderAddLayerPropertiesToList(inst, target_list, 1, prop); } if (NULL != expanded_target_list && !loaderListHasLayerProperty(&prop->info, expanded_target_list)) { loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, prop); } } else { if (!loaderListHasLayerProperty(&prop->info, target_list) || (NULL != expanded_target_list && !loaderListHasLayerProperty(&prop->info, expanded_target_list))) { loaderAddMetaLayer(inst, prop, target_list, expanded_target_list, source_list); } } } } // Add the component layers of a meta-layer to the active list of layers bool loaderAddMetaLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { bool found = true; // If the meta-layer isn't present in the unexpanded list, add it. if (!loaderListHasLayerProperty(&prop->info, target_list)) { loaderAddLayerPropertiesToList(inst, target_list, 1, prop); } // We need to add all the individual component layers for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) { bool found_comp = false; const struct loader_layer_properties *search_prop = loaderFindLayerProperty(prop->component_layer_names[comp_layer], source_list); if (search_prop != NULL) { found_comp = true; // If the component layer is itself an implicit layer, we need to do the implicit layer enable // checks if (0 == (search_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { loaderAddImplicitLayer(inst, search_prop, target_list, expanded_target_list, source_list); } else { if (0 != (search_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { found = loaderAddMetaLayer(inst, search_prop, target_list, expanded_target_list, source_list); } else { // Otherwise, just make sure it hasn't already been added to either list before we add it if (!loaderListHasLayerProperty(&search_prop->info, target_list)) { loaderAddLayerPropertiesToList(inst, target_list, 1, search_prop); } if (NULL != expanded_target_list && !loaderListHasLayerProperty(&search_prop->info, expanded_target_list)) { loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, search_prop); } } } } if (!found_comp) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddMetaLayer: Failed to find layer name %s component layer " "%s to activate", search_prop->info.layerName, prop->component_layer_names[comp_layer]); found = false; } } // Add this layer to the overall target list (not the expanded one) if (found && !loaderListHasLayerProperty(&prop->info, target_list)) { loaderAddLayerPropertiesToList(inst, target_list, 1, prop); } return found; } // Search the source_list for any layer with a name that matches the given name and a type // that matches the given type. Add all matching layers to the target_list. // Do not add if found loader_layer_properties is already on the target_list. VkResult loaderAddLayerNameToList(const struct loader_instance *inst, const char *name, const enum layer_type_flags type_flags, const struct loader_layer_list *source_list, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list) { VkResult res = VK_SUCCESS; bool found = false; for (uint32_t i = 0; i < source_list->count; i++) { struct loader_layer_properties *source_prop = &source_list->list[i]; if (0 == strcmp(source_prop->info.layerName, name) && (source_prop->type_flags & type_flags) == type_flags) { // If not a meta-layer, simply add it. if (0 == (source_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) { if (!loaderListHasLayerProperty(&source_prop->info, target_list) && VK_SUCCESS == loaderAddLayerPropertiesToList(inst, target_list, 1, source_prop)) { found = true; } if (!loaderListHasLayerProperty(&source_prop->info, expanded_target_list) && VK_SUCCESS == loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, source_prop)) { found = true; } } else { found = loaderAddMetaLayer(inst, source_prop, target_list, expanded_target_list, source_list); } } } if (!found) { if (strcmp(name, "VK_LAYER_LUNARG_standard_validation")) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddLayerNameToList: Failed to find layer name %s to activate", name); } else { res = VK_ERROR_LAYER_NOT_PRESENT; loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "Layer VK_LAYER_LUNARG_standard_validation has been changed to VK_LAYER_KHRONOS_validation. Please use the " "new version of the layer."); } } return res; } static VkExtensionProperties *get_extension_property(const char *name, const struct loader_extension_list *list) { for (uint32_t i = 0; i < list->count; i++) { if (strcmp(name, list->list[i].extensionName) == 0) return &list->list[i]; } return NULL; } static VkExtensionProperties *get_dev_extension_property(const char *name, const struct loader_device_extension_list *list) { for (uint32_t i = 0; i < list->count; i++) { if (strcmp(name, list->list[i].props.extensionName) == 0) return &list->list[i].props; } return NULL; } // For Instance extensions implemented within the loader (i.e. DEBUG_REPORT // the extension must provide two entry points for the loader to use: // - "trampoline" entry point - this is the address returned by GetProcAddr // and will always do what's necessary to support a // global call. // - "terminator" function - this function will be put at the end of the // instance chain and will contain the necessary logic // to call / process the extension for the appropriate // ICDs that are available. // There is no generic mechanism for including these functions, the references // must be placed into the appropriate loader entry points. // GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr // requests // loader_coalesce_extensions(void) - add extension records to the list of global // extension available to the app. // instance_disp - add function pointer for terminator function // to this array. // The extension itself should be in a separate file that will be linked directly // with the loader. VkResult loader_get_icd_loader_instance_extensions(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list, struct loader_extension_list *inst_exts) { struct loader_extension_list icd_exts; VkResult res = VK_SUCCESS; char *env_value; bool filter_extensions = true; loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Build ICD instance extension list"); // Check if a user wants to disable the instance extension filtering behavior env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst); if (NULL != env_value && atoi(env_value) != 0) { filter_extensions = false; } loader_free_getenv(env_value, inst); // traverse scanned icd list adding non-duplicate extensions to the list for (uint32_t i = 0; i < icd_tramp_list->count; i++) { res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { goto out; } res = loader_add_instance_extensions(inst, icd_tramp_list->scanned_list[i].EnumerateInstanceExtensionProperties, icd_tramp_list->scanned_list[i].lib_name, &icd_exts); if (VK_SUCCESS == res) { if (filter_extensions) { // Remove any extensions not recognized by the loader for (int32_t j = 0; j < (int32_t)icd_exts.count; j++) { // See if the extension is in the list of supported extensions bool found = false; for (uint32_t k = 0; LOADER_INSTANCE_EXTENSIONS[k] != NULL; k++) { if (strcmp(icd_exts.list[j].extensionName, LOADER_INSTANCE_EXTENSIONS[k]) == 0) { found = true; break; } } // If it isn't in the list, remove it if (!found) { for (uint32_t k = j + 1; k < icd_exts.count; k++) { icd_exts.list[k - 1] = icd_exts.list[k]; } --icd_exts.count; --j; } } } res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count, icd_exts.list); } loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts); if (VK_SUCCESS != res) { goto out; } }; // Traverse loader's extensions, adding non-duplicate extensions to the list debug_utils_AddInstanceExtensions(inst, inst_exts); out: return res; } struct loader_icd_term *loader_get_icd_and_device(const void *device, struct loader_device **found_dev, uint32_t *icd_index) { *found_dev = NULL; for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) { uint32_t index = 0; for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term; icd_term = icd_term->next) { for (struct loader_device *dev = icd_term->logical_device_list; dev; dev = dev->next) // Value comparison of device prevents object wrapping by layers if (loader_get_dispatch(dev->icd_device) == loader_get_dispatch(device) || (dev->chain_device != VK_NULL_HANDLE && loader_get_dispatch(dev->chain_device) == loader_get_dispatch(device))) { *found_dev = dev; if (NULL != icd_index) { *icd_index = index; } return icd_term; } index++; } } return NULL; } void loader_destroy_logical_device(const struct loader_instance *inst, struct loader_device *dev, const VkAllocationCallbacks *pAllocator) { if (pAllocator) { dev->alloc_callbacks = *pAllocator; } if (NULL != dev->expanded_activated_layer_list.list) { loaderDeactivateLayers(inst, dev, &dev->expanded_activated_layer_list); } if (NULL != dev->app_activated_layer_list.list) { loaderDestroyLayerList(inst, dev, &dev->app_activated_layer_list); } loader_device_heap_free(dev, dev); } struct loader_device *loader_create_logical_device(const struct loader_instance *inst, const VkAllocationCallbacks *pAllocator) { struct loader_device *new_dev; #if (DEBUG_DISABLE_APP_ALLOCATORS == 1) { #else if (pAllocator) { new_dev = (struct loader_device *)pAllocator->pfnAllocation(pAllocator->pUserData, sizeof(struct loader_device), sizeof(int *), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); } else { #endif new_dev = (struct loader_device *)malloc(sizeof(struct loader_device)); } if (!new_dev) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_logical_device: Failed to alloc struct " "loader_device"); return NULL; } memset(new_dev, 0, sizeof(struct loader_device)); if (pAllocator) { new_dev->alloc_callbacks = *pAllocator; } return new_dev; } void loader_add_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *dev) { dev->next = icd_term->logical_device_list; icd_term->logical_device_list = dev; } void loader_remove_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *found_dev, const VkAllocationCallbacks *pAllocator) { struct loader_device *dev, *prev_dev; if (!icd_term || !found_dev) return; prev_dev = NULL; dev = icd_term->logical_device_list; while (dev && dev != found_dev) { prev_dev = dev; dev = dev->next; } if (prev_dev) prev_dev->next = found_dev->next; else icd_term->logical_device_list = found_dev->next; loader_destroy_logical_device(inst, found_dev, pAllocator); } static void loader_icd_destroy(struct loader_instance *ptr_inst, struct loader_icd_term *icd_term, const VkAllocationCallbacks *pAllocator) { ptr_inst->total_icd_count--; for (struct loader_device *dev = icd_term->logical_device_list; dev;) { struct loader_device *next_dev = dev->next; loader_destroy_logical_device(ptr_inst, dev, pAllocator); dev = next_dev; } loader_instance_heap_free(ptr_inst, icd_term); } static struct loader_icd_term *loader_icd_create(const struct loader_instance *inst) { struct loader_icd_term *icd_term; icd_term = loader_instance_heap_alloc(inst, sizeof(struct loader_icd_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (!icd_term) { return NULL; } memset(icd_term, 0, sizeof(struct loader_icd_term)); return icd_term; } static struct loader_icd_term *loader_icd_add(struct loader_instance *ptr_inst, const struct loader_scanned_icd *scanned_icd) { struct loader_icd_term *icd_term; icd_term = loader_icd_create(ptr_inst); if (!icd_term) { return NULL; } icd_term->scanned_icd = scanned_icd; icd_term->this_instance = ptr_inst; // Prepend to the list icd_term->next = ptr_inst->icd_terms; ptr_inst->icd_terms = icd_term; ptr_inst->total_icd_count++; return icd_term; } // Determine the ICD interface version to use. // @param icd // @param pVersion Output parameter indicating which version to use or 0 if // the negotiation API is not supported by the ICD // @return bool indicating true if the selected interface version is supported // by the loader, false indicates the version is not supported bool loader_get_icd_interface_version(PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version, uint32_t *pVersion) { if (fp_negotiate_icd_version == NULL) { // ICD does not support the negotiation API, it supports version 0 or 1 // calling code must determine if it is version 0 or 1 *pVersion = 0; } else { // ICD supports the negotiation API, so call it with the loader's // latest version supported *pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION; VkResult result = fp_negotiate_icd_version(pVersion); if (result == VK_ERROR_INCOMPATIBLE_DRIVER) { // ICD no longer supports the loader's latest interface version so // fail loading the ICD return false; } } #if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0 if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) { // Loader no longer supports the ICD's latest interface version so fail // loading the ICD return false; } #endif return true; } void loader_scanned_icd_clear(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) { if (0 != icd_tramp_list->capacity) { for (uint32_t i = 0; i < icd_tramp_list->count; i++) { loader_platform_close_library(icd_tramp_list->scanned_list[i].handle); loader_instance_heap_free(inst, icd_tramp_list->scanned_list[i].lib_name); } loader_instance_heap_free(inst, icd_tramp_list->scanned_list); icd_tramp_list->capacity = 0; icd_tramp_list->count = 0; icd_tramp_list->scanned_list = NULL; } } static VkResult loader_scanned_icd_init(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) { VkResult err = VK_SUCCESS; loader_scanned_icd_clear(inst, icd_tramp_list); icd_tramp_list->capacity = 8 * sizeof(struct loader_scanned_icd); icd_tramp_list->scanned_list = loader_instance_heap_alloc(inst, icd_tramp_list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == icd_tramp_list->scanned_list) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_init: Realloc failed for layer list when " "attempting to add new layer"); err = VK_ERROR_OUT_OF_HOST_MEMORY; } return err; } static VkResult loader_scanned_icd_add(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list, const char *filename, uint32_t api_version) { loader_platform_dl_handle handle; PFN_vkCreateInstance fp_create_inst; PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props; PFN_vkGetInstanceProcAddr fp_get_proc_addr; PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL; PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version; #if defined(VK_USE_PLATFORM_WIN32_KHR) PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL; #endif struct loader_scanned_icd *new_scanned_icd; uint32_t interface_vers; VkResult res = VK_SUCCESS; // TODO implement smarter opening/closing of libraries. For now this // function leaves libraries open and the scanned_icd_clear closes them handle = loader_platform_open_library(filename); if (NULL == handle) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, loader_platform_open_library_error(filename)); goto out; } // Get and settle on an ICD interface version fp_negotiate_icd_version = loader_platform_get_proc_address(handle, "vk_icdNegotiateLoaderICDInterfaceVersion"); if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_vers)) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: ICD %s doesn't support interface" " version compatible with loader, skip this ICD.", filename); goto out; } fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr"); if (NULL == fp_get_proc_addr) { assert(interface_vers == 0); // Use deprecated interface from version 0 fp_get_proc_addr = loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr"); if (NULL == fp_get_proc_addr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Attempt to retrieve either " "\'vkGetInstanceProcAddr\' or " "\'vk_icdGetInstanceProcAddr\' from ICD %s failed.", filename); goto out; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_scanned_icd_add: Using deprecated ICD " "interface of \'vkGetInstanceProcAddr\' instead of " "\'vk_icdGetInstanceProcAddr\' for ICD %s", filename); } fp_create_inst = loader_platform_get_proc_address(handle, "vkCreateInstance"); if (NULL == fp_create_inst) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Failed querying " "\'vkCreateInstance\' via dlsym/loadlibrary for " "ICD %s", filename); goto out; } fp_get_inst_ext_props = loader_platform_get_proc_address(handle, "vkEnumerateInstanceExtensionProperties"); if (NULL == fp_get_inst_ext_props) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Could not get \'vkEnumerate" "InstanceExtensionProperties\' via dlsym/loadlibrary " "for ICD %s", filename); goto out; } } else { // Use newer interface version 1 or later if (interface_vers == 0) { interface_vers = 1; } fp_create_inst = (PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance"); if (NULL == fp_create_inst) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Could not get " "\'vkCreateInstance\' via \'vk_icdGetInstanceProcAddr\'" " for ICD %s", filename); goto out; } fp_get_inst_ext_props = (PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(NULL, "vkEnumerateInstanceExtensionProperties"); if (NULL == fp_get_inst_ext_props) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Could not get \'vkEnumerate" "InstanceExtensionProperties\' via " "\'vk_icdGetInstanceProcAddr\' for ICD %s", filename); goto out; } fp_get_phys_dev_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetPhysicalDeviceProcAddr"); #if defined(VK_USE_PLATFORM_WIN32_KHR) if (interface_vers >= 6) { fp_enum_dxgi_adapter_phys_devs = loader_platform_get_proc_address(handle, "vk_icdEnumerateAdapterPhysicalDevices"); } #endif } // check for enough capacity if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) { void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity, icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { res = VK_ERROR_OUT_OF_HOST_MEMORY; loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Realloc failed on icd library list for ICD %s", filename); goto out; } icd_tramp_list->scanned_list = new_ptr; // double capacity icd_tramp_list->capacity *= 2; } new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]); new_scanned_icd->handle = handle; new_scanned_icd->api_version = api_version; new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr; new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr; new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props; new_scanned_icd->CreateInstance = fp_create_inst; #if defined(VK_USE_PLATFORM_WIN32_KHR) new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs; #endif new_scanned_icd->interface_version = interface_vers; new_scanned_icd->lib_name = (char *)loader_instance_heap_alloc(inst, strlen(filename) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_scanned_icd->lib_name) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Out of memory can't add ICD %s", filename); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(new_scanned_icd->lib_name, filename); icd_tramp_list->count++; out: return res; } static void loader_debug_init(void) { char *env, *orig; if (g_loader_debug > 0) return; g_loader_debug = 0; // Parse comma-separated debug options orig = env = loader_getenv("VK_LOADER_DEBUG", NULL); while (env) { char *p = strchr(env, ','); size_t len; if (p) len = p - env; else len = strlen(env); if (len > 0) { if (strncmp(env, "all", len) == 0) { g_loader_debug = ~0u; g_loader_log_msgs = ~0u; } else if (strncmp(env, "warn", len) == 0) { g_loader_debug |= LOADER_WARN_BIT; g_loader_log_msgs |= VK_DEBUG_REPORT_WARNING_BIT_EXT; } else if (strncmp(env, "info", len) == 0) { g_loader_debug |= LOADER_INFO_BIT; g_loader_log_msgs |= VK_DEBUG_REPORT_INFORMATION_BIT_EXT; } else if (strncmp(env, "perf", len) == 0) { g_loader_debug |= LOADER_PERF_BIT; g_loader_log_msgs |= VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; } else if (strncmp(env, "error", len) == 0) { g_loader_debug |= LOADER_ERROR_BIT; g_loader_log_msgs |= VK_DEBUG_REPORT_ERROR_BIT_EXT; } else if (strncmp(env, "debug", len) == 0) { g_loader_debug |= LOADER_DEBUG_BIT; g_loader_log_msgs |= VK_DEBUG_REPORT_DEBUG_BIT_EXT; } } if (!p) break; env = p + 1; } loader_free_getenv(orig, NULL); } void loader_initialize(void) { // initialize mutexes loader_platform_thread_create_mutex(&loader_lock); loader_platform_thread_create_mutex(&loader_json_lock); loader_platform_thread_create_mutex(&loader_preload_icd_lock); // initialize logging loader_debug_init(); // initial cJSON to use alloc callbacks cJSON_Hooks alloc_fns = { .malloc_fn = loader_instance_tls_heap_alloc, .free_fn = loader_instance_tls_heap_free, }; cJSON_InitHooks(&alloc_fns); #if defined(_WIN32) // This is needed to ensure that newer APIs are available right away // and not after the first call that has been statically linked LoadLibrary("gdi32.dll"); TCHAR systemPath[MAX_PATH] = ""; GetSystemDirectory(systemPath, MAX_PATH); StringCchCat(systemPath, MAX_PATH, TEXT("\\dxgi.dll")); HMODULE dxgi_module = LoadLibrary(systemPath); fpCreateDXGIFactory1 = dxgi_module == NULL ? NULL : (PFN_CreateDXGIFactory1)GetProcAddress(dxgi_module, "CreateDXGIFactory1"); #endif } struct loader_data_files { uint32_t count; uint32_t alloc_count; char **filename_list; }; void loader_release() { // Guarantee release of the preloaded ICD libraries. This may have already been called in vkDestroyInstance. loader_unload_preloaded_icds(); // release mutexes loader_platform_thread_delete_mutex(&loader_lock); loader_platform_thread_delete_mutex(&loader_json_lock); loader_platform_thread_delete_mutex(&loader_preload_icd_lock); } // Preload the ICD libraries that are likely to be needed so we don't repeatedly load/unload them later void loader_preload_icds(void) { loader_platform_thread_lock_mutex(&loader_preload_icd_lock); // Already preloaded, skip loading again. if (scanned_icds.scanned_list != NULL) { loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); return; } memset(&scanned_icds, 0, sizeof(scanned_icds)); VkResult result = loader_icd_scan(NULL, &scanned_icds); if (result != VK_SUCCESS) { loader_scanned_icd_clear(NULL, &scanned_icds); } loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); } // Release the ICD libraries that were preloaded void loader_unload_preloaded_icds(void) { loader_platform_thread_lock_mutex(&loader_preload_icd_lock); loader_scanned_icd_clear(NULL, &scanned_icds); loader_platform_thread_unlock_mutex(&loader_preload_icd_lock); } // Get next file or dirname given a string list or registry key path // // \returns // A pointer to first char in the next path. // The next path (or NULL) in the list is returned in next_path. // Note: input string is modified in some cases. PASS IN A COPY! static char *loader_get_next_path(char *path) { uint32_t len; char *next; if (path == NULL) return NULL; next = strchr(path, PATH_SEPARATOR); if (next == NULL) { len = (uint32_t)strlen(path); next = path + len; } else { *next = '\0'; next++; } return next; } // Given a path which is absolute or relative, expand the path if relative or // leave the path unmodified if absolute. The base path to prepend to relative // paths is given in rel_base. // // @return - A string in out_fullpath of the full absolute path static void loader_expand_path(const char *path, const char *rel_base, size_t out_size, char *out_fullpath) { if (loader_platform_is_path_absolute(path)) { // do not prepend a base to an absolute path rel_base = ""; } loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL); } // Given a filename (file) and a list of paths (dir), try to find an existing // file in the paths. If filename already is a path then no searching in the given paths. // // @return - A string in out_fullpath of either the full path or file. static void loader_get_fullpath(const char *file, const char *dirs, size_t out_size, char *out_fullpath) { if (!loader_platform_is_path(file) && *dirs) { char *dirs_copy, *dir, *next_dir; dirs_copy = loader_stack_alloc(strlen(dirs) + 1); strcpy(dirs_copy, dirs); // find if file exists after prepending paths in given list for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir)); dir = next_dir) { loader_platform_combine_path(out_fullpath, out_size, dir, file, NULL); if (loader_platform_file_exists(out_fullpath)) { return; } } } (void)snprintf(out_fullpath, out_size, "%s", file); } // Read a JSON file into a buffer. // // @return - A pointer to a cJSON object representing the JSON parse tree. // This returned buffer should be freed by caller. static VkResult loader_get_json(const struct loader_instance *inst, const char *filename, cJSON **json) { FILE *file = NULL; char *json_buf; size_t len; VkResult res = VK_SUCCESS; if (NULL == json) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Received invalid JSON file"); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } *json = NULL; file = fopen(filename, "rb"); if (!file) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to open JSON file %s", filename); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } fseek(file, 0, SEEK_END); len = ftell(file); fseek(file, 0, SEEK_SET); json_buf = (char *)loader_stack_alloc(len + 1); if (json_buf == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to allocate space for " "JSON file %s buffer of length %d", filename, len); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } if (fread(json_buf, sizeof(char), len, file) != len) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to read JSON file %s.", filename); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } json_buf[len] = '\0'; // Can't be a valid json if the string is of length zero if (len == 0) { res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // Parse text from file *json = cJSON_Parse(json_buf); if (*json == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to parse JSON file %s, " "this is usually because something ran out of " "memory.", filename); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } out: if (NULL != file) { fclose(file); } return res; } // Verify that all component layers in a meta-layer are valid. static bool verifyMetaLayerComponentLayers(const struct loader_instance *inst, struct loader_layer_properties *prop, struct loader_layer_list *instance_layers) { bool success = true; const uint32_t expected_major = VK_VERSION_MAJOR(prop->info.specVersion); const uint32_t expected_minor = VK_VERSION_MINOR(prop->info.specVersion); for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) { if (!loaderFindLayerNameInList(prop->component_layer_names[comp_layer], instance_layers)) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "verifyMetaLayerComponentLayers: Meta-layer %s can't find component layer %s at index %d." " Skipping this layer.", prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer); } success = false; break; } else { struct loader_layer_properties *comp_prop = loaderFindLayerProperty(prop->component_layer_names[comp_layer], instance_layers); if (comp_prop == NULL) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "verifyMetaLayerComponentLayers: Meta-layer %s can't find property for component layer " "%s at index %d. Skipping this layer.", prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer); } success = false; break; } // Check the version of each layer, they need to at least match MAJOR and MINOR uint32_t cur_major = VK_VERSION_MAJOR(comp_prop->info.specVersion); uint32_t cur_minor = VK_VERSION_MINOR(comp_prop->info.specVersion); if (cur_major != expected_major || cur_minor != expected_minor) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "verifyMetaLayerComponentLayers: Meta-layer uses API version %d.%d, but component " "layer %d uses API version %d.