/**************************************************************************/ /* nav_mesh_generator_2d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifdef CLIPPER2_ENABLED #include "nav_mesh_generator_2d.h" #include "core/config/project_settings.h" #include "scene/2d/mesh_instance_2d.h" #include "scene/2d/multimesh_instance_2d.h" #include "scene/2d/navigation_obstacle_2d.h" #include "scene/2d/physics/static_body_2d.h" #include "scene/2d/polygon_2d.h" #include "scene/2d/tile_map.h" #include "scene/resources/2d/capsule_shape_2d.h" #include "scene/resources/2d/circle_shape_2d.h" #include "scene/resources/2d/concave_polygon_shape_2d.h" #include "scene/resources/2d/convex_polygon_shape_2d.h" #include "scene/resources/2d/navigation_mesh_source_geometry_data_2d.h" #include "scene/resources/2d/navigation_polygon.h" #include "scene/resources/2d/rectangle_shape_2d.h" #include "thirdparty/clipper2/include/clipper2/clipper.h" #include "thirdparty/misc/polypartition.h" NavMeshGenerator2D *NavMeshGenerator2D::singleton = nullptr; Mutex NavMeshGenerator2D::baking_navmesh_mutex; Mutex NavMeshGenerator2D::generator_task_mutex; RWLock NavMeshGenerator2D::generator_rid_rwlock; bool NavMeshGenerator2D::use_threads = true; bool NavMeshGenerator2D::baking_use_multiple_threads = true; bool NavMeshGenerator2D::baking_use_high_priority_threads = true; HashSet> NavMeshGenerator2D::baking_navmeshes; HashMap NavMeshGenerator2D::generator_tasks; RID_Owner NavMeshGenerator2D::generator_parser_owner; LocalVector NavMeshGenerator2D::generator_parsers; NavMeshGenerator2D *NavMeshGenerator2D::get_singleton() { return singleton; } NavMeshGenerator2D::NavMeshGenerator2D() { ERR_FAIL_COND(singleton != nullptr); singleton = this; baking_use_multiple_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_multiple_threads"); baking_use_high_priority_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_high_priority_threads"); // Using threads might cause problems on certain exports or with the Editor on certain devices. // This is the main switch to turn threaded navmesh baking off should the need arise. use_threads = baking_use_multiple_threads; } NavMeshGenerator2D::~NavMeshGenerator2D() { cleanup(); } void NavMeshGenerator2D::sync() { if (generator_tasks.size() == 0) { return; } baking_navmesh_mutex.lock(); generator_task_mutex.lock(); LocalVector finished_task_ids; for (KeyValue &E : generator_tasks) { if (WorkerThreadPool::get_singleton()->is_task_completed(E.key)) { WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key); finished_task_ids.push_back(E.key); NavMeshGeneratorTask2D *generator_task = E.value; DEV_ASSERT(generator_task->status == NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED); baking_navmeshes.erase(generator_task->navigation_mesh); if (generator_task->callback.is_valid()) { generator_emit_callback(generator_task->callback); } memdelete(generator_task); } } for (WorkerThreadPool::TaskID finished_task_id : finished_task_ids) { generator_tasks.erase(finished_task_id); } generator_task_mutex.unlock(); baking_navmesh_mutex.unlock(); } void NavMeshGenerator2D::cleanup() { baking_navmesh_mutex.lock(); generator_task_mutex.lock(); baking_navmeshes.clear(); for (KeyValue &E : generator_tasks) { WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key); NavMeshGeneratorTask2D *generator_task = E.value; memdelete(generator_task); } generator_tasks.clear(); generator_rid_rwlock.write_lock(); for (NavMeshGeometryParser2D *parser : generator_parsers) { generator_parser_owner.free(parser->self); } generator_parsers.clear(); generator_rid_rwlock.write_unlock(); generator_task_mutex.unlock(); baking_navmesh_mutex.unlock(); } void NavMeshGenerator2D::finish() { cleanup(); } void NavMeshGenerator2D::parse_source_geometry_data(Ref p_navigation_mesh, Ref p_source_geometry_data, Node *p_root_node, const Callable &p_callback) { ERR_FAIL_COND(!Thread::is_main_thread()); ERR_FAIL_COND(!p_navigation_mesh.is_valid()); ERR_FAIL_NULL(p_root_node); ERR_FAIL_COND(!p_root_node->is_inside_tree()); ERR_FAIL_COND(!p_source_geometry_data.is_valid()); generator_parse_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_root_node); if (p_callback.is_valid()) { generator_emit_callback(p_callback); } } void NavMeshGenerator2D::bake_from_source_geometry_data(Ref