%d. Skipping this layer.", expected_major, expected_minor, comp_layer, cur_major, cur_minor); } success = false; break; } // Make sure the layer isn't using it's own name if (!strcmp(prop->info.layerName, prop->component_layer_names[comp_layer])) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "verifyMetaLayerComponentLayers: Meta-layer %s lists itself in its component layer " "list at index %d. Skipping this layer.", prop->info.layerName, comp_layer); } success = false; break; } if (comp_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "verifyMetaLayerComponentLayers: Adding meta-layer %s which also contains meta-layer %s", prop->info.layerName, comp_prop->info.layerName); } // Make sure if the layer is using a meta-layer in its component list that we also verify that. if (!verifyMetaLayerComponentLayers(inst, comp_prop, instance_layers)) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Meta-layer %s component layer %s can not find all component layers." " Skipping this layer.", prop->info.layerName, prop->component_layer_names[comp_layer]); } success = false; break; } } // Add any instance and device extensions from component layers to this layer // list, so that anyone querying extensions will only need to look at the meta-layer for (uint32_t ext = 0; ext < comp_prop->instance_extension_list.count; ext++) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Meta-layer %s component layer %s adding instance extension %s", prop->info.layerName, prop->component_layer_names[comp_layer], comp_prop->instance_extension_list.list[ext].extensionName); } if (!has_vk_extension_property(&comp_prop->instance_extension_list.list[ext], &prop->instance_extension_list)) { loader_add_to_ext_list(inst, &prop->instance_extension_list, 1, &comp_prop->instance_extension_list.list[ext]); } } for (uint32_t ext = 0; ext < comp_prop->device_extension_list.count; ext++) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Meta-layer %s component layer %s adding device extension %s", prop->info.layerName, prop->component_layer_names[comp_layer], comp_prop->device_extension_list.list[ext].props.extensionName); } if (!has_vk_dev_ext_property(&comp_prop->device_extension_list.list[ext].props, &prop->device_extension_list)) { loader_add_to_dev_ext_list(inst, &prop->device_extension_list, &comp_prop->device_extension_list.list[ext].props, 0, NULL); } } } } if (success) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Meta-layer %s all %d component layers appear to be valid.", prop->info.layerName, prop->num_component_layers); } return success; } // Verify that all meta-layers in a layer list are valid. static void VerifyAllMetaLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers, bool *override_layer_present) { *override_layer_present = false; for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; // If this is a meta-layer, make sure it is valid if ((prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) && !verifyMetaLayerComponentLayers(inst, prop, instance_layers)) { if (NULL != inst) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Removing meta-layer %s from instance layer list since it appears invalid.", prop->info.layerName); } // Delete the component layers loader_instance_heap_free(inst, prop->component_layer_names); if (prop->blacklist_layer_names != NULL) { loader_instance_heap_free(inst, prop->blacklist_layer_names); } if (prop->override_paths != NULL) { loader_instance_heap_free(inst, prop->override_paths); } // Remove the current invalid meta-layer from the layer list. Use memmove since we are // overlapping the source and destination addresses. memmove(&instance_layers->list[i], &instance_layers->list[i + 1], sizeof(struct loader_layer_properties) * (instance_layers->count - 1 - i)); // Decrement the count (because we now have one less) and decrement the loop index since we need to // re-check this index. instance_layers->count--; i--; } else if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop)) { *override_layer_present = true; } } } // If the current working directory matches any app_key_path of the layers, remove all other override layers. // Otherwise if no matching app_key was found, remove all but the global override layer, which has no app_key_path. static void RemoveAllNonValidOverrideLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { if (instance_layers == NULL) { return; } char cur_path[MAX_STRING_SIZE]; char *ret = loader_platform_executable_path(cur_path, sizeof(cur_path)); if (ret == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "RemoveAllNonValidOverrideLayers: Failed to get executable path and name"); return; } // Find out if there is an override layer with same the app_key_path as the path to the current executable. // If more than one is found, remove it and use the first layer // Remove any layers which aren't global and do not have the same app_key_path as the path to the current executable. bool found_active_override_layer = false; int global_layer_index = -1; for (uint32_t i = 0; i < instance_layers->count; i++) { struct loader_layer_properties *props = &instance_layers->list[i]; if (strcmp(props->info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) { if (props->num_app_key_paths > 0) { // not the global layer for (uint32_t j = 0; j < props->num_app_key_paths; j++) { if (strcmp(props->app_key_paths[j], cur_path) == 0) { if (!found_active_override_layer) { found_active_override_layer = true; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "RemoveAllNonValidOverrideLayers: Multiple override layers where the same" "path in app_keys was found. Using the first layer found"); // Remove duplicate active override layers that have the same app_key_path loaderRemoveLayerInList(inst, instance_layers, i); i--; } } } if (!found_active_override_layer) { // Remove non-global override layers that don't have an app_key that matches cur_path loaderRemoveLayerInList(inst, instance_layers, i); i--; } } else { if (global_layer_index == -1) { global_layer_index = i; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "RemoveAllNonValidOverrideLayers: Multiple global override layers " "found. Using the first global layer found"); loaderRemoveLayerInList(inst, instance_layers, i); i--; } } } } // Remove global layer if layer with same the app_key_path as the path to the current executable is found if (found_active_override_layer && global_layer_index >= 0) { loaderRemoveLayerInList(inst, instance_layers, global_layer_index); } // Should be at most 1 override layer in the list now. if (found_active_override_layer) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Using the override layer for app key %s", cur_path); } else if (global_layer_index >= 0) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Using the global override layer"); } } // This structure is used to store the json file version // in a more manageable way. typedef struct { uint16_t major; uint16_t minor; uint16_t patch; } layer_json_version; static inline bool layer_json_supports_pre_instance_tag(const layer_json_version *layer_json) { // Supported versions started in 1.1.2, so anything newer return layer_json->major > 1 || layer_json->minor > 1 || (layer_json->minor == 1 && layer_json->patch > 1); } static VkResult loaderReadLayerJson(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list, cJSON *layer_node, layer_json_version version, cJSON *item, cJSON *disable_environment, bool is_implicit, char *filename) { char *temp; char *name, *type, *library_path_str, *api_version; char *implementation_version, *description; cJSON *ext_item; cJSON *library_path; cJSON *component_layers; cJSON *override_paths; cJSON *blacklisted_layers; VkExtensionProperties ext_prop; VkResult result = VK_ERROR_INITIALIZATION_FAILED; struct loader_layer_properties *props = NULL; int i, j; // The following are required in the "layer" object: // (required) "name" // (required) "type" // (required) "library_path" // (required) "api_version" // (required) "implementation_version" // (required) "description" // (required for implicit layers) "disable_environment" #define GET_JSON_OBJECT(node, var) \ { \ var = cJSON_GetObjectItem(node, #var); \ if (var == NULL) { \ layer_node = layer_node->next; \ loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \ "Didn't find required layer object %s in manifest " \ "JSON file, skipping this layer", \ #var); \ goto out; \ } \ } #define GET_JSON_ITEM(node, var) \ { \ item = cJSON_GetObjectItem(node, #var); \ if (item == NULL) { \ layer_node = layer_node->next; \ loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \ "Didn't find required layer value %s in manifest JSON " \ "file, skipping this layer", \ #var); \ goto out; \ } \ temp = cJSON_Print(item); \ if (temp == NULL) { \ layer_node = layer_node->next; \ loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \ "Problem accessing layer value %s in manifest JSON " \ "file, skipping this layer", \ #var); \ result = VK_ERROR_OUT_OF_HOST_MEMORY; \ goto out; \ } \ temp[strlen(temp) - 1] = '\0'; \ var = loader_stack_alloc(strlen(temp) + 1); \ strcpy(var, &temp[1]); \ cJSON_Free(temp); \ } GET_JSON_ITEM(layer_node, name) GET_JSON_ITEM(layer_node, type) GET_JSON_ITEM(layer_node, api_version) GET_JSON_ITEM(layer_node, implementation_version) GET_JSON_ITEM(layer_node, description) // Add list entry if (!strcmp(type, "DEVICE")) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Device layers are deprecated skipping this layer"); layer_node = layer_node->next; goto out; } // Allow either GLOBAL or INSTANCE type interchangeably to handle // layers that must work with older loaders if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) { if (layer_instance_list == NULL) { layer_node = layer_node->next; goto out; } props = loaderGetNextLayerPropertySlot(inst, layer_instance_list); if (NULL == props) { // Error already triggered in loaderGetNextLayerPropertySlot. result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } props->type_flags = VK_LAYER_TYPE_FLAG_INSTANCE_LAYER; if (!is_implicit) { props->type_flags |= VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER; } } else { layer_node = layer_node->next; goto out; } // Expiration date for override layer. Field starte with JSON file 1.1.2 and // is completely optional. So, no check put in place. if (!strcmp(name, VK_OVERRIDE_LAYER_NAME)) { cJSON *expiration; if (version.major < 1 && version.minor < 1 && version.patch < 2) { loader_log( inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Override layer expiration date not added until version 1.1.2. Please update JSON file version appropriately."); } props->is_override = true; expiration = cJSON_GetObjectItem(layer_node, "expiration_date"); if (NULL != expiration) { char date_copy[32]; uint8_t cur_item = 0; // Get the string for the current item temp = cJSON_Print(expiration); if (temp == NULL) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Problem accessing layer value 'expiration_date' in manifest JSON file, skipping this layer"); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strcpy(date_copy, &temp[1]); cJSON_Free(temp); if (strlen(date_copy) == 16) { char *cur_start = &date_copy[0]; char *next_dash = strchr(date_copy, '-'); if (NULL != next_dash) { while (cur_item < 5 && strlen(cur_start)) { if (next_dash != NULL) { *next_dash = '\0'; } switch (cur_item) { case 0: // Year props->expiration.year = atoi(cur_start); break; case 1: // Month props->expiration.month = atoi(cur_start); break; case 2: // Day props->expiration.day = atoi(cur_start); break; case 3: // Hour props->expiration.hour = atoi(cur_start); break; case 4: // Minute props->expiration.minute = atoi(cur_start); props->has_expiration = true; break; default: // Ignore break; } if (next_dash != NULL) { cur_start = next_dash + 1; next_dash = strchr(cur_start, '-'); } cur_item++; } } } } } // Library path no longer required unless component_layers is also not defined library_path = cJSON_GetObjectItem(layer_node, "library_path"); component_layers = cJSON_GetObjectItem(layer_node, "component_layers"); if (NULL != library_path) { if (NULL != component_layers) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Indicating meta-layer-specific component_layers, but also " "defining layer library path. Both are not compatible, so " "skipping this layer"); goto out; } props->num_component_layers = 0; props->component_layer_names = NULL; temp = cJSON_Print(library_path); if (NULL == temp) { layer_node = layer_node->next; loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Problem accessing layer value library_path in manifest JSON " "file, skipping this layer"); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; library_path_str = loader_stack_alloc(strlen(temp) + 1); strcpy(library_path_str, &temp[1]); cJSON_Free(temp); char *fullpath = props->lib_name; char *rel_base; if (NULL != library_path_str) { if (loader_platform_is_path(library_path_str)) { // A relative or absolute path char *name_copy = loader_stack_alloc(strlen(filename) + 1); strcpy(name_copy, filename); rel_base = loader_platform_dirname(name_copy); loader_expand_path(library_path_str, rel_base, MAX_STRING_SIZE, fullpath); } else { // A filename which is assumed in a system directory #if defined(DEFAULT_VK_LAYERS_PATH) loader_get_fullpath(library_path_str, DEFAULT_VK_LAYERS_PATH, MAX_STRING_SIZE, fullpath); #else loader_get_fullpath(library_path_str, "", MAX_STRING_SIZE, fullpath); #endif } } } else if (NULL != component_layers) { if (version.major == 1 && (version.minor < 1 || version.patch < 1)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Indicating meta-layer-specific component_layers, but using older " "JSON file version."); } int count = cJSON_GetArraySize(component_layers); props->num_component_layers = count; // Allocate buffer for layer names props->component_layer_names = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == props->component_layer_names) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the component layers into the array for (i = 0; i < count; i++) { cJSON *comp_layer = cJSON_GetArrayItem(component_layers, i); if (NULL != comp_layer) { temp = cJSON_Print(comp_layer); if (NULL == temp) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->component_layer_names[i], temp + 1, MAX_STRING_SIZE - 1); props->component_layer_names[i][MAX_STRING_SIZE - 1] = '\0'; cJSON_Free(temp); } } // This is now, officially, a meta-layer props->type_flags |= VK_LAYER_TYPE_FLAG_META_LAYER; loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Encountered meta-layer %s", name); // Make sure we set up other things so we head down the correct branches below library_path_str = NULL; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Layer missing both library_path and component_layers fields. One or the " "other MUST be defined. Skipping this layer"); goto out; } props->num_blacklist_layers = 0; props->blacklist_layer_names = NULL; blacklisted_layers = cJSON_GetObjectItem(layer_node, "blacklisted_layers"); if (blacklisted_layers != NULL) { if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Layer %s contains a blacklist, but a blacklist can only be provided by the override metalayer. " "This blacklist will be ignored.", name); } else { props->num_blacklist_layers = cJSON_GetArraySize(blacklisted_layers); // Allocate the blacklist array props->blacklist_layer_names = loader_instance_heap_alloc( inst, sizeof(char[MAX_STRING_SIZE]) * props->num_blacklist_layers, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (props->blacklist_layer_names == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the blacklisted layers into the array for (i = 0; i < (int)props->num_blacklist_layers; ++i) { cJSON *black_layer = cJSON_GetArrayItem(blacklisted_layers, i); if (black_layer == NULL) { continue; } temp = cJSON_Print(black_layer); if (temp == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->blacklist_layer_names[i], temp + 1, MAX_STRING_SIZE - 1); props->blacklist_layer_names[i][MAX_STRING_SIZE - 1] = '\0'; cJSON_Free(temp); } } } override_paths = cJSON_GetObjectItem(layer_node, "override_paths"); if (NULL != override_paths) { if (version.major == 1 && (version.minor < 1 || version.patch < 1)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Indicating meta-layer-specific override paths, but using older " "JSON file version."); } int count = cJSON_GetArraySize(override_paths); props->num_override_paths = count; // Allocate buffer for override paths props->override_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == props->override_paths) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the override paths into the array for (i = 0; i < count; i++) { cJSON *override_path = cJSON_GetArrayItem(override_paths, i); if (NULL != override_path) { temp = cJSON_Print(override_path); if (NULL == temp) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->override_paths[i], temp + 1, MAX_STRING_SIZE - 1); props->override_paths[i][MAX_STRING_SIZE - 1] = '\0'; cJSON_Free(temp); } } } if (is_implicit) { GET_JSON_OBJECT(layer_node, disable_environment) } #undef GET_JSON_ITEM #undef GET_JSON_OBJECT strncpy(props->info.layerName, name, sizeof(props->info.layerName)); props->info.layerName[sizeof(props->info.layerName) - 1] = '\0'; props->info.specVersion = loader_make_version(api_version); props->info.implementationVersion = atoi(implementation_version); strncpy((char *)props->info.description, description, sizeof(props->info.description)); props->info.description[sizeof(props->info.description) - 1] = '\0'; if (is_implicit) { if (!disable_environment || !disable_environment->child) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Didn't find required layer child value disable_environment" "in manifest JSON file, skipping this layer"); layer_node = layer_node->next; goto out; } strncpy(props->disable_env_var.name, disable_environment->child->string, sizeof(props->disable_env_var.name)); props->disable_env_var.name[sizeof(props->disable_env_var.name) - 1] = '\0'; strncpy(props->disable_env_var.value, disable_environment->child->valuestring, sizeof(props->disable_env_var.value)); props->disable_env_var.value[sizeof(props->disable_env_var.value) - 1] = '\0'; } // Now get all optional items and objects and put in list: // functions // instance_extensions // device_extensions // enable_environment (implicit layers only) #define GET_JSON_OBJECT(node, var) \ { var = cJSON_GetObjectItem(node, #var); } #define GET_JSON_ITEM(node, var) \ { \ item = cJSON_GetObjectItem(node, #var); \ if (item != NULL) { \ temp = cJSON_Print(item); \ if (temp != NULL) { \ temp[strlen(temp) - 1] = '\0'; \ var = loader_stack_alloc(strlen(temp) + 1); \ strcpy(var, &temp[1]); \ cJSON_Free(temp); \ } else { \ result = VK_ERROR_OUT_OF_HOST_MEMORY; \ goto out; \ } \ } \ } cJSON *instance_extensions, *device_extensions, *functions, *enable_environment; cJSON *entrypoints = NULL; char *vkGetInstanceProcAddr = NULL; char *vkGetDeviceProcAddr = NULL; char *vkNegotiateLoaderLayerInterfaceVersion = NULL; char *spec_version = NULL; char **entry_array = NULL; cJSON *app_keys = NULL; // Layer interface functions // vkGetInstanceProcAddr // vkGetDeviceProcAddr // vkNegotiateLoaderLayerInterfaceVersion (starting with JSON file 1.1.0) GET_JSON_OBJECT(layer_node, functions) if (functions != NULL) { if (version.major > 1 || version.minor >= 1) { GET_JSON_ITEM(functions, vkNegotiateLoaderLayerInterfaceVersion) if (vkNegotiateLoaderLayerInterfaceVersion != NULL) strncpy(props->functions.str_negotiate_interface, vkNegotiateLoaderLayerInterfaceVersion, sizeof(props->functions.str_negotiate_interface)); props->functions.str_negotiate_interface[sizeof(props->functions.str_negotiate_interface) - 1] = '\0'; } else { props->functions.str_negotiate_interface[0] = '\0'; } GET_JSON_ITEM(functions, vkGetInstanceProcAddr) GET_JSON_ITEM(functions, vkGetDeviceProcAddr) if (vkGetInstanceProcAddr != NULL) { strncpy(props->functions.str_gipa, vkGetInstanceProcAddr, sizeof(props->functions.str_gipa)); if (version.major > 1 || version.minor >= 1) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Layer \"%s\" using deprecated \'vkGetInstanceProcAddr\' tag which was deprecated starting with JSON " "file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for " "compatibility reasons it may be desirable to continue using the deprecated tag.", name); } } props->functions.str_gipa[sizeof(props->functions.str_gipa) - 1] = '\0'; if (vkGetDeviceProcAddr != NULL) { strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr, sizeof(props->functions.str_gdpa)); if (version.major > 1 || version.minor >= 1) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Layer \"%s\" using deprecated \'vkGetDeviceProcAddr\' tag which was deprecated starting with JSON " "file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for " "compatibility reasons it may be desirable to continue using the deprecated tag.", name); } } props->functions.str_gdpa[sizeof(props->functions.str_gdpa) - 1] = '\0'; } // instance_extensions // array of { // name // spec_version // } GET_JSON_OBJECT(layer_node, instance_extensions) if (instance_extensions != NULL) { int count = cJSON_GetArraySize(instance_extensions); for (i = 0; i < count; i++) { ext_item = cJSON_GetArrayItem(instance_extensions, i); GET_JSON_ITEM(ext_item, name) if (name != NULL) { strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName)); ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0'; } GET_JSON_ITEM(ext_item, spec_version) if (NULL != spec_version) { ext_prop.specVersion = atoi(spec_version); } else { ext_prop.specVersion = 0; } bool ext_unsupported = wsi_unsupported_instance_extension(&ext_prop); if (!ext_unsupported) { loader_add_to_ext_list(inst, &props->instance_extension_list, 1, &ext_prop); } } } // device_extensions // array of { // name // spec_version // entrypoints // } GET_JSON_OBJECT(layer_node, device_extensions) if (device_extensions != NULL) { int count = cJSON_GetArraySize(device_extensions); for (i = 0; i < count; i++) { ext_item = cJSON_GetArrayItem(device_extensions, i); GET_JSON_ITEM(ext_item, name) GET_JSON_ITEM(ext_item, spec_version) if (name != NULL) { strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName)); ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0'; } if (NULL != spec_version) { ext_prop.specVersion = atoi(spec_version); } else { ext_prop.specVersion = 0; } // entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints"); GET_JSON_OBJECT(ext_item, entrypoints) int entry_count; if (entrypoints == NULL) { loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, 0, NULL); continue; } entry_count = cJSON_GetArraySize(entrypoints); if (entry_count) { entry_array = (char **)loader_stack_alloc(sizeof(char *) * entry_count); } for (j = 0; j < entry_count; j++) { ext_item = cJSON_GetArrayItem(entrypoints, j); if (ext_item != NULL) { temp = cJSON_Print(ext_item); if (NULL == temp) { entry_array[j] = NULL; result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; entry_array[j] = loader_stack_alloc(strlen(temp) + 1); strcpy(entry_array[j], &temp[1]); cJSON_Free(temp); } } loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, entry_count, entry_array); } } if (is_implicit) { GET_JSON_OBJECT(layer_node, enable_environment) // enable_environment is optional if (enable_environment) { strncpy(props->enable_env_var.name, enable_environment->child->string, sizeof(props->enable_env_var.name)); props->enable_env_var.name[sizeof(props->enable_env_var.name) - 1] = '\0'; strncpy(props->enable_env_var.value, enable_environment->child->valuestring, sizeof(props->enable_env_var.value)); props->enable_env_var.value[sizeof(props->enable_env_var.value) - 1] = '\0'; } } // Read in the pre-instance stuff cJSON *pre_instance = cJSON_GetObjectItem(layer_node, "pre_instance_functions"); if (pre_instance) { if (!layer_json_supports_pre_instance_tag(&version)) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "Found pre_instance_functions section in layer from \"%s\". " "This section is only valid in manifest version 1.1.2 or later. The section will be ignored", filename); } else if (!is_implicit) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Found pre_instance_functions section in explicit layer from " "\"%s\". This section is only valid in implicit layers. The section will be ignored", filename); } else { cJSON *inst_ext_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceExtensionProperties"); if (inst_ext_json) { char *inst_ext_name = cJSON_Print(inst_ext_json); if (inst_ext_name == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_ext_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_ext_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_extension_properties, inst_ext_name + 1, len); props->pre_instance_functions.enumerate_instance_extension_properties[len] = '\0'; cJSON_Free(inst_ext_name); } cJSON *inst_layer_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceLayerProperties"); if (inst_layer_json) { char *inst_layer_name = cJSON_Print(inst_layer_json); if (inst_layer_name == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_layer_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_layer_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_layer_properties, inst_layer_name + 1, len); props->pre_instance_functions.enumerate_instance_layer_properties[len] = '\0'; cJSON_Free(inst_layer_name); } cJSON *inst_version_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceVersion"); if (inst_version_json) { char *inst_version_name = cJSON_Print(inst_version_json); if (inst_version_json) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } size_t len = strlen(inst_version_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_version_name) - 2; strncpy(props->pre_instance_functions.enumerate_instance_version, inst_version_name + 1, len); props->pre_instance_functions.enumerate_instance_version[len] = '\0'; cJSON_Free(inst_version_name); } } } props->num_app_key_paths = 0; props->app_key_paths = NULL; app_keys = cJSON_GetObjectItem(layer_node, "app_keys"); if (app_keys != NULL) { if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Layer %s contains app_keys, but any app_keys can only be provided by the override metalayer. " "These will be ignored.", name); } else { props->num_app_key_paths = cJSON_GetArraySize(app_keys); // Allocate the blacklist array props->app_key_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * props->num_app_key_paths, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (props->app_key_paths == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the app_key_paths into the array for (i = 0; i < (int)props->num_app_key_paths; ++i) { cJSON *app_key_path = cJSON_GetArrayItem(app_keys, i); if (app_key_path == NULL) { continue; } temp = cJSON_Print(app_key_path); if (temp == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } temp[strlen(temp) - 1] = '\0'; strncpy(props->app_key_paths[i], temp + 1, MAX_STRING_SIZE - 1); props->app_key_paths[i][MAX_STRING_SIZE - 1] = '\0'; cJSON_Free(temp); } } } result = VK_SUCCESS; out: #undef GET_JSON_ITEM #undef GET_JSON_OBJECT if (VK_SUCCESS != result && NULL != props) { if (NULL != props->blacklist_layer_names) { loader_instance_heap_free(inst, props->blacklist_layer_names); } if (NULL != props->component_layer_names) { loader_instance_heap_free(inst, props->component_layer_names); } if (NULL != props->override_paths) { loader_instance_heap_free(inst, props->override_paths); } if (NULL != props->app_key_paths) { loader_instance_heap_free(inst, props->app_key_paths); } props->num_blacklist_layers = 0; props->blacklist_layer_names = NULL; props->num_component_layers = 0; props->component_layer_names = NULL; props->num_override_paths = 0; props->override_paths = NULL; props->num_app_key_paths = 0; props->app_key_paths = NULL; } return result; } static inline bool isValidLayerJsonVersion(const layer_json_version *layer_json) { // Supported versions are: 1.0.0, 1.0.1, and 1.1.0 - 1.1.2. if ((layer_json->major == 1 && layer_json->minor == 1 && layer_json->patch < 3) || (layer_json->major == 1 && layer_json->minor == 0 && layer_json->patch < 2)) { return true; } return false; } static inline bool layerJsonSupportsMultipleLayers(const layer_json_version *layer_json) { // Supported versions started in 1.0.1, so anything newer if ((layer_json->major > 1 || layer_json->minor > 0 || layer_json->patch > 1)) { return true; } return false; } // Given a cJSON struct (json) of the top level JSON object from layer manifest // file, add entry to the layer_list. Fill out the layer_properties in this list // entry from the input cJSON object. // // \returns // void // layer_list has a new entry and initialized accordingly. // If the json input object does not have all the required fields no entry // is added to the list. static VkResult loaderAddLayerProperties(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list, cJSON *json, bool is_implicit, char *filename) { // The following Fields in layer manifest file that are required: // - "file_format_version" // - If more than one "layer" object are used, then the "layers" array is // required VkResult result = VK_ERROR_INITIALIZATION_FAILED; cJSON *item, *layers_node, *layer_node; layer_json_version json_version = {0, 0, 0}; char *vers_tok; cJSON *disable_environment = NULL; // Make sure sure the top level json value is an object if (!json || json->type != 6) { goto out; } item = cJSON_GetObjectItem(json, "file_format_version"); if (item == NULL) { goto out; } char *file_vers = cJSON_PrintUnformatted(item); if (NULL == file_vers) { goto out; } loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Found manifest file %s, version %s", filename, file_vers); // Get the major/minor/and patch as integers for easier comparison vers_tok = strtok(file_vers, ".\"\n\r"); if (NULL != vers_tok) { json_version.major = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { json_version.minor = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { json_version.patch = (uint16_t)atoi(vers_tok); } } } if (!isValidLayerJsonVersion(&json_version)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddLayerProperties: %s invalid layer manifest file version %d.%d.%d. May cause errors.", filename, json_version.major, json_version.minor, json_version.patch); } cJSON_Free(file_vers); // If "layers" is present, read in the array of layer objects layers_node = cJSON_GetObjectItem(json, "layers"); if (layers_node != NULL) { int numItems = cJSON_GetArraySize(layers_node); if (!layerJsonSupportsMultipleLayers(&json_version)) { loader_log( inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddLayerProperties: \'layers\' tag not supported until file version 1.0.1, but %s is reporting version %s", filename, file_vers); } for (int curLayer = 0; curLayer < numItems; curLayer++) { layer_node = cJSON_GetArrayItem(layers_node, curLayer); if (layer_node == NULL) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddLayerProperties: Can not find 'layers' array element %d object in manifest JSON file %s. " "Skipping this file", curLayer, filename); goto out; } result = loaderReadLayerJson(inst, layer_instance_list, layer_node, json_version, item, disable_environment, is_implicit, filename); } } else { // Otherwise, try to read in individual layers layer_node = cJSON_GetObjectItem(json, "layer"); if (layer_node == NULL) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderAddLayerProperties: Can not find 'layer' object in manifest JSON file %s. Skipping this file.", filename); goto out; } // Loop through all "layer" objects in the file to get a count of them // first. uint16_t layer_count = 0; cJSON *tempNode = layer_node; do { tempNode = tempNode->next; layer_count++; } while (tempNode != NULL); // Throw a warning if we encounter multiple "layer" objects in file // versions newer than 1.0.0. Having multiple objects with the same // name at the same level is actually a JSON standard violation. if (layer_count > 1 && layerJsonSupportsMultipleLayers(&json_version)) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddLayerProperties: Multiple 'layer' nodes are deprecated starting in file version \"1.0.1\". " "Please use 'layers' : [] array instead in %s.", filename); } else { do { result = loaderReadLayerJson(inst, layer_instance_list, layer_node, json_version, item, disable_environment, is_implicit, filename); layer_node = layer_node->next; } while (layer_node != NULL); } } out: return result; } static inline size_t DetermineDataFilePathSize(const char *cur_path, size_t relative_path_size) { size_t path_size = 0; if (NULL != cur_path) { // For each folder in cur_path, (detected by finding additional // path separators in the string) we need to add the relative path on // the end. Plus, leave an additional two slots on the end to add an // additional directory slash and path separator if needed path_size += strlen(cur_path) + relative_path_size + 2; for (const char *x = cur_path; *x; ++x) { if (*x == PATH_SEPARATOR) { path_size += relative_path_size + 2; } } } return path_size; } static inline void CopyDataFilePath(const char *cur_path, const char *relative_path, size_t relative_path_size, char **output_path) { if (NULL != cur_path) { uint32_t start = 0; uint32_t stop = 0; char *cur_write = *output_path; while (cur_path[start] != '\0') { while (cur_path[start] == PATH_SEPARATOR) { start++; } stop = start; while (cur_path[stop] != PATH_SEPARATOR && cur_path[stop] != '\0') { stop++; } const size_t s = stop - start; if (s) { memcpy(cur_write, &cur_path[start], s); cur_write += s; // If last symbol written was not a directory symbol, add it. if (*(cur_write - 1) != DIRECTORY_SYMBOL) { *cur_write++ = DIRECTORY_SYMBOL; } if (relative_path_size > 0) { memcpy(cur_write, relative_path, relative_path_size); cur_write += relative_path_size; } *cur_write++ = PATH_SEPARATOR; start = stop; } } *output_path = cur_write; } } // Check to see if there's enough space in the data file list. If not, add some. static inline VkResult CheckAndAdjustDataFileList(const struct loader_instance *inst, struct loader_data_files *out_files) { if (out_files->count == 0) { out_files->filename_list = loader_instance_heap_alloc(inst, 64 * sizeof(char *), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == out_files->filename_list) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "CheckAndAdjustDataFileList: Failed to allocate space for manifest file name list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } out_files->alloc_count = 64; } else if (out_files->count == out_files->alloc_count) { size_t new_size = out_files->alloc_count * sizeof(char *) * 2; void *new_ptr = loader_instance_heap_realloc(inst, out_files->filename_list, out_files->alloc_count * sizeof(char *), new_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "CheckAndAdjustDataFileList: Failed to reallocate space for manifest file name list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } out_files->filename_list = new_ptr; out_files->alloc_count *= 2; } return VK_SUCCESS; } // If the file found is a manifest file name, add it to the out_files manifest list. static VkResult AddIfManifestFile(const struct loader_instance *inst, const char *file_name, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; if (NULL == file_name || NULL == out_files) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "AddIfManfistFile: Received NULL pointer"); vk_result = VK_ERROR_INITIALIZATION_FAILED; goto out; } // Look for files ending with ".json" suffix size_t name_len = strlen(file_name); const char *name_suffix = file_name + name_len - 5; if ((name_len < 5) || 0 != strncmp(name_suffix, ".json", 5)) { // Use incomplete to indicate invalid name, but to keep going. vk_result = VK_INCOMPLETE; goto out; } // Check and allocate space in the manifest list if necessary vk_result = CheckAndAdjustDataFileList(inst, out_files); if (VK_SUCCESS != vk_result) { goto out; } out_files->filename_list[out_files->count] = loader_instance_heap_alloc(inst, strlen(file_name) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (out_files->filename_list[out_files->count] == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "AddIfManfistFile: Failed to allocate space for manifest file %d list", out_files->count); vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(out_files->filename_list[out_files->count++], file_name); out: return vk_result; } static VkResult AddDataFilesInPath(const struct loader_instance *inst, char *search_path, bool is_directory_list, struct loader_data_files *out_files, bool use_first_found_manifest) { VkResult vk_result = VK_SUCCESS; DIR *dir_stream = NULL; struct dirent *dir_entry; char *cur_file; char *next_file; char *name; char full_path[2048]; #ifndef _WIN32 char temp_path[2048]; #endif // Now, parse the paths next_file = search_path; while (NULL != next_file && *next_file != '\0') { name = NULL; cur_file = next_file; next_file = loader_get_next_path(cur_file); // Get the next name in the list and verify it's valid if (is_directory_list) { dir_stream = opendir(cur_file); if (NULL == dir_stream) { continue; } while (1) { dir_entry = readdir(dir_stream); if (NULL == dir_entry) { break; } name = &(dir_entry->d_name[0]); loader_get_fullpath(name, cur_file, sizeof(full_path), full_path); name = full_path; VkResult local_res; local_res = AddIfManifestFile(inst, name, out_files); // Incomplete means this was not a valid data file. if (local_res == VK_INCOMPLETE) { continue; } else if (local_res != VK_SUCCESS) { vk_result = local_res; break; } } closedir(dir_stream); if (vk_result != VK_SUCCESS) { goto out; } } else { #ifdef _WIN32 name = cur_file; #else // Only Linux has relative paths, make a copy of location so it isn't modified size_t str_len; if (NULL != next_file) { str_len = next_file - cur_file + 1; } else { str_len = strlen(cur_file) + 1; } if (str_len > sizeof(temp_path)) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "AddDataFilesInPath: Path to %s too long\n", cur_file); continue; } strcpy(temp_path, cur_file); name = temp_path; #endif loader_get_fullpath(cur_file, name, sizeof(full_path), full_path); name = full_path; VkResult local_res; local_res = AddIfManifestFile(inst, name, out_files); // Incomplete means this was not a valid data file. if (local_res == VK_INCOMPLETE) { continue; } else if (local_res != VK_SUCCESS) { vk_result = local_res; break; } } if (use_first_found_manifest && out_files->count > 0) { break; } } out: return vk_result; } // Look for data files in the provided paths, but first check the environment override to determine if we should use that // instead. static VkResult ReadDataFilesInSearchPaths(const struct loader_instance *inst, enum loader_data_files_type data_file_type, const char *env_override, const char *path_override, const char *relative_location, bool *override_active, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; bool is_directory_list = true; bool is_icd = (data_file_type == LOADER_DATA_FILE_MANIFEST_ICD); char *override_env = NULL; const char *override_path = NULL; size_t search_path_size = 0; char *search_path = NULL; char *cur_path_ptr = NULL; size_t rel_size = 0; bool use_first_found_manifest = false; #ifndef _WIN32 bool xdgconfig_alloc = true; bool xdgdata_alloc = true; #endif #ifndef _WIN32 // Determine how much space is needed to generate the full search path // for the current manifest files. char *xdgconfdirs = loader_secure_getenv("XDG_CONFIG_DIRS", inst); char *xdgdatadirs = loader_secure_getenv("XDG_DATA_DIRS", inst); char *xdgdatahome = loader_secure_getenv("XDG_DATA_HOME", inst); char *home = NULL; char* home_root = NULL; if (xdgconfdirs == NULL) { xdgconfig_alloc = false; } if (xdgdatadirs == NULL) { xdgdata_alloc = false; } if (xdgconfdirs == NULL || xdgconfdirs[0] == '\0') { xdgconfdirs = FALLBACK_CONFIG_DIRS; } if (xdgdatadirs == NULL || xdgdatadirs[0] == '\0') { xdgdatadirs = FALLBACK_DATA_DIRS; } // Only use HOME if XDG_DATA_HOME is not present on the system if (NULL == xdgdatahome) { home = loader_secure_getenv("HOME", inst); if (home != NULL) { home_root = loader_instance_heap_alloc(inst, strlen(home) + 14, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (home_root == NULL) { vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } strcpy(home_root, home); strcat(home_root, "/.local/share"); } } #endif if (path_override != NULL) { override_path = path_override; } else if (env_override != NULL) { #ifndef _WIN32 if (geteuid() != getuid() || getegid() != getgid()) { // Don't allow setuid apps to use the env var: env_override = NULL; } else #endif { override_env = loader_secure_getenv(env_override, inst); // The ICD override is actually a specific list of filenames, not directories if (is_icd && NULL != override_env) { is_directory_list = false; } override_path = override_env; } } // Add two by default for NULL terminator and one path separator on end (just in case) search_path_size = 2; // If there's an override, use that (and the local folder if required) and nothing else if (NULL != override_path) { // Local folder and null terminator search_path_size += strlen(override_path) + 1; } else if (NULL == relative_location) { // If there's no override, and no relative location, bail out. This is usually // the case when we're on Windows and the default path is to use the registry. goto out; } else { // Add the general search folders (with the appropriate relative folder added) rel_size = strlen(relative_location); if (rel_size == 0) { goto out; } else { #if defined(__APPLE__) search_path_size += MAXPATHLEN; #endif #ifndef _WIN32 search_path_size += DetermineDataFilePathSize(xdgconfdirs, rel_size); search_path_size += DetermineDataFilePathSize(xdgdatadirs, rel_size); search_path_size += DetermineDataFilePathSize(SYSCONFDIR, rel_size); #if defined(EXTRASYSCONFDIR) search_path_size += DetermineDataFilePathSize(EXTRASYSCONFDIR, rel_size); #endif if (is_directory_list) { if (!IsHighIntegrity()) { search_path_size += DetermineDataFilePathSize(xdgdatahome, rel_size); search_path_size += DetermineDataFilePathSize(home_root, rel_size); } } #endif } } // Allocate the required space search_path = loader_instance_heap_alloc(inst, search_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == search_path) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "ReadDataFilesInSearchPaths: Failed to allocate space for search path of length %d", (uint32_t)search_path_size); vk_result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } cur_path_ptr = search_path; // Add the remaining paths to the list if (NULL != override_path) { strcpy(cur_path_ptr, override_path); } else { #ifndef _WIN32 if (rel_size > 0) { #if defined(__APPLE__) // Add the bundle's Resources dir to the beginning of the search path. // Looks for manifests in the bundle first, before any system directories. CFBundleRef main_bundle = CFBundleGetMainBundle(); if (NULL != main_bundle) { CFURLRef ref = CFBundleCopyResourcesDirectoryURL(main_bundle); if (NULL != ref) { if (CFURLGetFileSystemRepresentation(ref, TRUE, (UInt8 *)cur_path_ptr, search_path_size)) { cur_path_ptr += strlen(cur_path_ptr); *cur_path_ptr++ = DIRECTORY_SYMBOL; memcpy(cur_path_ptr, relative_location, rel_size); cur_path_ptr += rel_size; *cur_path_ptr++ = PATH_SEPARATOR; // only for ICD manifests if (env_override != NULL && strcmp(VK_ICD_FILENAMES_ENV_VAR, env_override) == 0) { use_first_found_manifest = true; } } CFRelease(ref); } } #endif CopyDataFilePath(xdgconfdirs, relative_location, rel_size, &cur_path_ptr); CopyDataFilePath(SYSCONFDIR, relative_location, rel_size, &cur_path_ptr); #if defined(EXTRASYSCONFDIR) CopyDataFilePath(EXTRASYSCONFDIR, relative_location, rel_size, &cur_path_ptr); #endif CopyDataFilePath(xdgdatadirs, relative_location, rel_size, &cur_path_ptr); if (is_directory_list) { CopyDataFilePath(xdgdatahome, relative_location, rel_size, &cur_path_ptr); CopyDataFilePath(home_root, relative_location, rel_size, &cur_path_ptr); } } // Remove the last path separator --cur_path_ptr; assert(cur_path_ptr - search_path < (ptrdiff_t)search_path_size); *cur_path_ptr = '\0'; #endif } // Remove duplicate paths, or it would result in duplicate extensions, duplicate devices, etc. // This uses minimal memory, but is O(N^2) on the number of paths. Expect only a few paths. char path_sep_str[2] = {PATH_SEPARATOR, '\0'}; size_t search_path_updated_size = strlen(search_path); for (size_t first = 0; first < search_path_updated_size;) { // If this is an empty path, erase it if (search_path[first] == PATH_SEPARATOR) { memmove(&search_path[first], &search_path[first + 1], search_path_updated_size - first + 1); search_path_updated_size -= 1; continue; } size_t first_end = first + 1; first_end += strcspn(&search_path[first_end], path_sep_str); for (size_t second = first_end + 1; second < search_path_updated_size;) { size_t second_end = second + 1; second_end += strcspn(&search_path[second_end], path_sep_str); if (first_end - first == second_end - second && !strncmp(&search_path[first], &search_path[second], second_end - second)) { // Found duplicate. Include PATH_SEPARATOR in second_end, then erase it from search_path. if (search_path[second_end] == PATH_SEPARATOR) { second_end++; } memmove(&search_path[second], &search_path[second_end], search_path_updated_size - second_end + 1); search_path_updated_size -= second_end - second; } else { second = second_end + 1; } } first = first_end + 1; } search_path_size = search_path_updated_size; // Print out the paths being searched if debugging is enabled if (search_path_size > 0) { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "ReadDataFilesInSearchPaths: Searching the following paths for manifest files: %s\n", search_path); } // Now, parse the paths and add any manifest files found in them. vk_result = AddDataFilesInPath(inst, search_path, is_directory_list, out_files, use_first_found_manifest); if (NULL != override_path) { *override_active = true; } else { *override_active = false; } out: if (NULL != override_env) { loader_free_getenv(override_env, inst); } #ifndef _WIN32 if (xdgconfig_alloc) { loader_free_getenv(xdgconfdirs, inst); } if (xdgdata_alloc) { loader_free_getenv(xdgdatadirs, inst); } if (NULL != xdgdatahome) { loader_free_getenv(xdgdatahome, inst); } if (NULL != home) { loader_free_getenv(home, inst); } if (NULL != home_root) { loader_instance_heap_free(inst, home_root); } #endif if (NULL != search_path) { loader_instance_heap_free(inst, search_path); } return vk_result; } #ifdef _WIN32 // Read manifest JSON files using the Windows driver interface static VkResult ReadManifestsFromD3DAdapters(const struct loader_instance *inst, char **reg_data, PDWORD reg_data_size, const wchar_t *value_name) { VkResult result = VK_INCOMPLETE; LoaderEnumAdapters2 adapters = {.adapter_count = 0, .adapters = NULL}; LoaderQueryRegistryInfo *full_info = NULL; size_t full_info_size = 0; char *json_path = NULL; size_t json_path_size = 0; PFN_LoaderEnumAdapters2 fpLoaderEnumAdapters2 = (PFN_LoaderEnumAdapters2)GetProcAddress(GetModuleHandle("gdi32.dll"), "D3DKMTEnumAdapters2"); PFN_LoaderQueryAdapterInfo fpLoaderQueryAdapterInfo = (PFN_LoaderQueryAdapterInfo)GetProcAddress(GetModuleHandle("gdi32.dll"), "D3DKMTQueryAdapterInfo"); if (fpLoaderEnumAdapters2 == NULL || fpLoaderQueryAdapterInfo == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Get all of the adapters NTSTATUS status = fpLoaderEnumAdapters2(&adapters); if (status == STATUS_SUCCESS && adapters.adapter_count > 0) { adapters.adapters = loader_instance_heap_alloc(inst, sizeof(*adapters.adapters) * adapters.adapter_count, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (adapters.adapters == NULL) { goto out; } status = fpLoaderEnumAdapters2(&adapters); } if (status != STATUS_SUCCESS) { goto out; } // If that worked, we need to get the manifest file(s) for each adapter for (ULONG i = 0; i < adapters.adapter_count; ++i) { // The first query should just check if the field exists and how big it is LoaderQueryRegistryInfo filename_info = { .query_type = LOADER_QUERY_REGISTRY_ADAPTER_KEY, .query_flags = { .translate_path = true, }, .value_type = REG_MULTI_SZ, .physical_adapter_index = 0, }; wcsncpy(filename_info.value_name, value_name, sizeof(filename_info.value_name) / sizeof(WCHAR)); LoaderQueryAdapterInfo query_info = { .handle = adapters.adapters[i].handle, .type = LOADER_QUERY_TYPE_REGISTRY, .private_data = &filename_info, .private_data_size = sizeof(filename_info), }; status = fpLoaderQueryAdapterInfo(&query_info); // This error indicates that the type didn't match, so we'll try a REG_SZ if (status != STATUS_SUCCESS) { filename_info.value_type = REG_SZ; status = fpLoaderQueryAdapterInfo(&query_info); } if (status != STATUS_SUCCESS || filename_info.status != LOADER_QUERY_REGISTRY_STATUS_BUFFER_OVERFLOW) { continue; } while (status == STATUS_SUCCESS && ((LoaderQueryRegistryInfo *)query_info.private_data)->status == LOADER_QUERY_REGISTRY_STATUS_BUFFER_OVERFLOW) { bool needs_copy = (full_info == NULL); size_t full_size = sizeof(LoaderQueryRegistryInfo) + filename_info.output_value_size; void *buffer = loader_instance_heap_realloc(inst, full_info, full_info_size, full_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (buffer == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } full_info = buffer; full_info_size = full_size; if (needs_copy) { memcpy(full_info, &filename_info, sizeof(LoaderQueryRegistryInfo)); } query_info.private_data = full_info; query_info.private_data_size = (UINT)full_info_size; status = fpLoaderQueryAdapterInfo(&query_info); } if (status != STATUS_SUCCESS || full_info->status != LOADER_QUERY_REGISTRY_STATUS_SUCCESS) { goto out; } // Convert the wide string to a narrow string void *buffer = loader_instance_heap_realloc(inst, json_path, json_path_size, full_info->output_value_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (buffer == NULL) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } json_path = buffer; json_path_size = full_info->output_value_size; // Iterate over each component string for (const wchar_t *curr_path = full_info->output_string; curr_path[0] != '\0'; curr_path += wcslen(curr_path) + 1) { WideCharToMultiByte(CP_UTF8, 0, curr_path, -1, json_path, (int)json_path_size, NULL, NULL); // Add the string to the output list result = VK_SUCCESS; loaderAddJsonEntry(inst, reg_data, reg_data_size, (LPCTSTR)L"EnumAdapters", REG_SZ, json_path, (DWORD)strlen(json_path) + 1, &result); if (result != VK_SUCCESS) { goto out; } // If this is a string and not a multi-string, we don't want to go throught the loop more than once if (full_info->value_type == REG_SZ) { break; } } } out: if (json_path != NULL) { loader_instance_heap_free(inst, json_path); } if (full_info != NULL) { loader_instance_heap_free(inst, full_info); } if (adapters.adapters != NULL) { loader_instance_heap_free(inst, adapters.adapters); } return result; } // Look for data files in the registry. static VkResult ReadDataFilesInRegistry(const struct loader_instance *inst, enum loader_data_files_type data_file_type, bool warn_if_not_present, char *registry_location, struct loader_data_files *out_files) { VkResult vk_result = VK_SUCCESS; bool is_icd = (data_file_type == LOADER_DATA_FILE_MANIFEST_ICD); char *search_path = NULL; // These calls look at the PNP/Device section of the registry. VkResult regHKR_result = VK_SUCCESS; DWORD reg_size = 4096; if (!strncmp(registry_location, VK_DRIVERS_INFO_REGISTRY_LOC, sizeof(VK_DRIVERS_INFO_REGISTRY_LOC))) { // If we're looking for drivers we need to try enumerating adapters regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, ®_size, LoaderPnpDriverRegistryWide()); if (regHKR_result == VK_INCOMPLETE) { regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, ®_size, LoaderPnpDriverRegistry()); } } else if (!strncmp(registry_location, VK_ELAYERS_INFO_REGISTRY_LOC, sizeof(VK_ELAYERS_INFO_REGISTRY_LOC))) { regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, ®_size, LoaderPnpELayerRegistryWide()); if (regHKR_result == VK_INCOMPLETE) { regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, ®_size, LoaderPnpELayerRegistry()); } } else if (!strncmp(registry_location, VK_ILAYERS_INFO_REGISTRY_LOC, sizeof(VK_ILAYERS_INFO_REGISTRY_LOC))) { regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, ®_size, LoaderPnpILayerRegistryWide()); if (regHKR_result == VK_INCOMPLETE) { regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, ®_size, LoaderPnpILayerRegistry()); } } // This call looks into the Khronos non-device specific section of the registry. bool use_secondary_hive = (data_file_type == LOADER_DATA_FILE_MANIFEST_LAYER) && (!IsHighIntegrity()); VkResult reg_result = loaderGetRegistryFiles(inst, registry_location, use_secondary_hive, &search_path, ®_size); if ((VK_SUCCESS != reg_result && VK_SUCCESS != regHKR_result) || NULL == search_path) { if (data_file_type == LOADER_DATA_FILE_MANIFEST_ICD) { loader_log( inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "ReadDataFilesInRegistry: Registry lookup failed to get ICD manifest files. Possibly missing Vulkan driver?"); if (VK_SUCCESS == reg_result || VK_ERROR_OUT_OF_HOST_MEMORY == reg_result) { vk_result = reg_result; } else { vk_result = regHKR_result; } } else { if (warn_if_not_present) { if (data_file_type == LOADER_DATA_FILE_MANIFEST_LAYER) { // This is only a warning for layers loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "ReadDataFilesInRegistry: Registry lookup failed to get layer manifest files."); } else { // This is only a warning for general data files loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "ReadDataFilesInRegistry: Registry lookup failed to get data files."); } } if (reg_result == VK_ERROR_OUT_OF_HOST_MEMORY) { vk_result = reg_result; } else { // Return success for now since it's not critical for layers vk_result = VK_SUCCESS; } } goto out; } // Now, parse the paths and add any manifest files found in them. vk_result = AddDataFilesInPath(inst, search_path, false, out_files, false); out: if (NULL != search_path) { loader_instance_heap_free(inst, search_path); } return vk_result; } #endif // _WIN32 // Find the Vulkan library manifest files. // // This function scans the "location" or "env_override" directories/files // for a list of JSON manifest files. If env_override is non-NULL // and has a valid value. Then the location is ignored. Otherwise // location is used to look for manifest files. The location // is interpreted as Registry path on Windows and a directory path(s) // on Linux. "home_location" is an additional directory in the users home // directory to look at. It is expanded into the dir path // $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location depending // on environment variables. This "home_location" is only used on Linux. // // \returns // VKResult // A string list of manifest files to be opened in out_files param. // List has a pointer to string for each manifest filename. // When done using the list in out_files, pointers should be freed. // Location or override string lists can be either files or directories as // follows: // | location | override // -------------------------------- // Win ICD | files | files // Win Layer | files | dirs // Linux ICD | dirs | files // Linux Layer| dirs | dirs static VkResult loaderGetDataFiles(const struct loader_instance *inst, enum loader_data_files_type data_file_type, bool warn_if_not_present, const char *env_override, const char *path_override, char *registry_location, const char *relative_location, struct loader_data_files *out_files) { VkResult res = VK_SUCCESS; bool override_active = false; // Free and init the out_files information so there's no false data left from uninitialized variables. if (out_files->filename_list != NULL) { for (uint32_t i = 0; i < out_files->count; i++) { if (NULL != out_files->filename_list[i]) { loader_instance_heap_free(inst, out_files->filename_list[i]); out_files->filename_list[i] = NULL; } } loader_instance_heap_free(inst, out_files->filename_list); } out_files->count = 0; out_files->alloc_count = 0; out_files->filename_list = NULL; res = ReadDataFilesInSearchPaths(inst, data_file_type, env_override, path_override, relative_location, &override_active, out_files); if (VK_SUCCESS != res) { goto out; } #ifdef _WIN32 // Read the registry if the override wasn't active. if (!override_active) { res = ReadDataFilesInRegistry(inst, data_file_type, warn_if_not_present, registry_location, out_files); if (VK_SUCCESS != res) { goto out; } } #endif out: if (VK_SUCCESS != res && NULL != out_files->filename_list) { for (uint32_t remove = 0; remove < out_files->count; remove++) { loader_instance_heap_free(inst, out_files->filename_list[remove]); } loader_instance_heap_free(inst, out_files->filename_list); out_files->count = 0; out_files->alloc_count = 0; out_files->filename_list = NULL; } return res; } void loader_init_icd_lib_list() {} void loader_destroy_icd_lib_list() {} // Try to find the Vulkan ICD driver(s). // // This function scans the default system loader path(s) or path // specified by the \c VK_ICD_FILENAMES environment variable in // order to find loadable VK ICDs manifest files. From these // manifest files it finds the ICD libraries. // // \returns // Vulkan result // (on result == VK_SUCCESS) a list of icds that were discovered VkResult loader_icd_scan(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) { char *file_str; uint16_t file_major_vers = 0; uint16_t file_minor_vers = 0; uint16_t file_patch_vers = 0; char *vers_tok; struct loader_data_files manifest_files; VkResult res = VK_SUCCESS; bool lockedMutex = false; cJSON *json = NULL; uint32_t num_good_icds = 0; memset(&manifest_files, 0, sizeof(struct loader_data_files)); res = loader_scanned_icd_init(inst, icd_tramp_list); if (VK_SUCCESS != res) { goto out; } // Get a list of manifest files for ICDs res = loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_ICD, true, VK_ICD_FILENAMES_ENV_VAR, NULL, VK_DRIVERS_INFO_REGISTRY_LOC, VK_DRIVERS_INFO_RELATIVE_DIR, &manifest_files); if (VK_SUCCESS != res || manifest_files.count == 0) { goto out; } loader_platform_thread_lock_mutex(&loader_json_lock); lockedMutex = true; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } VkResult temp_res = loader_get_json(inst, file_str, &json); if (NULL == json || temp_res != VK_SUCCESS) { if (NULL != json) { cJSON_Delete(json); json = NULL; } // If we haven't already found an ICD, copy this result to // the returned result. if (num_good_icds == 0) { res = temp_res; } if (temp_res == VK_ERROR_OUT_OF_HOST_MEMORY) { res = VK_ERROR_OUT_OF_HOST_MEMORY; break; } else { continue; } } res = temp_res; cJSON *item, *itemICD; item = cJSON_GetObjectItem(json, "file_format_version"); if (item == NULL) { if (num_good_icds == 0) { res = VK_ERROR_INITIALIZATION_FAILED; } loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: ICD JSON %s does not have a" " \'file_format_version\' field. Skipping ICD JSON.", file_str); cJSON_Delete(json); json = NULL; continue; } char *file_vers = cJSON_Print(item); if (NULL == file_vers) { // Only reason the print can fail is if there was an allocation issue if (num_good_icds == 0) { res = VK_ERROR_OUT_OF_HOST_MEMORY; } loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Failed retrieving ICD JSON %s" " \'file_format_version\' field. Skipping ICD JSON", file_str); cJSON_Delete(json); json = NULL; continue; } loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Found ICD manifest file %s, version %s", file_str, file_vers); // Get the major/minor/and patch as integers for easier comparison vers_tok = strtok(file_vers, ".\"\n\r"); if (NULL != vers_tok) { file_major_vers = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { file_minor_vers = (uint16_t)atoi(vers_tok); vers_tok = strtok(NULL, ".\"\n\r"); if (NULL != vers_tok) { file_patch_vers = (uint16_t)atoi(vers_tok); } } } if (file_major_vers != 1 || file_minor_vers != 0 || file_patch_vers > 1) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Unexpected manifest file version " "(expected 1.0.0 or 1.0.1), may cause errors"); } cJSON_Free(file_vers); itemICD = cJSON_GetObjectItem(json, "ICD"); if (itemICD != NULL) { item = cJSON_GetObjectItem(itemICD, "library_path"); if (item != NULL) { char *temp = cJSON_Print(item); if (!temp || strlen(temp) == 0) { if (num_good_icds == 0) { res = VK_ERROR_OUT_OF_HOST_MEMORY; } loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Failed retrieving ICD JSON %s" " \'library_path\' field. Skipping ICD JSON.", file_str); cJSON_Free(temp); cJSON_Delete(json); json = NULL; continue; } // strip out extra quotes temp[strlen(temp) - 1] = '\0'; char *library_path = loader_stack_alloc(strlen(temp) + 1); if (NULL == library_path) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_icd_scan: Failed to allocate space for " "ICD JSON %s \'library_path\' value. Skipping " "ICD JSON.", file_str); res = VK_ERROR_OUT_OF_HOST_MEMORY; cJSON_Free(temp); cJSON_Delete(json); json = NULL; goto out; } strcpy(library_path, &temp[1]); cJSON_Free(temp); if (strlen(library_path) == 0) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: ICD JSON %s \'library_path\'" " field is empty. Skipping ICD JSON.", file_str); cJSON_Delete(json); json = NULL; continue; } char fullpath[MAX_STRING_SIZE]; // Print out the paths being searched if debugging is enabled loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Searching for ICD drivers named %s", library_path); if (loader_platform_is_path(library_path)) { // a relative or absolute path char *name_copy = loader_stack_alloc(strlen(file_str) + 1); char *rel_base; strcpy(name_copy, file_str); rel_base = loader_platform_dirname(name_copy); loader_expand_path(library_path, rel_base, sizeof(fullpath), fullpath); } else { // a filename which is assumed in a system directory #if defined(DEFAULT_VK_DRIVERS_PATH) loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH, sizeof(fullpath), fullpath); #else loader_get_fullpath(library_path, "", sizeof(fullpath), fullpath); #endif } uint32_t vers = 0; item = cJSON_GetObjectItem(itemICD, "api_version"); if (item != NULL) { temp = cJSON_Print(item); if (NULL == temp) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Failed retrieving ICD JSON %s" " \'api_version\' field. Skipping ICD JSON.", file_str); // Only reason the print can fail is if there was an // allocation issue if (num_good_icds == 0) { res = VK_ERROR_OUT_OF_HOST_MEMORY; } cJSON_Free(temp); cJSON_Delete(json); json = NULL; continue; } vers = loader_make_version(temp); cJSON_Free(temp); } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: ICD JSON %s does not have an" " \'api_version\' field.", file_str); } res = loader_scanned_icd_add(inst, icd_tramp_list, fullpath, vers); if (VK_SUCCESS != res) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_icd_scan: Failed to add ICD JSON %s. " " Skipping ICD JSON.", fullpath); cJSON_Delete(json); json = NULL; continue; } num_good_icds++; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Failed to find \'library_path\' " "object in ICD JSON file %s. Skipping ICD JSON.", file_str); } } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_icd_scan: Can not find \'ICD\' object in ICD JSON " "file %s. Skipping ICD JSON", file_str); } cJSON_Delete(json); json = NULL; } out: if (NULL != json) { cJSON_Delete(json); } if (NULL != manifest_files.filename_list) { for (uint32_t i = 0; i < manifest_files.count; i++) { if (NULL != manifest_files.filename_list[i]) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } } loader_instance_heap_free(inst, manifest_files.filename_list); } if (lockedMutex) { loader_platform_thread_unlock_mutex(&loader_json_lock); } return res; } void loaderScanForLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { char *file_str; struct loader_data_files manifest_files; cJSON *json; bool override_layer_valid = false; char *override_paths = NULL; uint32_t total_count = 0; memset(&manifest_files, 0, sizeof(struct loader_data_files)); // Cleanup any previously scanned libraries loaderDeleteLayerListAndProperties(inst, instance_layers); loader_platform_thread_lock_mutex(&loader_json_lock); // Get a list of manifest files for any implicit layers // Pass NULL for environment variable override - implicit layers are not overridden by LAYERS_PATH_ENV if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, false, NULL, NULL, VK_ILAYERS_INFO_REGISTRY_LOC, VK_ILAYERS_INFO_RELATIVE_DIR, &manifest_files)) { goto out; } if (manifest_files.count != 0) { total_count += manifest_files.count; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // Parse file into JSON struct VkResult res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } VkResult local_res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str); cJSON_Delete(json); // If the error is anything other than out of memory we still want to try to load the other layers if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) { goto out; } } } // Remove any extraneous override layers. RemoveAllNonValidOverrideLayers(inst, instance_layers); // Check to see if the override layer is present, and use it's override paths. for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop) && prop->num_override_paths > 0) { char *cur_write_ptr = NULL; size_t override_path_size = 0; for (uint32_t j = 0; j < prop->num_override_paths; j++) { override_path_size += DetermineDataFilePathSize(prop->override_paths[j], 0); } override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (override_paths == NULL) { goto out; } cur_write_ptr = &override_paths[0]; for (uint32_t j = 0; j < prop->num_override_paths; j++) { CopyDataFilePath(prop->override_paths[j], NULL, 0, &cur_write_ptr); } // Remove the last path separator --cur_write_ptr; assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size); *cur_write_ptr = '\0'; loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderScanForLayers: Override layer has override paths set to %s", override_paths); } } // Get a list of manifest files for explicit layers if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, true, VK_LAYER_PATH_ENV_VAR, override_paths, VK_ELAYERS_INFO_REGISTRY_LOC, VK_ELAYERS_INFO_RELATIVE_DIR, &manifest_files)) { goto out; } // Make sure we have at least one layer, if not, go ahead and return if (manifest_files.count == 0 && total_count == 0) { goto out; } else { total_count += manifest_files.count; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // Parse file into JSON struct VkResult res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } VkResult local_res = loaderAddLayerProperties(inst, instance_layers, json, false, file_str); cJSON_Delete(json); // If the error is anything other than out of memory we still want to try to load the other layers if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) { goto out; } } } // Verify any meta-layers in the list are valid and all the component layers are // actually present in the available layer list VerifyAllMetaLayers(inst, instance_layers, &override_layer_valid); if (override_layer_valid) { loaderRemoveLayersInBlacklist(inst, instance_layers); if (NULL != inst) { inst->override_layer_present = true; } } out: if (NULL != override_paths) { loader_instance_heap_free(inst, override_paths); } if (NULL != manifest_files.filename_list) { for (uint32_t i = 0; i < manifest_files.count; i++) { if (NULL != manifest_files.filename_list[i]) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } } loader_instance_heap_free(inst, manifest_files.filename_list); } loader_platform_thread_unlock_mutex(&loader_json_lock); } void loaderScanForImplicitLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) { char *file_str; struct loader_data_files manifest_files; cJSON *json; bool override_layer_valid = false; char *override_paths = NULL; bool implicit_metalayer_present = false; bool have_json_lock = false; // Before we begin anything, init manifest_files to avoid a delete of garbage memory if // a failure occurs before allocating the manifest filename_list. memset(&manifest_files, 0, sizeof(struct loader_data_files)); // Pass NULL for environment variable override - implicit layers are not overridden by LAYERS_PATH_ENV VkResult res = loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, false, NULL, NULL, VK_ILAYERS_INFO_REGISTRY_LOC, VK_ILAYERS_INFO_RELATIVE_DIR, &manifest_files); if (VK_SUCCESS != res || manifest_files.count == 0) { goto out; } // Cleanup any previously scanned libraries loaderDeleteLayerListAndProperties(inst, instance_layers); loader_platform_thread_lock_mutex(&loader_json_lock); have_json_lock = true; for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // parse file into JSON struct res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str); loader_instance_heap_free(inst, file_str); manifest_files.filename_list[i] = NULL; cJSON_Delete(json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } } // Remove any extraneous override layers. RemoveAllNonValidOverrideLayers(inst, instance_layers); // Check to see if either the override layer is present, or another implicit meta-layer. // Each of these may require explicit layers to be enabled at this time. for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) { struct loader_layer_properties *prop = &instance_layers->list[i]; if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop)) { override_layer_valid = true; if (prop->num_override_paths > 0) { char *cur_write_ptr = NULL; size_t override_path_size = 0; for (uint32_t j = 0; j < prop->num_override_paths; j++) { override_path_size += DetermineDataFilePathSize(prop->override_paths[j], 0); } override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (override_paths == NULL) { goto out; } cur_write_ptr = &override_paths[0]; for (uint32_t j = 0; j < prop->num_override_paths; j++) { CopyDataFilePath(prop->override_paths[j], NULL, 0, &cur_write_ptr); } // Remove the last path separator --cur_write_ptr; assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size); *cur_write_ptr = '\0'; loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderScanForImplicitLayers: Override layer has override paths set to %s", override_paths); } } else if (!prop->is_override && prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) { implicit_metalayer_present = true; } } // If either the override layer or an implicit meta-layer are present, we need to add // explicit layer info as well. Not to worry, though, all explicit layers not included // in the override layer will be removed below in loaderRemoveLayersInBlacklist(). if (override_layer_valid || implicit_metalayer_present) { if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, true, VK_LAYER_PATH_ENV_VAR, override_paths, VK_ELAYERS_INFO_REGISTRY_LOC, VK_ELAYERS_INFO_RELATIVE_DIR, &manifest_files)) { goto out; } for (uint32_t i = 0; i < manifest_files.count; i++) { file_str = manifest_files.filename_list[i]; if (file_str == NULL) { continue; } // parse file into JSON struct res = loader_get_json(inst, file_str, &json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } else if (VK_SUCCESS != res || NULL == json) { continue; } res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str); loader_instance_heap_free(inst, file_str); manifest_files.filename_list[i] = NULL; cJSON_Delete(json); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { goto out; } } } // Verify any meta-layers in the list are valid and all the component layers are // actually present in the available layer list VerifyAllMetaLayers(inst, instance_layers, &override_layer_valid); if (override_layer_valid || implicit_metalayer_present) { loaderRemoveLayersNotInImplicitMetaLayers(inst, instance_layers); if (override_layer_valid && inst != NULL) { inst->override_layer_present = true; } } out: if (NULL != override_paths) { loader_instance_heap_free(inst, override_paths); } for (uint32_t i = 0; i < manifest_files.count; i++) { if (NULL != manifest_files.filename_list[i]) { loader_instance_heap_free(inst, manifest_files.filename_list[i]); } } if (NULL != manifest_files.filename_list) { loader_instance_heap_free(inst, manifest_files.filename_list); } if (have_json_lock) { loader_platform_thread_unlock_mutex(&loader_json_lock); } } static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_internal(VkInstance inst, const char *pName) { // inst is not wrapped if (inst == VK_NULL_HANDLE) { return NULL; } VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst; void *addr; if (disp_table == NULL) return NULL; bool found_name; addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name); if (found_name) { return addr; } if (loader_phys_dev_ext_gpa(loader_get_instance(inst), pName, true, NULL, &addr)) return addr; // Don't call down the chain, this would be an infinite loop loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpdpa_instance_internal() unrecognized name %s", pName); return NULL; } static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_terminator(VkInstance inst, const char *pName) { // inst is not wrapped if (inst == VK_NULL_HANDLE) { return NULL; } VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst; void *addr; if (disp_table == NULL) return NULL; bool found_name; addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name); if (found_name) { return addr; } // Get the terminator, but don't perform checking since it should already // have been setup if we get here. if (loader_phys_dev_ext_gpa(loader_get_instance(inst), pName, false, NULL, &addr)) { return addr; } // Don't call down the chain, this would be an infinite loop loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpdpa_instance_terminator() unrecognized name %s", pName); return NULL; } static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_internal(VkInstance inst, const char *pName) { if (!strcmp(pName, "vkGetInstanceProcAddr")) { return (PFN_vkVoidFunction)loader_gpa_instance_internal; } if (!strcmp(pName, "vk_layerGetPhysicalDeviceProcAddr")) { return (PFN_vkVoidFunction)loader_gpdpa_instance_terminator; } if (!strcmp(pName, "vkCreateInstance")) { return (PFN_vkVoidFunction)terminator_CreateInstance; } if (!strcmp(pName, "vkCreateDevice")) { return (PFN_vkVoidFunction)terminator_CreateDevice; } // The VK_EXT_debug_utils functions need a special case here so the terminators can still be found from vkGetInstanceProcAddr if (!strcmp(pName, "vkSetDebugUtilsObjectNameEXT")) { return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectNameEXT; } if (!strcmp(pName, "vkSetDebugUtilsObjectTagEXT")) { return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectTagEXT; } if (!strcmp(pName, "vkQueueBeginDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueBeginDebugUtilsLabelEXT; } if (!strcmp(pName, "vkQueueEndDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueEndDebugUtilsLabelEXT; } if (!strcmp(pName, "vkQueueInsertDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_QueueInsertDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdBeginDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdBeginDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdEndDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdEndDebugUtilsLabelEXT; } if (!strcmp(pName, "vkCmdInsertDebugUtilsLabelEXT")) { return (PFN_vkVoidFunction)terminator_CmdInsertDebugUtilsLabelEXT; } // inst is not wrapped if (inst == VK_NULL_HANDLE) { return NULL; } VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst; void *addr; if (disp_table == NULL) return NULL; bool found_name; addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name); if (found_name) { return addr; } // Don't call down the chain, this would be an infinite loop loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpa_instance_internal() unrecognized name %s", pName); return NULL; } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_device_internal(VkDevice device, const char *pName) { struct loader_device *dev; struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); // Return this function if a layer above here is asking for the vkGetDeviceProcAddr. // This is so we can properly intercept any device commands needing a terminator. if (!strcmp(pName, "vkGetDeviceProcAddr")) { return (PFN_vkVoidFunction)loader_gpa_device_internal; } // NOTE: Device Funcs needing Trampoline/Terminator. // Overrides for device functions needing a trampoline and // a terminator because certain device entry-points still need to go // through a terminator before hitting the ICD. This could be for // several reasons, but the main one is currently unwrapping an // object before passing the appropriate info along to the ICD. // This is why we also have to override the direct ICD call to // vkGetDeviceProcAddr to intercept those calls. PFN_vkVoidFunction addr = get_extension_device_proc_terminator(dev, pName); if (NULL != addr) { return addr; } return icd_term->dispatch.GetDeviceProcAddr(device, pName); } // Initialize device_ext dispatch table entry as follows: // If dev == NULL find all logical devices created within this instance and // init the entry (given by idx) in the ext dispatch table. // If dev != NULL only initialize the entry in the given dev's dispatch table. // The initialization value is gotten by calling down the device chain with // GDPA. // If GDPA returns NULL then don't initialize the dispatch table entry. static void loader_init_dispatch_dev_ext_entry(struct loader_instance *inst, struct loader_device *dev, uint32_t idx, const char *funcName) { void *gdpa_value; if (dev != NULL) { gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(dev->chain_device, funcName); if (gdpa_value != NULL) dev->loader_dispatch.ext_dispatch.dev_ext[idx] = (PFN_vkDevExt)gdpa_value; } else { for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term != NULL; icd_term = icd_term->next) { struct loader_device *ldev = icd_term->logical_device_list; while (ldev) { gdpa_value = ldev->loader_dispatch.core_dispatch.GetDeviceProcAddr(ldev->chain_device, funcName); if (gdpa_value != NULL) ldev->loader_dispatch.ext_dispatch.dev_ext[idx] = (PFN_vkDevExt)gdpa_value; ldev = ldev->next; } } } } // Find all dev extension in the hash table and initialize the dispatch table // for dev for each of those extension entrypoints found in hash table. void loader_init_dispatch_dev_ext(struct loader_instance *inst, struct loader_device *dev) { for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) { if (inst->dev_ext_disp_hash[i].func_name != NULL) loader_init_dispatch_dev_ext_entry(inst, dev, i, inst->dev_ext_disp_hash[i].func_name); } } static bool loader_check_icds_for_dev_ext_address(struct loader_instance *inst, const char *funcName) { struct loader_icd_term *icd_term; icd_term = inst->icd_terms; while (NULL != icd_term) { if (icd_term->scanned_icd->GetInstanceProcAddr(icd_term->instance, funcName)) // this icd supports funcName return true; icd_term = icd_term->next; } return false; } static bool loader_check_layer_list_for_dev_ext_address(const struct loader_layer_list *const layers, const char *funcName) { // Iterate over the layers. for (uint32_t layer = 0; layer < layers->count; ++layer) { // Iterate over the extensions. const struct loader_device_extension_list *const extensions = &(layers->list[layer].device_extension_list); for (uint32_t extension = 0; extension < extensions->count; ++extension) { // Iterate over the entry points. const struct loader_dev_ext_props *const property = &(extensions->list[extension]); for (uint32_t entry = 0; entry < property->entrypoint_count; ++entry) { if (strcmp(property->entrypoints[entry], funcName) == 0) { return true; } } } } return false; } static void loader_free_dev_ext_table(struct loader_instance *inst) { for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) { loader_instance_heap_free(inst, inst->dev_ext_disp_hash[i].func_name); loader_instance_heap_free(inst, inst->dev_ext_disp_hash[i].list.index); } memset(inst->dev_ext_disp_hash, 0, sizeof(inst->dev_ext_disp_hash)); } static bool loader_add_dev_ext_table(struct loader_instance *inst, uint32_t *ptr_idx, const char *funcName) { uint32_t i; uint32_t idx = *ptr_idx; struct loader_dispatch_hash_list *list = &inst->dev_ext_disp_hash[idx].list; if (!inst->dev_ext_disp_hash[idx].func_name) { // no entry here at this idx, so use it assert(list->capacity == 0); inst->dev_ext_disp_hash[idx].func_name = (char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (inst->dev_ext_disp_hash[idx].func_name == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table: Failed to allocate memory " "for func_name %s", funcName); return false; } strncpy(inst->dev_ext_disp_hash[idx].func_name, funcName, strlen(funcName) + 1); return true; } // check for enough capacity if (list->capacity == 0) { list->index = loader_instance_heap_alloc(inst, 8 * sizeof(*(list->index)), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list->index == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table: Failed to allocate memory for list index of function %s", funcName); return false; } list->capacity = 8 * sizeof(*(list->index)); } else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) { void *new_ptr = loader_instance_heap_realloc(inst, list->index, list->capacity, list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table: Failed to reallocate memory for list index of function %s", funcName); return false; } list->index = new_ptr; list->capacity *= 2; } // find an unused index in the hash table and use it i = (idx + 1) % MAX_NUM_UNKNOWN_EXTS; do { if (!inst->dev_ext_disp_hash[i].func_name) { assert(inst->dev_ext_disp_hash[i].list.capacity == 0); inst->dev_ext_disp_hash[i].func_name = (char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (inst->dev_ext_disp_hash[i].func_name == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table: Failed to allocate memory " "for func_name %s", funcName); return false; } strncpy(inst->dev_ext_disp_hash[i].func_name, funcName, strlen(funcName) + 1); list->index[list->count] = i; list->count++; *ptr_idx = i; return true; } i = (i + 1) % MAX_NUM_UNKNOWN_EXTS; } while (i != idx); loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table: Could not insert into hash table; is " "it full?"); return false; } static bool loader_name_in_dev_ext_table(struct loader_instance *inst, uint32_t *idx, const char *funcName) { uint32_t alt_idx; if (inst->dev_ext_disp_hash[*idx].func_name && !strcmp(inst->dev_ext_disp_hash[*idx].func_name, funcName)) return true; // funcName wasn't at the primary spot in the hash table // search the list of secondary locations (shallow search, not deep search) for (uint32_t i = 0; i < inst->dev_ext_disp_hash[*idx].list.count; i++) { alt_idx = inst->dev_ext_disp_hash[*idx].list.index[i]; if (!strcmp(inst->dev_ext_disp_hash[*idx].func_name, funcName)) { *idx = alt_idx; return true; } } return false; } // This function returns generic trampoline code address for unknown entry // points. // Presumably, these unknown entry points (as given by funcName) are device // extension entrypoints. A hash table is used to keep a list of unknown entry // points and their mapping to the device extension dispatch table // (struct loader_dev_ext_dispatch_table). // \returns // For a given entry point string (funcName), if an existing mapping is found // the // trampoline address for that mapping is returned. Otherwise, this unknown // entry point // has not been seen yet. Next check if a layer or ICD supports it. If so then // a // new entry in the hash table is initialized and that trampoline address for // the new entry is returned. Null is returned if the hash table is full or // if no discovered layer or ICD returns a non-NULL GetProcAddr for it. void *loader_dev_ext_gpa(struct loader_instance *inst, const char *funcName) { uint32_t idx; uint32_t seed = 0; idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_UNKNOWN_EXTS; if (loader_name_in_dev_ext_table(inst, &idx, funcName)) // found funcName already in hash return loader_get_dev_ext_trampoline(idx); // Check if funcName is supported in either ICDs or a layer library if (!loader_check_icds_for_dev_ext_address(inst, funcName) && !loader_check_layer_list_for_dev_ext_address(&inst->app_activated_layer_list, funcName)) { // if support found in layers continue on return NULL; } if (loader_add_dev_ext_table(inst, &idx, funcName)) { // successfully added new table entry // init any dev dispatch table entries as needed loader_init_dispatch_dev_ext_entry(inst, NULL, idx, funcName); return loader_get_dev_ext_trampoline(idx); } return NULL; } static bool loader_check_icds_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) { struct loader_icd_term *icd_term; icd_term = inst->icd_terms; while (NULL != icd_term) { if (icd_term->scanned_icd->interface_version >= MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION && icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName)) // this icd supports funcName return true; icd_term = icd_term->next; } return false; } static bool loader_check_layer_list_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) { struct loader_layer_properties *layer_prop_list = inst->expanded_activated_layer_list.list; for (uint32_t layer = 0; layer < inst->expanded_activated_layer_list.count; ++layer) { // If this layer supports the vk_layerGetPhysicalDeviceProcAddr, then call // it and see if it returns a valid pointer for this function name. if (layer_prop_list[layer].interface_version > 1) { const struct loader_layer_functions *const functions = &(layer_prop_list[layer].functions); if (NULL != functions->get_physical_device_proc_addr && NULL != functions->get_physical_device_proc_addr((VkInstance)inst->instance, funcName)) { return true; } } } return false; } static void loader_free_phys_dev_ext_table(struct loader_instance *inst) { for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) { loader_instance_heap_free(inst, inst->phys_dev_ext_disp_hash[i].func_name); loader_instance_heap_free(inst, inst->phys_dev_ext_disp_hash[i].list.index); } memset(inst->phys_dev_ext_disp_hash, 0, sizeof(inst->phys_dev_ext_disp_hash)); } static bool loader_add_phys_dev_ext_table(struct loader_instance *inst, uint32_t *ptr_idx, const char *funcName) { uint32_t i; uint32_t idx = *ptr_idx; struct loader_dispatch_hash_list *list = &inst->phys_dev_ext_disp_hash[idx].list; if (!inst->phys_dev_ext_disp_hash[idx].func_name) { // no entry here at this idx, so use it assert(list->capacity == 0); inst->phys_dev_ext_disp_hash[idx].func_name = (char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (inst->phys_dev_ext_disp_hash[idx].func_name == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() can't allocate memory for " "func_name"); return false; } strncpy(inst->phys_dev_ext_disp_hash[idx].func_name, funcName, strlen(funcName) + 1); return true; } // check for enough capacity if (list->capacity == 0) { list->index = loader_instance_heap_alloc(inst, 8 * sizeof(*(list->index)), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (list->index == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() can't allocate list memory"); return false; } list->capacity = 8 * sizeof(*(list->index)); } else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) { void *new_ptr = loader_instance_heap_realloc(inst, list->index, list->capacity, list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_ptr) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() can't reallocate list memory"); return false; } list->index = new_ptr; list->capacity *= 2; } // find an unused index in the hash table and use it i = (idx + 1) % MAX_NUM_UNKNOWN_EXTS; do { if (!inst->phys_dev_ext_disp_hash[i].func_name) { assert(inst->phys_dev_ext_disp_hash[i].list.capacity == 0); inst->phys_dev_ext_disp_hash[i].func_name = (char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (inst->phys_dev_ext_disp_hash[i].func_name == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_dev_ext_table() can't reallocate " "func_name memory"); return false; } strncpy(inst->phys_dev_ext_disp_hash[i].func_name, funcName, strlen(funcName) + 1); list->index[list->count] = i; list->count++; *ptr_idx = i; return true; } i = (i + 1) % MAX_NUM_UNKNOWN_EXTS; } while (i != idx); loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() couldn't insert into hash table; is " "it full?"); return false; } static bool loader_name_in_phys_dev_ext_table(struct loader_instance *inst, uint32_t *idx, const char *funcName) { uint32_t alt_idx; if (inst->phys_dev_ext_disp_hash[*idx].func_name && !strcmp(inst->phys_dev_ext_disp_hash[*idx].func_name, funcName)) return true; // funcName wasn't at the primary spot in the hash table // search the list of secondary locations (shallow search, not deep search) for (uint32_t i = 0; i < inst->phys_dev_ext_disp_hash[*idx].list.count; i++) { alt_idx = inst->phys_dev_ext_disp_hash[*idx].list.index[i]; if (!strcmp(inst->phys_dev_ext_disp_hash[*idx].func_name, funcName)) { *idx = alt_idx; return true; } } return false; } // This function returns a generic trampoline and/or terminator function // address for any unknown physical device extension commands. A hash // table is used to keep a list of unknown entry points and their // mapping to the physical device extension dispatch table (struct // loader_phys_dev_ext_dispatch_table). // For a given entry point string (funcName), if an existing mapping is // found, then the trampoline address for that mapping is returned in // tramp_addr (if it is not NULL) and the terminator address for that // mapping is returned in term_addr (if it is not NULL). Otherwise, // this unknown entry point has not been seen yet. // If it has not been seen before, and perform_checking is 'true', // check if a layer or and ICD supports it. If so then a new entry in // the hash table is initialized and the trampoline and/or terminator // addresses are returned. // Null is returned if the hash table is full or if no discovered layer or // ICD returns a non-NULL GetProcAddr for it. bool loader_phys_dev_ext_gpa(struct loader_instance *inst, const char *funcName, bool perform_checking, void **tramp_addr, void **term_addr) { uint32_t idx; uint32_t seed = 0; bool success = false; if (inst == NULL) { goto out; } if (NULL != tramp_addr) { *tramp_addr = NULL; } if (NULL != term_addr) { *term_addr = NULL; } // We should always check to see if any ICD supports it. if (!loader_check_icds_for_phys_dev_ext_address(inst, funcName)) { // If we're not checking layers, or we are and it's not in a layer, just // return if (!perform_checking || !loader_check_layer_list_for_phys_dev_ext_address(inst, funcName)) { goto out; } } idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_UNKNOWN_EXTS; if (perform_checking && !loader_name_in_phys_dev_ext_table(inst, &idx, funcName)) { uint32_t i; bool added = false; // Only need to add first one to get index in Instance. Others will use // the same index. if (!added && loader_add_phys_dev_ext_table(inst, &idx, funcName)) { added = true; } // Setup the ICD function pointers struct loader_icd_term *icd_term = inst->icd_terms; while (NULL != icd_term) { if (MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION <= icd_term->scanned_icd->interface_version && NULL != icd_term->scanned_icd->GetPhysicalDeviceProcAddr) { icd_term->phys_dev_ext[idx] = (PFN_PhysDevExt)icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName); // Make sure we set the instance dispatch to point to the // loader's terminator now since we can at least handle it // in one ICD. inst->disp->phys_dev_ext[idx] = loader_get_phys_dev_ext_termin(idx); } else { icd_term->phys_dev_ext[idx] = NULL; } icd_term = icd_term->next; } // Now, search for the first layer attached and query using it to get // the first entry point. for (i = 0; i < inst->expanded_activated_layer_list.count; i++) { struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i]; if (layer_prop->interface_version > 1 && NULL != layer_prop->functions.get_physical_device_proc_addr) { inst->disp->phys_dev_ext[idx] = (PFN_PhysDevExt)layer_prop->functions.get_physical_device_proc_addr((VkInstance)inst->instance, funcName); if (NULL != inst->disp->phys_dev_ext[idx]) { break; } } } } if (NULL != tramp_addr) { *tramp_addr = loader_get_phys_dev_ext_tramp(idx); } if (NULL != term_addr) { *term_addr = loader_get_phys_dev_ext_termin(idx); } success = true; out: return success; } struct loader_instance *loader_get_instance(const VkInstance instance) { // look up the loader_instance in our list by comparing dispatch tables, as // there is no guarantee the instance is still a loader_instance* after any // layers which wrap the instance object. const VkLayerInstanceDispatchTable *disp; struct loader_instance *ptr_instance = NULL; disp = loader_get_instance_layer_dispatch(instance); for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) { if (&inst->disp->layer_inst_disp == disp) { ptr_instance = inst; break; } } return ptr_instance; } static loader_platform_dl_handle loaderOpenLayerFile(const struct loader_instance *inst, const char *chain_type, struct loader_layer_properties *prop) { if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, loader_platform_open_library_error(prop->lib_name)); } else { loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Loading layer library %s", prop->lib_name); } return prop->lib_handle; } static void loaderCloseLayerFile(const struct loader_instance *inst, struct loader_layer_properties *prop) { if (prop->lib_handle) { loader_platform_close_library(prop->lib_handle); loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Unloading layer library %s", prop->lib_name); prop->lib_handle = NULL; } } void loaderDeactivateLayers(const struct loader_instance *instance, struct loader_device *device, struct loader_layer_list *list) { // Delete instance list of enabled layers and close any layer libraries for (uint32_t i = 0; i < list->count; i++) { struct loader_layer_properties *layer_prop = &list->list[i]; loaderCloseLayerFile(instance, layer_prop); } loaderDestroyLayerList(instance, device, list); } // Go through the search_list and find any layers which match type. If layer // type match is found in then add it to ext_list. static void loaderAddImplicitLayers(const struct loader_instance *inst, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { for (uint32_t src_layer = 0; src_layer < source_list->count; src_layer++) { const struct loader_layer_properties *prop = &source_list->list[src_layer]; if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) { loaderAddImplicitLayer(inst, prop, target_list, expanded_target_list, source_list); } } } // Get the layer name(s) from the env_name environment variable. If layer is found in // search_list then add it to layer_list. But only add it to layer_list if type_flags matches. static VkResult loaderAddEnvironmentLayers(struct loader_instance *inst, const enum layer_type_flags type_flags, const char *env_name, struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) { VkResult res = VK_SUCCESS; char *next, *name; char *layer_env = loader_getenv(env_name, inst); if (layer_env == NULL) { goto out; } name = loader_stack_alloc(strlen(layer_env) + 1); if (name == NULL) { goto out; } strcpy(name, layer_env); while (name && *name) { next = loader_get_next_path(name); res = loaderAddLayerNameToList(inst, name, type_flags, source_list, target_list, expanded_target_list); if (res != VK_SUCCESS) { goto out; } name = next; } out: if (layer_env != NULL) { loader_free_getenv(layer_env, inst); } return res; } VkResult loaderEnableInstanceLayers(struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo, const struct loader_layer_list *instance_layers) { VkResult err = VK_SUCCESS; uint16_t layer_api_major_version; uint16_t layer_api_minor_version; uint32_t i; struct loader_layer_properties *prop; assert(inst && "Cannot have null instance"); if (!loaderInitLayerList(inst, &inst->app_activated_layer_list)) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderEnableInstanceLayers: Failed to initialize application version of the layer list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } if (!loaderInitLayerList(inst, &inst->expanded_activated_layer_list)) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderEnableInstanceLayers: Failed to initialize expanded version of the layer list"); return VK_ERROR_OUT_OF_HOST_MEMORY; } // Add any implicit layers first loaderAddImplicitLayers(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers); // Add any layers specified via environment variable next err = loaderAddEnvironmentLayers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, "VK_INSTANCE_LAYERS", &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers); if (err != VK_SUCCESS) { goto out; } // Add layers specified by the application err = loaderAddLayerNamesToList(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers); for (i = 0; i < inst->expanded_activated_layer_list.count; i++) { // Verify that the layer api version is at least that of the application's request, if not, throw a warning since // undefined behavior could occur. prop = inst->expanded_activated_layer_list.list + i; layer_api_major_version = VK_VERSION_MAJOR(prop->info.specVersion); layer_api_minor_version = VK_VERSION_MINOR(prop->info.specVersion); if (inst->app_api_major_version > layer_api_major_version || (inst->app_api_major_version == layer_api_major_version && inst->app_api_minor_version > layer_api_minor_version)) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_add_to_layer_list: Explicit layer %s is using an old API version %" PRIu16 ".%" PRIu16 " versus application requested %" PRIu16 ".%" PRIu16, prop->info.layerName, layer_api_major_version, layer_api_minor_version, inst->app_api_major_version, inst->app_api_minor_version); } } out: return err; } // Determine the layer interface version to use. bool loaderGetLayerInterfaceVersion(PFN_vkNegotiateLoaderLayerInterfaceVersion fp_negotiate_layer_version, VkNegotiateLayerInterface *interface_struct) { memset(interface_struct, 0, sizeof(VkNegotiateLayerInterface)); interface_struct->sType = LAYER_NEGOTIATE_INTERFACE_STRUCT; interface_struct->loaderLayerInterfaceVersion = 1; interface_struct->pNext = NULL; if (fp_negotiate_layer_version != NULL) { // Layer supports the negotiation API, so call it with the loader's // latest version supported interface_struct->loaderLayerInterfaceVersion = CURRENT_LOADER_LAYER_INTERFACE_VERSION; VkResult result = fp_negotiate_layer_version(interface_struct); if (result != VK_SUCCESS) { // Layer no longer supports the loader's latest interface version so // fail loading the Layer return false; } } if (interface_struct->loaderLayerInterfaceVersion < MIN_SUPPORTED_LOADER_LAYER_INTERFACE_VERSION) { // Loader no longer supports the layer's latest interface version so // fail loading the layer return false; } return true; } VKAPI_ATTR VkResult VKAPI_CALL loader_layer_create_device(VkInstance instance, VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, PFN_vkGetInstanceProcAddr layerGIPA, PFN_vkGetDeviceProcAddr *nextGDPA) { VkResult res; VkPhysicalDevice internal_device = VK_NULL_HANDLE; struct loader_device *dev = NULL; struct loader_instance *inst = NULL; if (instance != NULL) { inst = loader_get_instance(instance); internal_device = physicalDevice; } else { struct loader_physical_device_tramp *phys_dev = (struct loader_physical_device_tramp *)physicalDevice; internal_device = phys_dev->phys_dev; inst = (struct loader_instance *)phys_dev->this_instance; } // Get the physical device (ICD) extensions struct loader_extension_list icd_exts; icd_exts.list = NULL; res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to create ICD extension list"); goto out; } PFN_vkEnumerateDeviceExtensionProperties enumDeviceExtensionProperties = NULL; if (layerGIPA != NULL) { enumDeviceExtensionProperties = (PFN_vkEnumerateDeviceExtensionProperties)layerGIPA(instance, "vkEnumerateDeviceExtensionProperties"); } else { enumDeviceExtensionProperties = inst->disp->layer_inst_disp.EnumerateDeviceExtensionProperties; } res = loader_add_device_extensions(inst, enumDeviceExtensionProperties, internal_device, "Unknown", &icd_exts); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to add extensions to list"); goto out; } // Make sure requested extensions to be enabled are supported res = loader_validate_device_extensions(inst, &inst->expanded_activated_layer_list, &icd_exts, pCreateInfo); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to validate extensions in list"); goto out; } dev = loader_create_logical_device(inst, pAllocator); if (dev == NULL) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Copy the application enabled instance layer list into the device if (NULL != inst->app_activated_layer_list.list) { dev->app_activated_layer_list.capacity = inst->app_activated_layer_list.capacity; dev->app_activated_layer_list.count = inst->app_activated_layer_list.count; dev->app_activated_layer_list.list = loader_device_heap_alloc(dev, inst->app_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (dev->app_activated_layer_list.list == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to allocate application activated layer list of size %d.", inst->app_activated_layer_list.capacity); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(dev->app_activated_layer_list.list, inst->app_activated_layer_list.list, sizeof(*dev->app_activated_layer_list.list) * dev->app_activated_layer_list.count); } else { dev->app_activated_layer_list.capacity = 0; dev->app_activated_layer_list.count = 0; dev->app_activated_layer_list.list = NULL; } // Copy the expanded enabled instance layer list into the device if (NULL != inst->expanded_activated_layer_list.list) { dev->expanded_activated_layer_list.capacity = inst->expanded_activated_layer_list.capacity; dev->expanded_activated_layer_list.count = inst->expanded_activated_layer_list.count; dev->expanded_activated_layer_list.list = loader_device_heap_alloc(dev, inst->expanded_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (dev->expanded_activated_layer_list.list == NULL) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to allocate expanded activated layer list of size %d.", inst->expanded_activated_layer_list.capacity); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(dev->expanded_activated_layer_list.list, inst->expanded_activated_layer_list.list, sizeof(*dev->expanded_activated_layer_list.list) * dev->expanded_activated_layer_list.count); } else { dev->expanded_activated_layer_list.capacity = 0; dev->expanded_activated_layer_list.count = 0; dev->expanded_activated_layer_list.list = NULL; } res = loader_create_device_chain(internal_device, pCreateInfo, pAllocator, inst, dev, layerGIPA, nextGDPA); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to create device chain."); goto out; } *pDevice = dev->chain_device; // Initialize any device extension dispatch entry's from the instance list loader_init_dispatch_dev_ext(inst, dev); // Initialize WSI device extensions as part of core dispatch since loader // has dedicated trampoline code for these loader_init_device_extension_dispatch_table(&dev->loader_dispatch, inst->disp->layer_inst_disp.GetInstanceProcAddr, dev->loader_dispatch.core_dispatch.GetDeviceProcAddr, inst->instance, *pDevice); out: // Failure cleanup if (VK_SUCCESS != res) { if (NULL != dev) { loader_destroy_logical_device(inst, dev, pAllocator); } } if (NULL != icd_exts.list) { loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts); } return res; } VKAPI_ATTR void VKAPI_CALL loader_layer_destroy_device(VkDevice device, const VkAllocationCallbacks *pAllocator, PFN_vkDestroyDevice destroyFunction) { struct loader_device *dev; if (device == VK_NULL_HANDLE) { return; } struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL); const struct loader_instance *inst = icd_term->this_instance; destroyFunction(device, pAllocator); dev->chain_device = NULL; dev->icd_device = NULL; loader_remove_logical_device(inst, icd_term, dev, pAllocator); } // Given the list of layers to activate in the loader_instance // structure. This function will add a VkLayerInstanceCreateInfo // structure to the VkInstanceCreateInfo.pNext pointer. // Each activated layer will have it's own VkLayerInstanceLink // structure that tells the layer what Get*ProcAddr to call to // get function pointers to the next layer down. // Once the chain info has been created this function will // execute the CreateInstance call chain. Each layer will // then have an opportunity in it's CreateInstance function // to setup it's dispatch table when the lower layer returns // successfully. // Each layer can wrap or not-wrap the returned VkInstance object // as it sees fit. // The instance chain is terminated by a loader function // that will call CreateInstance on all available ICD's and // cache those VkInstance objects for future use. VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, struct loader_instance *inst, VkInstance *created_instance) { uint32_t activated_layers = 0; VkLayerInstanceCreateInfo chain_info; VkLayerInstanceLink *layer_instance_link_info = NULL; VkInstanceCreateInfo loader_create_info; VkResult res; PFN_vkGetInstanceProcAddr next_gipa = loader_gpa_instance_internal; PFN_vkGetInstanceProcAddr cur_gipa = loader_gpa_instance_internal; PFN_vkGetDeviceProcAddr cur_gdpa = loader_gpa_device_internal; PFN_GetPhysicalDeviceProcAddr next_gpdpa = loader_gpdpa_instance_internal; PFN_GetPhysicalDeviceProcAddr cur_gpdpa = loader_gpdpa_instance_internal; memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo)); if (inst->expanded_activated_layer_list.count > 0) { chain_info.u.pLayerInfo = NULL; chain_info.pNext = pCreateInfo->pNext; chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO; chain_info.function = VK_LAYER_LINK_INFO; loader_create_info.pNext = &chain_info; layer_instance_link_info = loader_stack_alloc(sizeof(VkLayerInstanceLink) * inst->expanded_activated_layer_list.count); if (!layer_instance_link_info) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_instance_chain: Failed to alloc Instance" " objects for layer"); return VK_ERROR_OUT_OF_HOST_MEMORY; } // Create instance chain of enabled layers for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) { struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i]; loader_platform_dl_handle lib_handle; lib_handle = loaderOpenLayerFile(inst, "instance", layer_prop); if (!lib_handle) { continue; } if (NULL == layer_prop->functions.negotiate_layer_interface) { PFN_vkNegotiateLoaderLayerInterfaceVersion negotiate_interface = NULL; bool functions_in_interface = false; if (strlen(layer_prop->functions.str_negotiate_interface) == 0) { negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address( lib_handle, "vkNegotiateLoaderLayerInterfaceVersion"); } else { negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address( lib_handle, layer_prop->functions.str_negotiate_interface); } // If we can negotiate an interface version, then we can also // get everything we need from the one function call, so try // that first, and see if we can get all the function pointers // necessary from that one call. if (NULL != negotiate_interface) { layer_prop->functions.negotiate_layer_interface = negotiate_interface; VkNegotiateLayerInterface interface_struct; if (loaderGetLayerInterfaceVersion(negotiate_interface, &interface_struct)) { // Go ahead and set the properties version to the // correct value. layer_prop->interface_version = interface_struct.loaderLayerInterfaceVersion; // If the interface is 2 or newer, we have access to the // new GetPhysicalDeviceProcAddr function, so grab it, // and the other necessary functions, from the // structure. if (interface_struct.loaderLayerInterfaceVersion > 1) { cur_gipa = interface_struct.pfnGetInstanceProcAddr; cur_gdpa = interface_struct.pfnGetDeviceProcAddr; cur_gpdpa = interface_struct.pfnGetPhysicalDeviceProcAddr; if (cur_gipa != NULL) { // We've set the functions, so make sure we // don't do the unnecessary calls later. functions_in_interface = true; } } } } if (!functions_in_interface) { if ((cur_gipa = layer_prop->functions.get_instance_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gipa) == 0) { cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr"); layer_prop->functions.get_instance_proc_addr = cur_gipa; } else { cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa); } if (NULL == cur_gipa) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_instance_chain: Failed to" " find \'vkGetInstanceProcAddr\' in " "layer %s", layer_prop->lib_name); continue; } } } } layer_instance_link_info[activated_layers].pNext = chain_info.u.pLayerInfo; layer_instance_link_info[activated_layers].pfnNextGetInstanceProcAddr = next_gipa; layer_instance_link_info[activated_layers].pfnNextGetPhysicalDeviceProcAddr = next_gpdpa; next_gipa = cur_gipa; if (layer_prop->interface_version > 1 && cur_gpdpa != NULL) { layer_prop->functions.get_physical_device_proc_addr = cur_gpdpa; next_gpdpa = cur_gpdpa; } if (layer_prop->interface_version > 1 && cur_gipa != NULL) { layer_prop->functions.get_instance_proc_addr = cur_gipa; } if (layer_prop->interface_version > 1 && cur_gdpa != NULL) { layer_prop->functions.get_device_proc_addr = cur_gdpa; } chain_info.u.pLayerInfo = &layer_instance_link_info[activated_layers]; loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Insert instance layer %s (%s)", layer_prop->info.layerName, layer_prop->lib_name); activated_layers++; } } VkLoaderFeatureFlags feature_flags = 0; #if defined(_WIN32) IDXGIFactory6* dxgi_factory = NULL; HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory6, &dxgi_factory); if (hres == S_OK) { feature_flags |= VK_LOADER_FEATURE_PHYSICAL_DEVICE_SORTING; dxgi_factory->lpVtbl->Release(dxgi_factory); } #endif PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)next_gipa(*created_instance, "vkCreateInstance"); if (fpCreateInstance) { const VkLayerInstanceCreateInfo instance_dispatch = { .sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO, .pNext = loader_create_info.pNext, .function = VK_LOADER_DATA_CALLBACK, .u = { .pfnSetInstanceLoaderData = vkSetInstanceDispatch, }, }; const VkLayerInstanceCreateInfo device_callback = { .sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO, .pNext = &instance_dispatch, .function = VK_LOADER_LAYER_CREATE_DEVICE_CALLBACK, .u = { .layerDevice = { .pfnLayerCreateDevice = loader_layer_create_device, .pfnLayerDestroyDevice = loader_layer_destroy_device, }, }, }; const VkLayerInstanceCreateInfo loader_features = { .sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO, .pNext = &device_callback, .function = VK_LOADER_FEATURES, .u = { .loaderFeatures = feature_flags, }, }; loader_create_info.pNext = &loader_features; res = fpCreateInstance(&loader_create_info, pAllocator, created_instance); } else { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_instance_chain: Failed to find " "\'vkCreateInstance\'"); // Couldn't find CreateInstance function! res = VK_ERROR_INITIALIZATION_FAILED; } if (res == VK_SUCCESS) { loader_init_instance_core_dispatch_table(&inst->disp->layer_inst_disp, next_gipa, *created_instance); inst->instance = *created_instance; } return res; } void loaderActivateInstanceLayerExtensions(struct loader_instance *inst, VkInstance created_inst) { loader_init_instance_extension_dispatch_table(&inst->disp->layer_inst_disp, inst->disp->layer_inst_disp.GetInstanceProcAddr, created_inst); } VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst, struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer, PFN_vkGetDeviceProcAddr *layerNextGDPA) { uint32_t activated_layers = 0; VkLayerDeviceLink *layer_device_link_info; VkLayerDeviceCreateInfo chain_info; VkDeviceCreateInfo loader_create_info; VkResult res; PFN_vkGetDeviceProcAddr fpGDPA = NULL, nextGDPA = loader_gpa_device_internal; PFN_vkGetInstanceProcAddr fpGIPA = NULL, nextGIPA = loader_gpa_instance_internal; memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo)); // Before we continue, we need to find out if the KHR_device_group extension is in the enabled list. If it is, we then // need to look for the corresponding VkDeviceGroupDeviceCreateInfoKHR struct in the device list. This is because we // need to replace all the incoming physical device values (which are really loader trampoline physical device values) // with the layer/ICD version. { VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext; VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info; while (NULL != pNext) { if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) { VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext; if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) { VkDeviceGroupDeviceCreateInfoKHR *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfoKHR)); VkPhysicalDevice *phys_dev_array = NULL; if (NULL == temp_struct) { return VK_ERROR_OUT_OF_HOST_MEMORY; } memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfoKHR)); phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount); if (NULL == phys_dev_array) { return VK_ERROR_OUT_OF_HOST_MEMORY; } // Before calling down, replace the incoming physical device values (which are really loader trampoline // physical devices) with the next layer (or possibly even the terminator) physical device values. struct loader_physical_device_tramp *cur_tramp; for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) { cur_tramp = (struct loader_physical_device_tramp *)cur_struct->pPhysicalDevices[phys_dev]; phys_dev_array[phys_dev] = cur_tramp->phys_dev; } temp_struct->pPhysicalDevices = phys_dev_array; // Replace the old struct in the pNext chain with this one. pPrev->pNext = (VkBaseOutStructure *)temp_struct; pNext = (VkBaseOutStructure *)temp_struct; } break; } pPrev = pNext; pNext = pNext->pNext; } } layer_device_link_info = loader_stack_alloc(sizeof(VkLayerDeviceLink) * dev->expanded_activated_layer_list.count); if (!layer_device_link_info) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_device_chain: Failed to alloc Device objects" " for layer. Skipping Layer."); return VK_ERROR_OUT_OF_HOST_MEMORY; } if (dev->expanded_activated_layer_list.count > 0) { chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO; chain_info.function = VK_LAYER_LINK_INFO; chain_info.u.pLayerInfo = NULL; chain_info.pNext = loader_create_info.pNext; loader_create_info.pNext = &chain_info; bool done = false; // Create instance chain of enabled layers for (int32_t i = dev->expanded_activated_layer_list.count - 1; i >= 0; i--) { struct loader_layer_properties *layer_prop = &dev->expanded_activated_layer_list.list[i]; loader_platform_dl_handle lib_handle; lib_handle = loaderOpenLayerFile(inst, "device", layer_prop); if (!lib_handle || done) { continue; } // The Get*ProcAddr pointers will already be filled in if they were received from either the json file or the // version negotiation if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gipa) == 0) { fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr"); layer_prop->functions.get_instance_proc_addr = fpGIPA; } else fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa); if (!fpGIPA) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_device_chain: Failed to find " "\'vkGetInstanceProcAddr\' in layer %s. Skipping" " layer.", layer_prop->lib_name); continue; } } if (fpGIPA == callingLayer) { if (layerNextGDPA != NULL) { *layerNextGDPA = nextGDPA; } done = true; continue; } if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) { if (strlen(layer_prop->functions.str_gdpa) == 0) { fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr"); layer_prop->functions.get_device_proc_addr = fpGDPA; } else fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa); if (!fpGDPA) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Failed to find vkGetDeviceProcAddr in layer %s", layer_prop->lib_name); continue; } } layer_device_link_info[activated_layers].pNext = chain_info.u.pLayerInfo; layer_device_link_info[activated_layers].pfnNextGetInstanceProcAddr = nextGIPA; layer_device_link_info[activated_layers].pfnNextGetDeviceProcAddr = nextGDPA; chain_info.u.pLayerInfo = &layer_device_link_info[activated_layers]; nextGIPA = fpGIPA; nextGDPA = fpGDPA; loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Inserted device layer %s (%s)", layer_prop->info.layerName, layer_prop->lib_name); activated_layers++; } } VkDevice created_device = (VkDevice)dev; PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice"); if (fpCreateDevice) { VkLayerDeviceCreateInfo create_info_disp; create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO; create_info_disp.function = VK_LOADER_DATA_CALLBACK; create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch; create_info_disp.pNext = loader_create_info.pNext; loader_create_info.pNext = &create_info_disp; res = fpCreateDevice(pd, &loader_create_info, pAllocator, &created_device); if (res != VK_SUCCESS) { return res; } dev->chain_device = created_device; } else { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_create_device_chain: Failed to find \'vkCreateDevice\' " "in layers or ICD"); // Couldn't find CreateDevice function! return VK_ERROR_INITIALIZATION_FAILED; } // Initialize device dispatch table loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA, dev->chain_device); return res; } VkResult loaderValidateLayers(const struct loader_instance *inst, const uint32_t layer_count, const char *const *ppEnabledLayerNames, const struct loader_layer_list *list) { struct loader_layer_properties *prop; for (uint32_t i = 0; i < layer_count; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderValidateLayers: Device ppEnabledLayerNames " "contains string that is too long or is badly formed"); return VK_ERROR_LAYER_NOT_PRESENT; } prop = loaderFindLayerProperty(ppEnabledLayerNames[i], list); if (NULL == prop) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderValidateLayers: Layer %d does not exist in the list of available layers", i); return VK_ERROR_LAYER_NOT_PRESENT; } } return VK_SUCCESS; } VkResult loader_validate_instance_extensions(struct loader_instance *inst, const struct loader_extension_list *icd_exts, const struct loader_layer_list *instance_layers, const VkInstanceCreateInfo *pCreateInfo) { VkExtensionProperties *extension_prop; char *env_value; bool check_if_known = true; VkResult res = VK_SUCCESS; struct loader_layer_list active_layers; struct loader_layer_list expanded_layers; memset(&active_layers, 0, sizeof(active_layers)); memset(&expanded_layers, 0, sizeof(expanded_layers)); if (!loaderInitLayerList(inst, &active_layers)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } if (!loaderInitLayerList(inst, &expanded_layers)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Build the lists of active layers (including metalayers) and expanded layers (with metalayers resolved to their components) loaderAddImplicitLayers(inst, &active_layers, &expanded_layers, instance_layers); res = loaderAddEnvironmentLayers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, ENABLED_LAYERS_ENV, &active_layers, &expanded_layers, instance_layers); if (res != VK_SUCCESS) { goto out; } res = loaderAddLayerNamesToList(inst, &active_layers, &expanded_layers, pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers); if (VK_SUCCESS != res) { goto out; } for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_validate_instance_extensions: Instance ppEnabledExtensionNames contains " "string that is too long or is badly formed"); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } // Check if a user wants to disable the instance extension filtering behavior env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst); if (NULL != env_value && atoi(env_value) != 0) { check_if_known = false; } loader_free_getenv(env_value, inst); if (check_if_known) { // See if the extension is in the list of supported extensions bool found = false; for (uint32_t j = 0; LOADER_INSTANCE_EXTENSIONS[j] != NULL; j++) { if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], LOADER_INSTANCE_EXTENSIONS[j]) == 0) { found = true; break; } } // If it isn't in the list, return an error if (!found) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_validate_instance_extensions: Extension %s not found in list of known instance extensions.", pCreateInfo->ppEnabledExtensionNames[i]); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } } extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], icd_exts); if (extension_prop) { continue; } extension_prop = NULL; // Not in global list, search layer extension lists struct loader_layer_properties *layer_prop = NULL; for (uint32_t j = 0; NULL == extension_prop && j < expanded_layers.count; ++j) { extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], &expanded_layers.list[j].instance_extension_list); if (extension_prop) { // Found the extension in one of the layers enabled by the app. break; } layer_prop = loaderFindLayerProperty(expanded_layers.list[j].info.layerName, instance_layers); if (NULL == layer_prop) { // Should NOT get here, loaderValidateLayers should have already filtered this case out. continue; } } if (!extension_prop) { // Didn't find extension name in any of the global layers, error out loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_validate_instance_extensions: Instance extension %s not supported by available ICDs or enabled " "layers.", pCreateInfo->ppEnabledExtensionNames[i]); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } } out: loaderDestroyLayerList(inst, NULL, &active_layers); loaderDestroyLayerList(inst, NULL, &expanded_layers); return res; } VkResult loader_validate_device_extensions(struct loader_instance *this_instance, const struct loader_layer_list *activated_device_layers, const struct loader_extension_list *icd_exts, const VkDeviceCreateInfo *pCreateInfo) { VkExtensionProperties *extension_prop; struct loader_layer_properties *layer_prop; for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]); if (result != VK_STRING_ERROR_NONE) { loader_log(this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_validate_device_extensions: Device ppEnabledExtensionNames contains " "string that is too long or is badly formed"); return VK_ERROR_EXTENSION_NOT_PRESENT; } const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i]; extension_prop = get_extension_property(extension_name, icd_exts); if (extension_prop) { continue; } // Not in global list, search activated layer extension lists for (uint32_t j = 0; j < activated_device_layers->count; j++) { layer_prop = &activated_device_layers->list[j]; extension_prop = get_dev_extension_property(extension_name, &layer_prop->device_extension_list); if (extension_prop) { // Found the extension in one of the layers enabled by the app. break; } } if (!extension_prop) { // Didn't find extension name in any of the device layers, error out loader_log(this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_validate_device_extensions: Device extension %s not supported by selected physical device " "or enabled layers.", pCreateInfo->ppEnabledExtensionNames[i]); return VK_ERROR_EXTENSION_NOT_PRESENT; } } return VK_SUCCESS; } // Terminator functions for the Instance chain // All named terminator_ VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) { struct loader_icd_term *icd_term; VkExtensionProperties *prop; char **filtered_extension_names = NULL; VkInstanceCreateInfo icd_create_info; VkResult res = VK_SUCCESS; bool one_icd_successful = false; struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance; memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info)); icd_create_info.enabledLayerCount = 0; icd_create_info.ppEnabledLayerNames = NULL; // NOTE: Need to filter the extensions to only those supported by the ICD. // No ICD will advertise support for layers. An ICD library could // support a layer, but it would be independent of the actual ICD, // just in the same library. filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *)); if (!filtered_extension_names) { loader_log(ptr_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "terminator_CreateInstance: Failed create extension name array for %d extensions", pCreateInfo->enabledExtensionCount); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } icd_create_info.ppEnabledExtensionNames = (const char *const *)filtered_extension_names; for (uint32_t i = 0; i < ptr_instance->icd_tramp_list.count; i++) { icd_term = loader_icd_add(ptr_instance, &ptr_instance->icd_tramp_list.scanned_list[i]); if (NULL == icd_term) { loader_log(ptr_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "terminator_CreateInstance: Failed to add ICD %d to ICD trampoline list.", i); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // If any error happens after here, we need to remove the ICD from the list, // because we've already added it, but haven't validated it // Make sure that we reset the pApplicationInfo so we don't get an old pointer icd_create_info.pApplicationInfo = pCreateInfo->pApplicationInfo; icd_create_info.enabledExtensionCount = 0; struct loader_extension_list icd_exts; loader_log(ptr_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Build ICD instance extension list"); // traverse scanned icd list adding non-duplicate extensions to the list res = loader_init_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { // If out of memory, bail immediately. goto out; } else if (VK_SUCCESS != res) { // Something bad happened with this ICD, so free it and try the // next. ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } res = loader_add_instance_extensions(ptr_instance, icd_term->scanned_icd->EnumerateInstanceExtensionProperties, icd_term->scanned_icd->lib_name, &icd_exts); if (VK_SUCCESS != res) { loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts); if (VK_ERROR_OUT_OF_HOST_MEMORY == res) { // If out of memory, bail immediately. goto out; } else { // Something bad happened with this ICD, so free it and try the next. ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } } for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) { prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[j], &icd_exts); if (prop) { filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)pCreateInfo->ppEnabledExtensionNames[j]; icd_create_info.enabledExtensionCount++; } } loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts); // Get the driver version from vkEnumerateInstanceVersion uint32_t icd_version = VK_API_VERSION_1_0; VkResult icd_result = VK_SUCCESS; if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) { PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version = (PFN_vkEnumerateInstanceVersion) icd_term->scanned_icd->GetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion"); if (icd_enumerate_instance_version != NULL) { icd_result = icd_enumerate_instance_version(&icd_version); if (icd_result != VK_SUCCESS) { icd_version = VK_API_VERSION_1_0; loader_log(ptr_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "terminator_CreateInstance: ICD \"%s\" " "vkEnumerateInstanceVersion returned error. The ICD will be treated as a 1.0 ICD", icd_term->scanned_icd->lib_name); } } } // Create an instance, substituting the version to 1.0 if necessary VkApplicationInfo icd_app_info; uint32_t icd_version_nopatch = VK_MAKE_VERSION(VK_VERSION_MAJOR(icd_version), VK_VERSION_MINOR(icd_version), 0); uint32_t requested_version = pCreateInfo == NULL || pCreateInfo->pApplicationInfo == NULL ? VK_API_VERSION_1_0 : pCreateInfo->pApplicationInfo->apiVersion; if ((requested_version != 0) && (icd_version_nopatch == VK_API_VERSION_1_0)) { if (icd_create_info.pApplicationInfo == NULL) { memset(&icd_app_info, 0, sizeof(icd_app_info)); } else { memcpy(&icd_app_info, icd_create_info.pApplicationInfo, sizeof(icd_app_info)); } icd_app_info.apiVersion = icd_version; icd_create_info.pApplicationInfo = &icd_app_info; } icd_result = ptr_instance->icd_tramp_list.scanned_list[i].CreateInstance(&icd_create_info, pAllocator, &(icd_term->instance)); if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_result) { // If out of memory, bail immediately. res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } else if (VK_SUCCESS != icd_result) { loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "terminator_CreateInstance: Failed to CreateInstance in " "ICD %d. Skipping ICD.", i); ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } if (!loader_icd_init_entries(icd_term, icd_term->instance, ptr_instance->icd_tramp_list.scanned_list[i].GetInstanceProcAddr)) { loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "terminator_CreateInstance: Failed to CreateInstance and find " "entrypoints with ICD. Skipping ICD."); ptr_instance->icd_terms = icd_term->next; icd_term->next = NULL; loader_icd_destroy(ptr_instance, icd_term, pAllocator); continue; } // If we made it this far, at least one ICD was successful one_icd_successful = true; } // If no ICDs were added to instance list and res is unchanged from it's initial value, the loader was unable to // find a suitable ICD. if (VK_SUCCESS == res && (ptr_instance->icd_terms == NULL || !one_icd_successful)) { res = VK_ERROR_INCOMPATIBLE_DRIVER; } out: if (VK_SUCCESS != res) { while (NULL != ptr_instance->icd_terms) { icd_term = ptr_instance->icd_terms; ptr_instance->icd_terms = icd_term->next; if (NULL != icd_term->instance) { icd_term->dispatch.DestroyInstance(icd_term->instance, pAllocator); } loader_icd_destroy(ptr_instance, icd_term, pAllocator); } } return res; } VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) { struct loader_instance *ptr_instance = loader_instance(instance); if (NULL == ptr_instance) { return; } struct loader_icd_term *icd_terms = ptr_instance->icd_terms; struct loader_icd_term *next_icd_term; // Remove this instance from the list of instances: struct loader_instance *prev = NULL; struct loader_instance *next = loader.instances; while (next != NULL) { if (next == ptr_instance) { // Remove this instance from the list: if (prev) prev->next = next->next; else loader.instances = next->next; break; } prev = next; next = next->next; } while (NULL != icd_terms) { if (icd_terms->instance) { icd_terms->dispatch.DestroyInstance(icd_terms->instance, pAllocator); } next_icd_term = icd_terms->next; icd_terms->instance = VK_NULL_HANDLE; loader_icd_destroy(ptr_instance, icd_terms, pAllocator); icd_terms = next_icd_term; } loaderDeleteLayerListAndProperties(ptr_instance, &ptr_instance->instance_layer_list); loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_tramp_list); loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list); if (NULL != ptr_instance->phys_devs_term) { for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) { loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term[i]); } loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term); } if (NULL != ptr_instance->phys_dev_groups_term) { for (uint32_t i = 0; i < ptr_instance->phys_dev_group_count_term; i++) { loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term[i]); } loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term); } loader_free_dev_ext_table(ptr_instance); loader_free_phys_dev_ext_table(ptr_instance); } VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) { VkResult res = VK_SUCCESS; struct loader_physical_device_term *phys_dev_term; phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; struct loader_device *dev = (struct loader_device *)*pDevice; PFN_vkCreateDevice fpCreateDevice = icd_term->dispatch.CreateDevice; struct loader_extension_list icd_exts; VkBaseOutStructure *caller_dgci_container = NULL; VkDeviceGroupDeviceCreateInfoKHR *caller_dgci = NULL; dev->phys_dev_term = phys_dev_term; icd_exts.list = NULL; if (fpCreateDevice == NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "terminator_CreateDevice: No vkCreateDevice command exposed " "by ICD %s", icd_term->scanned_icd->lib_name); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } VkDeviceCreateInfo localCreateInfo; memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo)); // NOTE: Need to filter the extensions to only those supported by the ICD. // No ICD will advertise support for layers. An ICD library could support a layer, // but it would be independent of the actual ICD, just in the same library. char **filtered_extension_names = NULL; if (0 < pCreateInfo->enabledExtensionCount) { filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *)); if (NULL == filtered_extension_names) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "terminator_CreateDevice: Failed to create extension name " "storage for %d extensions", pCreateInfo->enabledExtensionCount); return VK_ERROR_OUT_OF_HOST_MEMORY; } } localCreateInfo.enabledLayerCount = 0; localCreateInfo.ppEnabledLayerNames = NULL; localCreateInfo.enabledExtensionCount = 0; localCreateInfo.ppEnabledExtensionNames = (const char *const *)filtered_extension_names; // Get the physical device (ICD) extensions res = loader_init_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties)); if (VK_SUCCESS != res) { goto out; } res = loader_add_device_extensions(icd_term->this_instance, icd_term->dispatch.EnumerateDeviceExtensionProperties, phys_dev_term->phys_dev, icd_term->scanned_icd->lib_name, &icd_exts); if (res != VK_SUCCESS) { goto out; } for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) { const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i]; VkExtensionProperties *prop = get_extension_property(extension_name, &icd_exts); if (prop) { filtered_extension_names[localCreateInfo.enabledExtensionCount] = (char *)extension_name; localCreateInfo.enabledExtensionCount++; } else { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "vkCreateDevice extension %s not available for " "devices associated with ICD %s", extension_name, icd_term->scanned_icd->lib_name); } } // Before we continue, If KHX_device_group is the list of enabled and viable extensions, then we then need to look for the // corresponding VkDeviceGroupDeviceCreateInfo struct in the device list and replace all the physical device values (which // are really loader physical device terminator values) with the ICD versions. //if (icd_term->this_instance->enabled_known_extensions.khr_device_group_creation == 1) { { VkBaseOutStructure *pNext = (VkBaseOutStructure *)localCreateInfo.pNext; VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&localCreateInfo; while (NULL != pNext) { if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) { VkDeviceGroupDeviceCreateInfo *cur_struct = (VkDeviceGroupDeviceCreateInfo *)pNext; if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) { VkDeviceGroupDeviceCreateInfo *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfo)); VkPhysicalDevice *phys_dev_array = NULL; if (NULL == temp_struct) { return VK_ERROR_OUT_OF_HOST_MEMORY; } memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfo)); phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount); if (NULL == phys_dev_array) { return VK_ERROR_OUT_OF_HOST_MEMORY; } // Before calling down, replace the incoming physical device values (which are really loader terminator // physical devices) with the ICDs physical device values. struct loader_physical_device_term *cur_term; for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) { cur_term = (struct loader_physical_device_term *)cur_struct->pPhysicalDevices[phys_dev]; phys_dev_array[phys_dev] = cur_term->phys_dev; } temp_struct->pPhysicalDevices = phys_dev_array; // Keep track of pointers to restore pNext chain before returning caller_dgci_container = pPrev; caller_dgci = cur_struct; // Replace the old struct in the pNext chain with this one. pPrev->pNext = (VkBaseOutStructure *)temp_struct; pNext = (VkBaseOutStructure *)temp_struct; } break; } pPrev = pNext; pNext = pNext->pNext; } } // Handle loader emulation for structs that are not supported by the ICD: // Presently, the emulation leaves the pNext chain alone. This means that the ICD will receive items in the chain which // are not recognized by the ICD. If this causes the ICD to fail, then the items would have to be removed here. The current // implementation does not remove them because copying the pNext chain would be impossible if the loader does not recognize // the any of the struct types, as the loader would not know the size to allocate and copy. //if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) { { const void *pNext = localCreateInfo.pNext; while (pNext != NULL) { switch (*(VkStructureType *)pNext) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: { const VkPhysicalDeviceFeatures2KHR *features = pNext; if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkCreateDevice: Emulating handling of VkPhysicalDeviceFeatures2 in pNext chain for ICD \"%s\"", icd_term->scanned_icd->lib_name); // Verify that VK_KHR_get_physical_device_properties2 is enabled if (icd_term->this_instance->enabled_known_extensions.khr_get_physical_device_properties2) { localCreateInfo.pEnabledFeatures = &features->features; } } // Leave this item in the pNext chain for now pNext = features->pNext; break; } case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: { const VkDeviceGroupDeviceCreateInfoKHR *group_info = pNext; if (icd_term->dispatch.EnumeratePhysicalDeviceGroups == NULL && icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR == NULL) { loader_log( icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkCreateDevice: Emulating handling of VkPhysicalDeviceGroupProperties in pNext chain for ICD \"%s\"", icd_term->scanned_icd->lib_name); // The group must contain only this one device, since physical device groups aren't actually supported if (group_info->physicalDeviceCount != 1) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Emulation failed to create device from device group info"); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } } // Nothing needs to be done here because we're leaving the item in the pNext chain and because the spec states // that the physicalDevice argument must be included in the device group, and we've already checked that it is pNext = group_info->pNext; break; } // Multiview properties are also allowed, but since VK_KHX_multiview is a device extension, we'll just let the ICD // handle that error when the user enables the extension here default: { const VkBaseInStructure *header = pNext; pNext = header->pNext; break; } } } } // Every extension that has a loader-defined terminator needs to be marked as enabled or disabled so that we know whether or // not to return that terminator when vkGetDeviceProcAddr is called for (uint32_t i = 0; i < localCreateInfo.enabledExtensionCount; ++i) { if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { dev->extensions.khr_swapchain_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME)) { dev->extensions.khr_display_swapchain_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DEVICE_GROUP_EXTENSION_NAME)) { dev->extensions.khr_device_group_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) { dev->extensions.ext_debug_marker_enabled = true; } else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], "VK_EXT_full_screen_exclusive")) { dev->extensions.ext_full_screen_exclusive_enabled = true; } } dev->extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils; if (!dev->extensions.khr_device_group_enabled) { VkPhysicalDeviceProperties properties; icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &properties); if (properties.apiVersion >= VK_API_VERSION_1_1) { dev->extensions.khr_device_group_enabled = true; } } res = fpCreateDevice(phys_dev_term->phys_dev, &localCreateInfo, pAllocator, &dev->icd_device); if (res != VK_SUCCESS) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "terminator_CreateDevice: Failed in ICD %s vkCreateDevice" "call", icd_term->scanned_icd->lib_name); goto out; } *pDevice = dev->icd_device; loader_add_logical_device(icd_term->this_instance, icd_term, dev); // Init dispatch pointer in new device object loader_init_dispatch(*pDevice, &dev->loader_dispatch); out: if (NULL != icd_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts); } // Restore pNext pointer to old VkDeviceGroupDeviceCreateInfoKHX // in the chain to maintain consistency for the caller. if (caller_dgci_container != NULL) { caller_dgci_container->pNext = (VkBaseOutStructure *)caller_dgci; } return res; } VkResult setupLoaderTrampPhysDevs(VkInstance instance) { VkResult res = VK_SUCCESS; VkPhysicalDevice *local_phys_devs = NULL; struct loader_instance *inst; uint32_t total_count = 0; struct loader_physical_device_tramp **new_phys_devs = NULL; inst = loader_get_instance(instance); if (NULL == inst) { res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // Query how many GPUs there res = inst->disp->layer_inst_disp.EnumeratePhysicalDevices(instance, &total_count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTrampPhysDevs: Failed during dispatch call " "of \'vkEnumeratePhysicalDevices\' to lower layers or " "loader to get count."); goto out; } // Really use what the total GPU count is since Optimus and other layers may mess // the count up. total_count = inst->total_gpu_count; // Create an array for the new physical devices, which will be stored // in the instance for the trampoline code. new_phys_devs = (struct loader_physical_device_tramp **)loader_instance_heap_alloc( inst, total_count * sizeof(struct loader_physical_device_tramp *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTrampPhysDevs: Failed to allocate new physical device" " array of size %d", total_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(new_phys_devs, 0, total_count * sizeof(struct loader_physical_device_tramp *)); // Create a temporary array (on the stack) to keep track of the // returned VkPhysicalDevice values. local_phys_devs = loader_stack_alloc(sizeof(VkPhysicalDevice) * total_count); if (NULL == local_phys_devs) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTrampPhysDevs: Failed to allocate local " "physical device array of size %d", total_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(local_phys_devs, 0, sizeof(VkPhysicalDevice) * total_count); res = inst->disp->layer_inst_disp.EnumeratePhysicalDevices(instance, &total_count, local_phys_devs); if (VK_SUCCESS != res) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTrampPhysDevs: Failed during dispatch call " "of \'vkEnumeratePhysicalDevices\' to lower layers or " "loader to get content."); goto out; } // Copy or create everything to fill the new array of physical devices for (uint32_t new_idx = 0; new_idx < total_count; new_idx++) { // Check if this physical device is already in the old buffer for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_tramp; old_idx++) { if (local_phys_devs[new_idx] == inst->phys_devs_tramp[old_idx]->phys_dev) { new_phys_devs[new_idx] = inst->phys_devs_tramp[old_idx]; break; } } // If this physical device isn't in the old buffer, create it if (NULL == new_phys_devs[new_idx]) { new_phys_devs[new_idx] = (struct loader_physical_device_tramp *)loader_instance_heap_alloc( inst, sizeof(struct loader_physical_device_tramp), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[new_idx]) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTrampPhysDevs: Failed to allocate " "physical device trampoline object %d", new_idx); total_count = new_idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Initialize the new physicalDevice object loader_set_dispatch((void *)new_phys_devs[new_idx], inst->disp); new_phys_devs[new_idx]->this_instance = inst; new_phys_devs[new_idx]->phys_dev = local_phys_devs[new_idx]; } } out: if (VK_SUCCESS != res) { if (NULL != new_phys_devs) { for (uint32_t i = 0; i < total_count; i++) { loader_instance_heap_free(inst, new_phys_devs[i]); } loader_instance_heap_free(inst, new_phys_devs); } total_count = 0; } else { // Free everything that didn't carry over to the new array of // physical devices if (NULL != inst->phys_devs_tramp) { for (uint32_t i = 0; i < inst->phys_dev_count_tramp; i++) { bool found = false; for (uint32_t j = 0; j < total_count; j++) { if (inst->phys_devs_tramp[i] == new_phys_devs[j]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_devs_tramp[i]); } } loader_instance_heap_free(inst, inst->phys_devs_tramp); } // Swap in the new physical device list inst->phys_dev_count_tramp = total_count; inst->phys_devs_tramp = new_phys_devs; } return res; } struct LoaderSortedPhysicalDevice { uint32_t device_count; VkPhysicalDevice* physical_devices; uint32_t icd_index; struct loader_icd_term* icd_term; }; // This function allocates an array in sorted_devices which must be freed by the caller if not null VkResult ReadSortedPhysicalDevices(struct loader_instance *inst, struct LoaderSortedPhysicalDevice **sorted_devices, uint32_t* sorted_count) { VkResult res = VK_SUCCESS; #if defined(_WIN32) uint32_t sorted_alloc = 0; struct loader_icd_term *icd_term = NULL; IDXGIFactory6* dxgi_factory = NULL; HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory6, &dxgi_factory); if (hres != S_OK) { loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Failed to create DXGI factory 6. Physical devices will not be sorted"); } else { sorted_alloc = 16; *sorted_devices = loader_instance_heap_alloc(inst, sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (*sorted_devices == NULL) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(*sorted_devices, 0, sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice)); *sorted_count = 0; for (uint32_t i = 0; ; ++i) { IDXGIAdapter1* adapter; hres = dxgi_factory->lpVtbl->EnumAdapterByGpuPreference(dxgi_factory, i, DXGI_GPU_PREFERENCE_UNSPECIFIED, &IID_IDXGIAdapter1, &adapter); if (hres == DXGI_ERROR_NOT_FOUND) { break; // No more adapters } else if (hres != S_OK) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to enumerate adapters by GPU preference at index %u. This adapter will not be sorted", i); break; } DXGI_ADAPTER_DESC1 description; hres = adapter->lpVtbl->GetDesc1(adapter, &description); if (hres != S_OK) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to get adapter LUID index %u. This adapter will not be sorted", i); continue; } if (sorted_alloc <= i) { uint32_t old_size = sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice); *sorted_devices = loader_instance_heap_realloc(inst, *sorted_devices, old_size, 2 * old_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (*sorted_devices == NULL) { adapter->lpVtbl->Release(adapter); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } sorted_alloc *= 2; } struct LoaderSortedPhysicalDevice *sorted_array = *sorted_devices; sorted_array[*sorted_count].device_count = 0; sorted_array[*sorted_count].physical_devices = NULL; //*sorted_count = i; icd_term = inst->icd_terms; for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { // This is the new behavior, which cannot be run unless the ICD provides EnumerateAdapterPhysicalDevices if (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices == NULL) { continue; } uint32_t count; VkResult vkres = icd_term->scanned_icd->EnumerateAdapterPhysicalDevices(icd_term->instance, description.AdapterLuid, &count, NULL); if (vkres == VK_ERROR_INCOMPATIBLE_DRIVER) { continue; // This driver doesn't support the adapter } else if (vkres == VK_ERROR_OUT_OF_HOST_MEMORY) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } else if (vkres != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to convert DXGI adapter into Vulkan physical device with unexpected error code"); continue; } // Get the actual physical devices if (0 != count) { do { sorted_array[*sorted_count].physical_devices = loader_instance_heap_realloc(inst, sorted_array[*sorted_count].physical_devices, sorted_array[*sorted_count].device_count * sizeof(VkPhysicalDevice), count * sizeof(VkPhysicalDevice), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (sorted_array[*sorted_count].physical_devices == NULL) { res = VK_ERROR_OUT_OF_HOST_MEMORY; break; } sorted_array[*sorted_count].device_count = count; } while ((vkres = icd_term->scanned_icd->EnumerateAdapterPhysicalDevices(icd_term->instance, description.AdapterLuid, &count, sorted_array[*sorted_count].physical_devices)) == VK_INCOMPLETE); } if (vkres != VK_SUCCESS) { loader_instance_heap_free(inst, sorted_array[*sorted_count].physical_devices); sorted_array[*sorted_count].physical_devices = NULL; if (vkres == VK_ERROR_OUT_OF_HOST_MEMORY) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } else { loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to convert DXGI adapter into Vulkan physical device"); continue; } } inst->total_gpu_count += (sorted_array[*sorted_count].device_count = count); sorted_array[*sorted_count].icd_index = icd_idx; sorted_array[*sorted_count].icd_term = icd_term; ++(*sorted_count); } adapter->lpVtbl->Release(adapter); } dxgi_factory->lpVtbl->Release(dxgi_factory); } out: #endif if (*sorted_count == 0 && *sorted_devices != NULL) { loader_instance_heap_free(inst, *sorted_devices); *sorted_devices = NULL; } return res; } VkResult setupLoaderTermPhysDevs(struct loader_instance *inst) { VkResult res = VK_SUCCESS; struct loader_icd_term *icd_term; struct loader_phys_dev_per_icd *icd_phys_dev_array = NULL; struct loader_physical_device_term **new_phys_devs = NULL; struct LoaderSortedPhysicalDevice *sorted_phys_dev_array = NULL; uint32_t sorted_count = 0; inst->total_gpu_count = 0; // Allocate something to store the physical device characteristics // that we read from each ICD. icd_phys_dev_array = (struct loader_phys_dev_per_icd *)loader_stack_alloc(sizeof(struct loader_phys_dev_per_icd) * inst->total_icd_count); if (NULL == icd_phys_dev_array) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to allocate temporary " "ICD Physical device info array of size %d", inst->total_gpu_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(icd_phys_dev_array, 0, sizeof(struct loader_phys_dev_per_icd) * inst->total_icd_count); // Get the physical devices supported by platform sorting mechanism into a separate list res = ReadSortedPhysicalDevices(inst, &sorted_phys_dev_array, &sorted_count); if (VK_SUCCESS != res) { goto out; } // For each ICD, query the number of physical devices, and then get an // internal value for those physical devices. icd_term = inst->icd_terms; for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { icd_phys_dev_array[icd_idx].count = 0; icd_phys_dev_array[icd_idx].phys_devs = NULL; icd_phys_dev_array[icd_idx].this_icd_term = NULL; // This is the legacy behavior which should be skipped if EnumerateAdapterPhysicalDevices is available // and we successfully enumerated sorted adapters using ReadSortedPhysicalDevices. #if defined(VK_USE_PLATFORM_WIN32_KHR) if (sorted_count && icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL) { continue; } #endif res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &icd_phys_dev_array[icd_idx].count, NULL); if (VK_SUCCESS != res) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Call to " "ICD %d's \'vkEnumeratePhysicalDevices\' failed with" " error 0x%08x", icd_idx, res); goto out; } icd_phys_dev_array[icd_idx].phys_devs = (VkPhysicalDevice *)loader_stack_alloc(icd_phys_dev_array[icd_idx].count * sizeof(VkPhysicalDevice)); if (NULL == icd_phys_dev_array[icd_idx].phys_devs) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to allocate temporary " "ICD Physical device array for ICD %d of size %d", icd_idx, inst->total_gpu_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &(icd_phys_dev_array[icd_idx].count), icd_phys_dev_array[icd_idx].phys_devs); if (VK_SUCCESS != res) { goto out; } inst->total_gpu_count += icd_phys_dev_array[icd_idx].count; icd_phys_dev_array[icd_idx].this_icd_term = icd_term; } if (0 == inst->total_gpu_count) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to detect any valid" " GPUs in the current config"); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } new_phys_devs = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term *) * inst->total_gpu_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to allocate new physical" " device array of size %d", inst->total_gpu_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(new_phys_devs, 0, sizeof(struct loader_physical_device_term *) * inst->total_gpu_count); // Copy or create everything to fill the new array of physical devices uint32_t idx = 0; #if defined(_WIN32) // Copy over everything found through sorted enumeration for (uint32_t i = 0; i < sorted_count; ++i) { for (uint32_t j = 0; j < sorted_phys_dev_array[i].device_count; ++j) { // Check if this physical device is already in the old buffer if (NULL != inst->phys_devs_term) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) { if (sorted_phys_dev_array[i].physical_devices[j] == inst->phys_devs_term[old_idx]->phys_dev) { new_phys_devs[idx] = inst->phys_devs_term[old_idx]; break; } } } // If this physical device isn't in the old buffer, then we need to create it. if (NULL == new_phys_devs[idx]) { new_phys_devs[idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[idx]) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to allocate " "physical device terminator object %d", idx); inst->total_gpu_count = idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loader_set_dispatch((void *)new_phys_devs[idx], inst->disp); new_phys_devs[idx]->this_icd_term = sorted_phys_dev_array[i].icd_term; new_phys_devs[idx]->icd_index = (uint8_t)(sorted_phys_dev_array[i].icd_index); new_phys_devs[idx]->phys_dev = sorted_phys_dev_array[i].physical_devices[j]; } // Increment the count of new physical devices idx++; } } #endif // Copy over everything found through EnumeratePhysicalDevices for (uint32_t icd_idx = 0; icd_idx < inst->total_icd_count; icd_idx++) { for (uint32_t pd_idx = 0; pd_idx < icd_phys_dev_array[icd_idx].count; pd_idx++) { // Check if this physical device is already in the old buffer if (NULL != inst->phys_devs_term) { for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) { if (icd_phys_dev_array[icd_idx].phys_devs[pd_idx] == inst->phys_devs_term[old_idx]->phys_dev) { new_phys_devs[idx] = inst->phys_devs_term[old_idx]; break; } } } // If this physical device isn't in the old buffer, then we // need to create it. if (NULL == new_phys_devs[idx]) { new_phys_devs[idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_devs[idx]) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevs: Failed to allocate " "physical device terminator object %d", idx); inst->total_gpu_count = idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loader_set_dispatch((void *)new_phys_devs[idx], inst->disp); new_phys_devs[idx]->this_icd_term = icd_phys_dev_array[icd_idx].this_icd_term; new_phys_devs[idx]->icd_index = (uint8_t)(icd_idx); new_phys_devs[idx]->phys_dev = icd_phys_dev_array[icd_idx].phys_devs[pd_idx]; } idx++; } } out: if (VK_SUCCESS != res) { if (NULL != new_phys_devs) { // We've encountered an error, so we should free the new buffers. for (uint32_t i = 0; i < inst->total_gpu_count; i++) { loader_instance_heap_free(inst, new_phys_devs[i]); } loader_instance_heap_free(inst, new_phys_devs); } inst->total_gpu_count = 0; } else { // Free everything that didn't carry over to the new array of // physical devices. Everything else will have been copied over // to the new array. if (NULL != inst->phys_devs_term) { for (uint32_t cur_pd = 0; cur_pd < inst->phys_dev_count_term; cur_pd++) { bool found = false; for (uint32_t new_pd_idx = 0; new_pd_idx < inst->total_gpu_count; new_pd_idx++) { if (inst->phys_devs_term[cur_pd] == new_phys_devs[new_pd_idx]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_devs_term[cur_pd]); } } loader_instance_heap_free(inst, inst->phys_devs_term); } // Swap out old and new devices list inst->phys_dev_count_term = inst->total_gpu_count; inst->phys_devs_term = new_phys_devs; } if (sorted_phys_dev_array != NULL) { for (uint32_t i = 0; i < sorted_count; ++i) { if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) { loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices); } } loader_instance_heap_free(inst, sorted_phys_dev_array); } return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount, VkPhysicalDevice *pPhysicalDevices) { struct loader_instance *inst = (struct loader_instance *)instance; VkResult res = VK_SUCCESS; // Always call the setup loader terminator physical devices because they may // have changed at any point. res = setupLoaderTermPhysDevs(inst); if (VK_SUCCESS != res) { goto out; } uint32_t copy_count = inst->total_gpu_count; if (NULL != pPhysicalDevices) { if (copy_count > *pPhysicalDeviceCount) { copy_count = *pPhysicalDeviceCount; res = VK_INCOMPLETE; } for (uint32_t i = 0; i < copy_count; i++) { pPhysicalDevices[i] = (VkPhysicalDevice)inst->phys_devs_term[i]; } } *pPhysicalDeviceCount = copy_count; out: return res; } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceProperties) { icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, pProperties); } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties) { icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, pProperties); } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceMemoryProperties) { icd_term->dispatch.GetPhysicalDeviceMemoryProperties(phys_dev_term->phys_dev, pProperties); } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceFeatures) { icd_term->dispatch.GetPhysicalDeviceFeatures(phys_dev_term->phys_dev, pFeatures); } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties *pFormatInfo) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceFormatProperties) { icd_term->dispatch.GetPhysicalDeviceFormatProperties(phys_dev_term->phys_dev, format, pFormatInfo); } } VKAPI_ATTR VkResult VKAPI_CALL terminator_GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties *pImageFormatProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL == icd_term->dispatch.GetPhysicalDeviceImageFormatProperties) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "Encountered the vkEnumerateDeviceLayerProperties " "terminator. This means a layer improperly continued."); return VK_ERROR_INITIALIZATION_FAILED; } return icd_term->dispatch.GetPhysicalDeviceImageFormatProperties(phys_dev_term->phys_dev, format, type, tiling, usage, flags, pImageFormatProperties); } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t *pNumProperties, VkSparseImageFormatProperties *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; if (NULL != icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties) { icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties(phys_dev_term->phys_dev, format, type, samples, usage, tiling, pNumProperties, pProperties); } } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { struct loader_physical_device_term *phys_dev_term; struct loader_layer_list implicit_layer_list = {0}; struct loader_extension_list all_exts = {0}; struct loader_extension_list icd_exts = {0}; // Any layer or trampoline wrapping should be removed at this point in time can just cast to the expected // type for VkPhysicalDevice. phys_dev_term = (struct loader_physical_device_term *)physicalDevice; // if we got here with a non-empty pLayerName, look up the extensions // from the json if (pLayerName != NULL && strlen(pLayerName) > 0) { uint32_t count; uint32_t copy_size; const struct loader_instance *inst = phys_dev_term->this_icd_term->this_instance; struct loader_device_extension_list *dev_ext_list = NULL; struct loader_device_extension_list local_ext_list; memset(&local_ext_list, 0, sizeof(local_ext_list)); if (vk_string_validate(MaxLoaderStringLength, pLayerName) == VK_STRING_ERROR_NONE) { for (uint32_t i = 0; i < inst->instance_layer_list.count; i++) { struct loader_layer_properties *props = &inst->instance_layer_list.list[i]; if (strcmp(props->info.layerName, pLayerName) == 0) { dev_ext_list = &props->device_extension_list; } } count = (dev_ext_list == NULL) ? 0 : dev_ext_list->count; if (pProperties == NULL) { *pPropertyCount = count; loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list); return VK_SUCCESS; } copy_size = *pPropertyCount < count ? *pPropertyCount : count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &dev_ext_list->list[i].props, sizeof(VkExtensionProperties)); } *pPropertyCount = copy_size; loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list); if (copy_size < count) { return VK_INCOMPLETE; } } else { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkEnumerateDeviceExtensionProperties: pLayerName " "is too long or is badly formed"); return VK_ERROR_EXTENSION_NOT_PRESENT; } return VK_SUCCESS; } // This case is during the call down the instance chain with pLayerName == NULL struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; uint32_t icd_ext_count = *pPropertyCount; VkExtensionProperties *icd_props_list = pProperties; VkResult res; if (NULL == icd_props_list) { // We need to find the count without duplicates. This requires querying the driver for the names of the extensions. // A small amount of storage is then needed to facilitate the de-duplication. res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, NULL); if (res != VK_SUCCESS) { goto out; } icd_props_list = loader_instance_heap_alloc(icd_term->this_instance, sizeof(VkExtensionProperties) * icd_ext_count, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (NULL == icd_props_list) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } } // Get the available device extension count, and if pProperties is not NULL, the extensions as well res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, icd_props_list); if (res != VK_SUCCESS) { goto out; } if (!loaderInitLayerList(icd_term->this_instance, &implicit_layer_list)) { res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } loaderAddImplicitLayers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list); // Initialize dev_extension list within the physicalDevice object res = loader_init_device_extensions(icd_term->this_instance, phys_dev_term, icd_ext_count, icd_props_list, &icd_exts); if (res != VK_SUCCESS) { goto out; } // We need to determine which implicit layers are active, and then add their extensions. This can't be cached as // it depends on results of environment variables (which can change). res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, icd_exts.count, icd_exts.list); if (res != VK_SUCCESS) { goto out; } loaderAddImplicitLayers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list); for (uint32_t i = 0; i < implicit_layer_list.count; i++) { for (uint32_t j = 0; j < implicit_layer_list.list[i].device_extension_list.count; j++) { res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, 1, &implicit_layer_list.list[i].device_extension_list.list[j].props); if (res != VK_SUCCESS) { goto out; } } } uint32_t capacity = *pPropertyCount; VkExtensionProperties *props = pProperties; res = VK_SUCCESS; if (NULL != pProperties) { for (uint32_t i = 0; i < all_exts.count && i < capacity; i++) { props[i] = all_exts.list[i]; } // Wasn't enough space for the extensions, we did partial copy now return VK_INCOMPLETE if (capacity < all_exts.count) { res = VK_INCOMPLETE; } else { *pPropertyCount = all_exts.count; } } else { *pPropertyCount = all_exts.count; } out: if (NULL != implicit_layer_list.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&implicit_layer_list); } if (NULL != all_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&all_exts); } if (NULL != icd_exts.list) { loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts); } if (NULL == pProperties && NULL != icd_props_list) { loader_instance_heap_free(icd_term->this_instance, icd_props_list); } return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount, VkLayerProperties *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "Encountered the vkEnumerateDeviceLayerProperties " "terminator. This means a layer improperly continued."); // Should never get here this call isn't dispatched down the chain return VK_ERROR_INITIALIZATION_FAILED; } VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) { VkStringErrorFlags result = VK_STRING_ERROR_NONE; int num_char_bytes = 0; int i, j; if (utf8 == NULL) { return VK_STRING_ERROR_NULL_PTR; } for (i = 0; i <= max_length; i++) { if (utf8[i] == 0) { break; } else if (i == max_length) { result |= VK_STRING_ERROR_LENGTH; break; } else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) { num_char_bytes = 0; } else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) { num_char_bytes = 1; } else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) { num_char_bytes = 2; } else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) { num_char_bytes = 3; } else { result = VK_STRING_ERROR_BAD_DATA; } // Validate the following num_char_bytes of data for (j = 0; (j < num_char_bytes) && (i < max_length); j++) { if (++i == max_length) { result |= VK_STRING_ERROR_LENGTH; break; } if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) { result |= VK_STRING_ERROR_BAD_DATA; } } } return result; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceVersion(const VkEnumerateInstanceVersionChain *chain, uint32_t* pApiVersion) { // NOTE: The Vulkan WG doesn't want us checking pApiVersion for NULL, but instead // prefers us crashing. *pApiVersion = VK_HEADER_VERSION_COMPLETE; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceExtensionProperties(const VkEnumerateInstanceExtensionPropertiesChain *chain, const char *pLayerName, uint32_t *pPropertyCount, VkExtensionProperties *pProperties) { struct loader_extension_list *global_ext_list = NULL; struct loader_layer_list instance_layers; struct loader_extension_list local_ext_list; struct loader_icd_tramp_list icd_tramp_list; uint32_t copy_size; VkResult res = VK_SUCCESS; // tls_instance = NULL; memset(&local_ext_list, 0, sizeof(local_ext_list)); memset(&instance_layers, 0, sizeof(instance_layers)); // Get layer libraries if needed if (pLayerName && strlen(pLayerName) != 0) { if (vk_string_validate(MaxLoaderStringLength, pLayerName) != VK_STRING_ERROR_NONE) { assert(VK_FALSE && "vkEnumerateInstanceExtensionProperties: " "pLayerName is too long or is badly formed"); res = VK_ERROR_EXTENSION_NOT_PRESENT; goto out; } loaderScanForLayers(NULL, &instance_layers); for (uint32_t i = 0; i < instance_layers.count; i++) { struct loader_layer_properties *props = &instance_layers.list[i]; if (strcmp(props->info.layerName, pLayerName) == 0) { global_ext_list = &props->instance_extension_list; break; } } } else { // Preload ICD libraries so subsequent calls to EnumerateInstanceExtensionProperties don't have to load them loader_preload_icds(); // Scan/discover all ICD libraries memset(&icd_tramp_list, 0, sizeof(icd_tramp_list)); res = loader_icd_scan(NULL, &icd_tramp_list); // EnumerateInstanceExtensionProperties can't return anything other than OOM or VK_ERROR_LAYER_NOT_PRESENT if ((VK_SUCCESS != res && icd_tramp_list.count > 0) || res == VK_ERROR_OUT_OF_HOST_MEMORY) { goto out; } // Get extensions from all ICD's, merge so no duplicates res = loader_get_icd_loader_instance_extensions(NULL, &icd_tramp_list, &local_ext_list); if (VK_SUCCESS != res) { goto out; } loader_scanned_icd_clear(NULL, &icd_tramp_list); // Append enabled implicit layers. loaderScanForImplicitLayers(NULL, &instance_layers); for (uint32_t i = 0; i < instance_layers.count; i++) { if (!loaderImplicitLayerIsEnabled(NULL, &instance_layers.list[i])) { continue; } struct loader_extension_list *ext_list = &instance_layers.list[i].instance_extension_list; loader_add_to_ext_list(NULL, &local_ext_list, ext_list->count, ext_list->list); } global_ext_list = &local_ext_list; } if (global_ext_list == NULL) { res = VK_ERROR_LAYER_NOT_PRESENT; goto out; } if (pProperties == NULL) { *pPropertyCount = global_ext_list->count; goto out; } copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &global_ext_list->list[i], sizeof(VkExtensionProperties)); } *pPropertyCount = copy_size; if (copy_size < global_ext_list->count) { res = VK_INCOMPLETE; goto out; } out: loader_destroy_generic_list(NULL, (struct loader_generic_list *)&local_ext_list); loaderDeleteLayerListAndProperties(NULL, &instance_layers); return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceLayerProperties(const VkEnumerateInstanceLayerPropertiesChain *chain, uint32_t *pPropertyCount, VkLayerProperties *pProperties) { VkResult result = VK_SUCCESS; struct loader_layer_list instance_layer_list; tls_instance = NULL; LOADER_PLATFORM_THREAD_ONCE(&once_init, loader_initialize); uint32_t copy_size; // Get layer libraries memset(&instance_layer_list, 0, sizeof(instance_layer_list)); loaderScanForLayers(NULL, &instance_layer_list); if (pProperties == NULL) { *pPropertyCount = instance_layer_list.count; goto out; } copy_size = (*pPropertyCount < instance_layer_list.count) ? *pPropertyCount : instance_layer_list.count; for (uint32_t i = 0; i < copy_size; i++) { memcpy(&pProperties[i], &instance_layer_list.list[i].info, sizeof(VkLayerProperties)); } *pPropertyCount = copy_size; if (copy_size < instance_layer_list.count) { result = VK_INCOMPLETE; goto out; } out: loaderDeleteLayerListAndProperties(NULL, &instance_layer_list); return result; } #if defined(_WIN32) && defined(LOADER_DYNAMIC_LIB) BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) { switch (reason) { case DLL_PROCESS_ATTACH: loader_initialize(); break; case DLL_PROCESS_DETACH: if (NULL == reserved) { loader_release(); } break; default: // Do nothing break; } return TRUE; } #elif !defined(_WIN32) __attribute__((constructor)) void loader_init_library() { loader_initialize(); } __attribute__((destructor)) void loader_free_library() { loader_release(); } #endif // ---- Vulkan Core 1.1 terminators VkResult setupLoaderTermPhysDevGroups(struct loader_instance *inst) { VkResult res = VK_SUCCESS; struct loader_icd_term *icd_term; uint32_t total_count = 0; uint32_t cur_icd_group_count = 0; VkPhysicalDeviceGroupPropertiesKHR **new_phys_dev_groups = NULL; VkPhysicalDeviceGroupPropertiesKHR *local_phys_dev_groups = NULL; bool *local_phys_dev_group_sorted = NULL; PFN_vkEnumeratePhysicalDeviceGroups fpEnumeratePhysicalDeviceGroups = NULL; struct LoaderSortedPhysicalDevice* sorted_phys_dev_array = NULL; uint32_t sorted_count = 0; if (0 == inst->phys_dev_count_term) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Loader failed to setup physical " "device terminator info before calling \'EnumeratePhysicalDeviceGroups\'."); assert(false); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } // For each ICD, query the number of physical device groups, and then get an // internal value for those physical devices. icd_term = inst->icd_terms; for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { // Get the function pointer to use to call into the ICD. This could be the core or KHR version if (inst->enabled_known_extensions.khr_device_group_creation) { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR; } else { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups; } cur_icd_group_count = 0; if (NULL == fpEnumeratePhysicalDeviceGroups) { // Treat each ICD's GPU as it's own group if the extension isn't supported res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &cur_icd_group_count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed during dispatch call of " "\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.", icd_idx); goto out; } } else { // Query the actual group info res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &cur_icd_group_count, NULL); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get count.", icd_idx); goto out; } } total_count += cur_icd_group_count; } // Create an array for the new physical device groups, which will be stored // in the instance for the Terminator code. new_phys_dev_groups = (VkPhysicalDeviceGroupProperties **)loader_instance_heap_alloc( inst, total_count * sizeof(VkPhysicalDeviceGroupProperties *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_dev_groups) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to allocate new physical device" " group array of size %d", total_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memset(new_phys_dev_groups, 0, total_count * sizeof(VkPhysicalDeviceGroupProperties *)); // Create a temporary array (on the stack) to keep track of the // returned VkPhysicalDevice values. local_phys_dev_groups = loader_stack_alloc(sizeof(VkPhysicalDeviceGroupProperties) * total_count); local_phys_dev_group_sorted = loader_stack_alloc(sizeof(bool) * total_count); if (NULL == local_phys_dev_groups || NULL == local_phys_dev_group_sorted) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to allocate local " "physical device group array of size %d", total_count); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } // Initialize the memory to something valid memset(local_phys_dev_groups, 0, sizeof(VkPhysicalDeviceGroupProperties) * total_count); memset(local_phys_dev_group_sorted, 0, sizeof(bool) * total_count); for (uint32_t group = 0; group < total_count; group++) { local_phys_dev_groups[group].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR; local_phys_dev_groups[group].pNext = NULL; local_phys_dev_groups[group].subsetAllocation = false; } // Get the physical devices supported by platform sorting mechanism into a separate list res = ReadSortedPhysicalDevices(inst, &sorted_phys_dev_array, &sorted_count); if (VK_SUCCESS != res) { goto out; } cur_icd_group_count = 0; icd_term = inst->icd_terms; for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) { uint32_t count_this_time = total_count - cur_icd_group_count; // Check if this group can be sorted #if defined(VK_USE_PLATFORM_WIN32_KHR) bool icd_sorted = sorted_count && (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL); #else bool icd_sorted = false; #endif // Get the function pointer to use to call into the ICD. This could be the core or KHR version if (inst->enabled_known_extensions.khr_device_group_creation) { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR; } else { fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups; } if (NULL == fpEnumeratePhysicalDeviceGroups) { VkPhysicalDevice* phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * count_this_time); if (NULL == phys_dev_array) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to allocate local " "physical device array of size %d", count_this_time); res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, phys_dev_array); if (res != VK_SUCCESS) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed during dispatch call of " "\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.", icd_idx); goto out; } // Add each GPU as it's own group for (uint32_t indiv_gpu = 0; indiv_gpu < count_this_time; indiv_gpu++) { local_phys_dev_groups[indiv_gpu + cur_icd_group_count].physicalDeviceCount = 1; local_phys_dev_groups[indiv_gpu + cur_icd_group_count].physicalDevices[0] = phys_dev_array[indiv_gpu]; local_phys_dev_group_sorted[indiv_gpu + cur_icd_group_count] = icd_sorted; } } else { res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, &local_phys_dev_groups[cur_icd_group_count]); for (uint32_t group = 0; group < count_this_time; ++group) { local_phys_dev_group_sorted[group + cur_icd_group_count] = icd_sorted; } if (VK_SUCCESS != res) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed during dispatch call of " "\'EnumeratePhysicalDeviceGroups\' to ICD %d to get content.", icd_idx); goto out; } } cur_icd_group_count += count_this_time; } // Replace all the physical device IDs with the proper loader values for (uint32_t group = 0; group < total_count; group++) { for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].physicalDeviceCount; group_gpu++) { bool found = false; for (uint32_t term_gpu = 0; term_gpu < inst->phys_dev_count_term; term_gpu++) { if (local_phys_dev_groups[group].physicalDevices[group_gpu] == inst->phys_devs_term[term_gpu]->phys_dev) { local_phys_dev_groups[group].physicalDevices[group_gpu] = (VkPhysicalDevice)inst->phys_devs_term[term_gpu]; found = true; break; } } if (!found) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to find GPU %d in group %d" " returned by \'EnumeratePhysicalDeviceGroups\' in list returned" " by \'EnumeratePhysicalDevices\'", group_gpu, group); res = VK_ERROR_INITIALIZATION_FAILED; goto out; } } } uint32_t idx = 0; #if defined(_WIN32) // Copy over everything found through sorted enumeration for (uint32_t i = 0; i < sorted_count; ++i) { // Find the VkPhysicalDeviceGroupProperties object in local_phys_dev_groups VkPhysicalDeviceGroupProperties *group_properties = NULL; for (uint32_t group = 0; group < total_count; group++) { if (sorted_phys_dev_array[i].device_count != local_phys_dev_groups[group].physicalDeviceCount) { continue; } bool match = true; for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].physicalDeviceCount; group_gpu++) { if (sorted_phys_dev_array[i].physical_devices[group_gpu] != ((struct loader_physical_device_term*) local_phys_dev_groups[group].physicalDevices[group_gpu])->phys_dev) { match = false; break; } } if (match) { group_properties = &local_phys_dev_groups[group]; } } // Check if this physical device group with the same contents is already in the old buffer for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) { if (NULL != group_properties && group_properties->physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) { bool found_all_gpus = true; for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) { bool found_gpu = false; for (uint32_t new_gpu = 0; new_gpu < group_properties->physicalDeviceCount; new_gpu++) { if (group_properties->physicalDevices[new_gpu] == inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) { found_gpu = true; break; } } if (!found_gpu) { found_all_gpus = false; break; } } if (!found_all_gpus) { continue; } else { new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx]; break; } } } // If this physical device group isn't in the old buffer, create it if (group_properties != NULL && NULL == new_phys_dev_groups[idx]) { new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR*)loader_instance_heap_alloc( inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_dev_groups[idx]) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to allocate " "physical device group Terminator object %d", idx); total_count = idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(new_phys_dev_groups[idx], group_properties, sizeof(VkPhysicalDeviceGroupPropertiesKHR)); } ++idx; } #endif // Copy or create everything to fill the new array of physical device groups for (uint32_t new_idx = 0; new_idx < total_count; new_idx++) { // Skip groups which have been included through sorting if (local_phys_dev_group_sorted[new_idx] || local_phys_dev_groups[new_idx].physicalDeviceCount == 0) { continue; } // Check if this physical device group with the same contents is already in the old buffer for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) { if (local_phys_dev_groups[new_idx].physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) { bool found_all_gpus = true; for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) { bool found_gpu = false; for (uint32_t new_gpu = 0; new_gpu < local_phys_dev_groups[new_idx].physicalDeviceCount; new_gpu++) { if (local_phys_dev_groups[new_idx].physicalDevices[new_gpu] == inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) { found_gpu = true; break; } } if (!found_gpu) { found_all_gpus = false; break; } } if (!found_all_gpus) { continue; } else { new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx]; break; } } } // If this physical device group isn't in the old buffer, create it if (NULL == new_phys_dev_groups[idx]) { new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR *)loader_instance_heap_alloc( inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE); if (NULL == new_phys_dev_groups[idx]) { loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "setupLoaderTermPhysDevGroups: Failed to allocate " "physical device group Terminator object %d", idx); total_count = idx; res = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } memcpy(new_phys_dev_groups[idx], &local_phys_dev_groups[new_idx], sizeof(VkPhysicalDeviceGroupPropertiesKHR)); } ++idx; } out: if (VK_SUCCESS != res) { if (NULL != new_phys_dev_groups) { for (uint32_t i = 0; i < total_count; i++) { loader_instance_heap_free(inst, new_phys_dev_groups[i]); } loader_instance_heap_free(inst, new_phys_dev_groups); } total_count = 0; } else { // Free everything that didn't carry over to the new array of // physical device groups if (NULL != inst->phys_dev_groups_term) { for (uint32_t i = 0; i < inst->phys_dev_group_count_term; i++) { bool found = false; for (uint32_t j = 0; j < total_count; j++) { if (inst->phys_dev_groups_term[i] == new_phys_dev_groups[j]) { found = true; break; } } if (!found) { loader_instance_heap_free(inst, inst->phys_dev_groups_term[i]); } } loader_instance_heap_free(inst, inst->phys_dev_groups_term); } // Swap in the new physical device group list inst->phys_dev_group_count_term = total_count; inst->phys_dev_groups_term = new_phys_dev_groups; } if (sorted_phys_dev_array != NULL) { for (uint32_t i = 0; i < sorted_count; ++i) { if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) { loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices); } } loader_instance_heap_free(inst, sorted_phys_dev_array); } return res; } VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDeviceGroups( VkInstance instance, uint32_t *pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) { struct loader_instance *inst = (struct loader_instance *)instance; VkResult res = VK_SUCCESS; // Always call the setup loader terminator physical device groups because they may // have changed at any point. res = setupLoaderTermPhysDevGroups(inst); if (VK_SUCCESS != res) { goto out; } uint32_t copy_count = inst->phys_dev_group_count_term; if (NULL != pPhysicalDeviceGroupProperties) { if (copy_count > *pPhysicalDeviceGroupCount) { copy_count = *pPhysicalDeviceGroupCount; res = VK_INCOMPLETE; } for (uint32_t i = 0; i < copy_count; i++) { memcpy(&pPhysicalDeviceGroupProperties[i], inst->phys_dev_groups_term[i], sizeof(VkPhysicalDeviceGroupPropertiesKHR)); } } *pPhysicalDeviceGroupCount = copy_count; out: return res; } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2 *pFeatures) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceFeatures2 fpGetPhysicalDeviceFeatures2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceFeatures2 = icd_term->dispatch.GetPhysicalDeviceFeatures2KHR; } else { fpGetPhysicalDeviceFeatures2 = icd_term->dispatch.GetPhysicalDeviceFeatures2; } if (fpGetPhysicalDeviceFeatures2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceFeatures2(phys_dev_term->phys_dev, pFeatures); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceFeatures2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceFeatures", icd_term->scanned_icd->lib_name); // Write to the VkPhysicalDeviceFeatures2 struct icd_term->dispatch.GetPhysicalDeviceFeatures(phys_dev_term->phys_dev, &pFeatures->features); const VkBaseInStructure *pNext = pFeatures->pNext; while (pNext != NULL) { switch (pNext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { // Skip the check if VK_KHR_multiview is enabled because it's a device extension // Write to the VkPhysicalDeviceMultiviewFeaturesKHR struct VkPhysicalDeviceMultiviewFeaturesKHR *multiview_features = (VkPhysicalDeviceMultiviewFeaturesKHR *)pNext; multiview_features->multiview = VK_FALSE; multiview_features->multiviewGeometryShader = VK_FALSE; multiview_features->multiviewTessellationShader = VK_FALSE; pNext = multiview_features->pNext; break; } default: { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceFeatures2: Emulation found unrecognized structure type in pFeatures->pNext - " "this struct will be ignored"); pNext = pNext->pNext; break; } } } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2 *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceProperties2 fpGetPhysicalDeviceProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceProperties2 = icd_term->dispatch.GetPhysicalDeviceProperties2KHR; } else { fpGetPhysicalDeviceProperties2 = icd_term->dispatch.GetPhysicalDeviceProperties2; } if (fpGetPhysicalDeviceProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceProperties2(phys_dev_term->phys_dev, pProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceProperties", icd_term->scanned_icd->lib_name); // Write to the VkPhysicalDeviceProperties2 struct icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &pProperties->properties); const VkBaseInStructure *pNext = pProperties->pNext; while (pNext != NULL) { switch (pNext->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { VkPhysicalDeviceIDPropertiesKHR *id_properties = (VkPhysicalDeviceIDPropertiesKHR *)pNext; // Verify that "VK_KHR_external_memory_capabilities" is enabled if (icd_term->this_instance->enabled_known_extensions.khr_external_memory_capabilities) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceProperties2: Emulation cannot generate unique IDs for struct " "VkPhysicalDeviceIDProperties - setting IDs to zero instead"); // Write to the VkPhysicalDeviceIDPropertiesKHR struct memset(id_properties->deviceUUID, 0, VK_UUID_SIZE); memset(id_properties->driverUUID, 0, VK_UUID_SIZE); id_properties->deviceLUIDValid = VK_FALSE; } pNext = id_properties->pNext; break; } default: { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceProperties2KHR: Emulation found unrecognized structure type in " "pProperties->pNext - this struct will be ignored"); pNext = pNext->pNext; break; } } } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2 *pFormatProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceFormatProperties2 fpGetPhysicalDeviceFormatProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceFormatProperties2KHR; } else { fpGetPhysicalDeviceFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceFormatProperties2; } if (fpGetPhysicalDeviceFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceFormatProperties2(phys_dev_term->phys_dev, format, pFormatProperties); } else { // Emulate the call loader_log( icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceFormatProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceFormatProperties", icd_term->scanned_icd->lib_name); // Write to the VkFormatProperties2 struct icd_term->dispatch.GetPhysicalDeviceFormatProperties(phys_dev_term->phys_dev, format, &pFormatProperties->formatProperties); if (pFormatProperties->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceFormatProperties2: Emulation found unrecognized structure type in " "pFormatProperties->pNext - this struct will be ignored"); } } } VKAPI_ATTR VkResult VKAPI_CALL terminator_GetPhysicalDeviceImageFormatProperties2( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2KHR *pImageFormatInfo, VkImageFormatProperties2KHR *pImageFormatProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceImageFormatProperties2 fpGetPhysicalDeviceImageFormatProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceImageFormatProperties2KHR; } else { fpGetPhysicalDeviceImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceImageFormatProperties2; } if (fpGetPhysicalDeviceImageFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver return fpGetPhysicalDeviceImageFormatProperties2(phys_dev_term->phys_dev, pImageFormatInfo, pImageFormatProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceImageFormatProperties2: Emulating call in ICD \"%s\" using " "vkGetPhysicalDeviceImageFormatProperties", icd_term->scanned_icd->lib_name); // If there is more info in either pNext, then this is unsupported if (pImageFormatInfo->pNext != NULL || pImageFormatProperties->pNext != NULL) { return VK_ERROR_FORMAT_NOT_SUPPORTED; } // Write to the VkImageFormatProperties2KHR struct return icd_term->dispatch.GetPhysicalDeviceImageFormatProperties( phys_dev_term->phys_dev, pImageFormatInfo->format, pImageFormatInfo->type, pImageFormatInfo->tiling, pImageFormatInfo->usage, pImageFormatInfo->flags, &pImageFormatProperties->imageFormatProperties); } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceQueueFamilyProperties2( VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties2KHR *pQueueFamilyProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceQueueFamilyProperties2 fpGetPhysicalDeviceQueueFamilyProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceQueueFamilyProperties2 = icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties2KHR; } else { fpGetPhysicalDeviceQueueFamilyProperties2 = icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties2; } if (fpGetPhysicalDeviceQueueFamilyProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceQueueFamilyProperties2(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, pQueueFamilyProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceQueueFamilyProperties2: Emulating call in ICD \"%s\" using " "vkGetPhysicalDeviceQueueFamilyProperties", icd_term->scanned_icd->lib_name); if (pQueueFamilyProperties == NULL || *pQueueFamilyPropertyCount == 0) { // Write to pQueueFamilyPropertyCount icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, NULL); } else { // Allocate a temporary array for the output of the old function VkQueueFamilyProperties *properties = loader_stack_alloc(*pQueueFamilyPropertyCount * sizeof(VkQueueFamilyProperties)); if (properties == NULL) { *pQueueFamilyPropertyCount = 0; loader_log( icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkGetPhysicalDeviceQueueFamilyProperties2: Out of memory - Failed to allocate array for loader emulation."); return; } icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, properties); for (uint32_t i = 0; i < *pQueueFamilyPropertyCount; ++i) { // Write to the VkQueueFamilyProperties2KHR struct memcpy(&pQueueFamilyProperties[i].queueFamilyProperties, &properties[i], sizeof(VkQueueFamilyProperties)); if (pQueueFamilyProperties[i].pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceQueueFamilyProperties2: Emulation found unrecognized structure type in " "pQueueFamilyProperties[%d].pNext - this struct will be ignored", i); } } } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceMemoryProperties2( VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceMemoryProperties2 fpGetPhysicalDeviceMemoryProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceMemoryProperties2 = icd_term->dispatch.GetPhysicalDeviceMemoryProperties2KHR; } else { fpGetPhysicalDeviceMemoryProperties2 = icd_term->dispatch.GetPhysicalDeviceMemoryProperties2; } if (fpGetPhysicalDeviceMemoryProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceMemoryProperties2(phys_dev_term->phys_dev, pMemoryProperties); } else { // Emulate the call loader_log( icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceMemoryProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceMemoryProperties", icd_term->scanned_icd->lib_name); // Write to the VkPhysicalDeviceMemoryProperties2 struct icd_term->dispatch.GetPhysicalDeviceMemoryProperties(phys_dev_term->phys_dev, &pMemoryProperties->memoryProperties); if (pMemoryProperties->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceMemoryProperties2: Emulation found unrecognized structure type in " "pMemoryProperties->pNext - this struct will be ignored"); } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceSparseImageFormatProperties2( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2KHR *pFormatInfo, uint32_t *pPropertyCount, VkSparseImageFormatProperties2KHR *pProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 fpGetPhysicalDeviceSparseImageFormatProperties2 = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) { fpGetPhysicalDeviceSparseImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties2KHR; } else { fpGetPhysicalDeviceSparseImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties2; } if (fpGetPhysicalDeviceSparseImageFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) { // Pass the call to the driver fpGetPhysicalDeviceSparseImageFormatProperties2(phys_dev_term->phys_dev, pFormatInfo, pPropertyCount, pProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceSparseImageFormatProperties2: Emulating call in ICD \"%s\" using " "vkGetPhysicalDeviceSparseImageFormatProperties", icd_term->scanned_icd->lib_name); if (pFormatInfo->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceSparseImageFormatProperties2: Emulation found unrecognized structure type in " "pFormatInfo->pNext - this struct will be ignored"); } if (pProperties == NULL || *pPropertyCount == 0) { // Write to pPropertyCount icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties( phys_dev_term->phys_dev, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples, pFormatInfo->usage, pFormatInfo->tiling, pPropertyCount, NULL); } else { // Allocate a temporary array for the output of the old function VkSparseImageFormatProperties *properties = loader_stack_alloc(*pPropertyCount * sizeof(VkSparseImageMemoryRequirements)); if (properties == NULL) { *pPropertyCount = 0; loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkGetPhysicalDeviceSparseImageFormatProperties2: Out of memory - Failed to allocate array for " "loader emulation."); return; } icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties( phys_dev_term->phys_dev, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples, pFormatInfo->usage, pFormatInfo->tiling, pPropertyCount, properties); for (uint32_t i = 0; i < *pPropertyCount; ++i) { // Write to the VkSparseImageFormatProperties2KHR struct memcpy(&pProperties[i].properties, &properties[i], sizeof(VkSparseImageFormatProperties)); if (pProperties[i].pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceSparseImageFormatProperties2: Emulation found unrecognized structure type in " "pProperties[%d].pNext - this struct will be ignored", i); } } } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalBufferProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo *pExternalBufferInfo, VkExternalBufferProperties *pExternalBufferProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceExternalBufferProperties fpGetPhysicalDeviceExternalBufferProperties = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_external_memory_capabilities) { fpGetPhysicalDeviceExternalBufferProperties = icd_term->dispatch.GetPhysicalDeviceExternalBufferPropertiesKHR; } else { fpGetPhysicalDeviceExternalBufferProperties = icd_term->dispatch.GetPhysicalDeviceExternalBufferProperties; } if (fpGetPhysicalDeviceExternalBufferProperties || !inst->enabled_known_extensions.khr_external_memory_capabilities) { // Pass the call to the driver fpGetPhysicalDeviceExternalBufferProperties(phys_dev_term->phys_dev, pExternalBufferInfo, pExternalBufferProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceExternalBufferProperties: Emulating call in ICD \"%s\"", icd_term->scanned_icd->lib_name); if (pExternalBufferInfo->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalBufferProperties: Emulation found unrecognized structure type in " "pExternalBufferInfo->pNext - this struct will be ignored"); } // Fill in everything being unsupported memset(&pExternalBufferProperties->externalMemoryProperties, 0, sizeof(VkExternalMemoryPropertiesKHR)); if (pExternalBufferProperties->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalBufferProperties: Emulation found unrecognized structure type in " "pExternalBufferProperties->pNext - this struct will be ignored"); } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalSemaphoreProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo, VkExternalSemaphoreProperties *pExternalSemaphoreProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceExternalSemaphoreProperties fpGetPhysicalDeviceExternalSemaphoreProperties = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_external_semaphore_capabilities) { fpGetPhysicalDeviceExternalSemaphoreProperties = icd_term->dispatch.GetPhysicalDeviceExternalSemaphorePropertiesKHR; } else { fpGetPhysicalDeviceExternalSemaphoreProperties = icd_term->dispatch.GetPhysicalDeviceExternalSemaphoreProperties; } if (fpGetPhysicalDeviceExternalSemaphoreProperties != NULL || !inst->enabled_known_extensions.khr_external_semaphore_capabilities) { // Pass the call to the driver fpGetPhysicalDeviceExternalSemaphoreProperties(phys_dev_term->phys_dev, pExternalSemaphoreInfo, pExternalSemaphoreProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceExternalSemaphoreProperties: Emulating call in ICD \"%s\"", icd_term->scanned_icd->lib_name); if (pExternalSemaphoreInfo->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalSemaphoreProperties: Emulation found unrecognized structure type in " "pExternalSemaphoreInfo->pNext - this struct will be ignored"); } // Fill in everything being unsupported pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0; pExternalSemaphoreProperties->compatibleHandleTypes = 0; pExternalSemaphoreProperties->externalSemaphoreFeatures = 0; if (pExternalSemaphoreProperties->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalSemaphoreProperties: Emulation found unrecognized structure type in " "pExternalSemaphoreProperties->pNext - this struct will be ignored"); } } } VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalFenceProperties( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo, VkExternalFenceProperties *pExternalFenceProperties) { struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice; struct loader_icd_term *icd_term = phys_dev_term->this_icd_term; const struct loader_instance *inst = icd_term->this_instance; // Get the function pointer to use to call into the ICD. This could be the core or KHR version PFN_vkGetPhysicalDeviceExternalFenceProperties fpGetPhysicalDeviceExternalFenceProperties = NULL; if (inst != NULL && inst->enabled_known_extensions.khr_external_fence_capabilities) { fpGetPhysicalDeviceExternalFenceProperties = icd_term->dispatch.GetPhysicalDeviceExternalFencePropertiesKHR; } else { fpGetPhysicalDeviceExternalFenceProperties = icd_term->dispatch.GetPhysicalDeviceExternalFenceProperties; } if (fpGetPhysicalDeviceExternalFenceProperties != NULL || !inst->enabled_known_extensions.khr_external_fence_capabilities) { // Pass the call to the driver fpGetPhysicalDeviceExternalFenceProperties(phys_dev_term->phys_dev, pExternalFenceInfo, pExternalFenceProperties); } else { // Emulate the call loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "vkGetPhysicalDeviceExternalFenceProperties: Emulating call in ICD \"%s\"", icd_term->scanned_icd->lib_name); if (pExternalFenceInfo->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalFenceProperties: Emulation found unrecognized structure type in " "pExternalFenceInfo->pNext - this struct will be ignored"); } // Fill in everything being unsupported pExternalFenceProperties->exportFromImportedHandleTypes = 0; pExternalFenceProperties->compatibleHandleTypes = 0; pExternalFenceProperties->externalFenceFeatures = 0; if (pExternalFenceProperties->pNext != NULL) { loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "vkGetPhysicalDeviceExternalFenceProperties: Emulation found unrecognized structure type in " "pExternalFenceProperties->pNext - this struct will be ignored"); } } }