p_navigation_mesh, Ref p_source_geometry_data, const Callable &p_callback) { ERR_FAIL_COND(!p_navigation_mesh.is_valid()); ERR_FAIL_COND(!p_source_geometry_data.is_valid()); if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) { p_navigation_mesh->clear(); if (p_callback.is_valid()) { generator_emit_callback(p_callback); } return; } if (is_baking(p_navigation_mesh)) { ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish."); } baking_navmesh_mutex.lock(); baking_navmeshes.insert(p_navigation_mesh); baking_navmesh_mutex.unlock(); generator_bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data); baking_navmesh_mutex.lock(); baking_navmeshes.erase(p_navigation_mesh); baking_navmesh_mutex.unlock(); if (p_callback.is_valid()) { generator_emit_callback(p_callback); } } void NavMeshGenerator2D::bake_from_source_geometry_data_async(Ref p_navigation_mesh, Ref p_source_geometry_data, const Callable &p_callback) { ERR_FAIL_COND(!p_navigation_mesh.is_valid()); ERR_FAIL_COND(!p_source_geometry_data.is_valid()); if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) { p_navigation_mesh->clear(); if (p_callback.is_valid()) { generator_emit_callback(p_callback); } return; } if (!use_threads) { bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_callback); return; } if (is_baking(p_navigation_mesh)) { ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish."); } baking_navmesh_mutex.lock(); baking_navmeshes.insert(p_navigation_mesh); baking_navmesh_mutex.unlock(); generator_task_mutex.lock(); NavMeshGeneratorTask2D *generator_task = memnew(NavMeshGeneratorTask2D); generator_task->navigation_mesh = p_navigation_mesh; generator_task->source_geometry_data = p_source_geometry_data; generator_task->callback = p_callback; generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_STARTED; generator_task->thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMeshGenerator2D::generator_thread_bake, generator_task, NavMeshGenerator2D::baking_use_high_priority_threads, "NavMeshGeneratorBake2D"); generator_tasks.insert(generator_task->thread_task_id, generator_task); generator_task_mutex.unlock(); } bool NavMeshGenerator2D::is_baking(Ref p_navigation_polygon) { baking_navmesh_mutex.lock(); bool baking = baking_navmeshes.has(p_navigation_polygon); baking_navmesh_mutex.unlock(); return baking; } void NavMeshGenerator2D::generator_thread_bake(void *p_arg) { NavMeshGeneratorTask2D *generator_task = static_cast(p_arg); generator_bake_from_source_geometry_data(generator_task->navigation_mesh, generator_task->source_geometry_data); generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED; } void NavMeshGenerator2D::generator_parse_geometry_node(Ref p_navigation_mesh, Ref p_source_geometry_data, Node *p_node, bool p_recurse_children) { generator_parse_meshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_parse_multimeshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_parse_polygon2d_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_parse_staticbody2d_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_parse_navigationobstacle_node(p_navigation_mesh, p_source_geometry_data, p_node); generator_rid_rwlock.read_lock(); for (const NavMeshGeometryParser2D *parser : generator_parsers) { if (!parser->callback.is_valid()) { continue; } parser->callback.call(p_navigation_mesh, p_source_geometry_data, p_node); } generator_rid_rwlock.read_unlock(); if (p_recurse_children) { for (int i = 0; i < p_node->get_child_count(); i++) { generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, p_node->get_child(i), p_recurse_children); } } else if (Object::cast_to(p_node)) { // Special case for TileMap, so that internal layer get parsed even if p_recurse_children is false. for (int i = 0; i < p_node->get_child_count(); i++) { TileMapLayer *tile_map_layer = Object::cast_to(p_node->get_child(i)); if (tile_map_layer && tile_map_layer->get_index_in_tile_map() >= 0) { generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, tile_map_layer); } } } } void NavMeshGenerator2D::generator_parse_meshinstance2d_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { MeshInstance2D *mesh_instance = Object::cast_to(p_node); if (mesh_instance == nullptr) { return; } NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type(); if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) { return; } Ref mesh = mesh_instance->get_mesh(); if (!mesh.is_valid()) { return; } const Transform2D mesh_instance_xform = p_source_geometry_data->root_node_transform * mesh_instance->get_global_transform(); using namespace Clipper2Lib; PathsD subject_paths, dummy_clip_paths; for (int i = 0; i < mesh->get_surface_count(); i++) { if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) { continue; } PathD subject_path; int index_count = 0; if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { index_count = mesh->surface_get_array_index_len(i); } else { index_count = mesh->surface_get_array_len(i); } ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0)); Array a = mesh->surface_get_arrays(i); Vector mesh_vertices = a[Mesh::ARRAY_VERTEX]; if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { Vector mesh_indices = a[Mesh::ARRAY_INDEX]; for (int vertex_index : mesh_indices) { const Vector2 &vertex = mesh_vertices[vertex_index]; const PointD &point = PointD(vertex.x, vertex.y); subject_path.push_back(point); } } else { for (const Vector2 &vertex : mesh_vertices) { const PointD &point = PointD(vertex.x, vertex.y); subject_path.push_back(point); } } subject_paths.push_back(subject_path); } PathsD path_solution; path_solution = Union(subject_paths, dummy_clip_paths, FillRule::NonZero); //path_solution = RamerDouglasPeucker(path_solution, 0.025); Vector> polypaths; for (const PathD &scaled_path : path_solution) { Vector shape_outline; for (const PointD &scaled_point : scaled_path) { shape_outline.push_back(Point2(static_cast(scaled_point.x), static_cast(scaled_point.y))); } for (int i = 0; i < shape_outline.size(); i++) { shape_outline.write[i] = mesh_instance_xform.xform(shape_outline[i]); } p_source_geometry_data->add_obstruction_outline(shape_outline); } } void NavMeshGenerator2D::generator_parse_multimeshinstance2d_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { MultiMeshInstance2D *multimesh_instance = Object::cast_to(p_node); if (multimesh_instance == nullptr) { return; } NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type(); if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) { return; } Ref multimesh = multimesh_instance->get_multimesh(); if (!(multimesh.is_valid() && multimesh->get_transform_format() == MultiMesh::TRANSFORM_2D)) { return; } Ref mesh = multimesh->get_mesh(); if (!mesh.is_valid()) { return; } using namespace Clipper2Lib; PathsD mesh_subject_paths, dummy_clip_paths; for (int i = 0; i < mesh->get_surface_count(); i++) { if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { continue; } if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) { continue; } PathD subject_path; int index_count = 0; if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { index_count = mesh->surface_get_array_index_len(i); } else { index_count = mesh->surface_get_array_len(i); } ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0)); Array a = mesh->surface_get_arrays(i); Vector mesh_vertices = a[Mesh::ARRAY_VERTEX]; if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) { Vector mesh_indices = a[Mesh::ARRAY_INDEX]; for (int vertex_index : mesh_indices) { const Vector2 &vertex = mesh_vertices[vertex_index]; const PointD &point = PointD(vertex.x, vertex.y); subject_path.push_back(point); } } else { for (const Vector2 &vertex : mesh_vertices) { const PointD &point = PointD(vertex.x, vertex.y); subject_path.push_back(point); } } mesh_subject_paths.push_back(subject_path); } PathsD mesh_path_solution = Union(mesh_subject_paths, dummy_clip_paths, FillRule::NonZero); //path_solution = RamerDouglasPeucker(path_solution, 0.025); int multimesh_instance_count = multimesh->get_visible_instance_count(); if (multimesh_instance_count == -1) { multimesh_instance_count = multimesh->get_instance_count(); } const Transform2D multimesh_instance_xform = p_source_geometry_data->root_node_transform * multimesh_instance->get_global_transform(); for (int i = 0; i < multimesh_instance_count; i++) { const Transform2D multimesh_instance_mesh_instance_xform = multimesh_instance_xform * multimesh->get_instance_transform_2d(i); for (const PathD &mesh_path : mesh_path_solution) { Vector shape_outline; for (const PointD &mesh_path_point : mesh_path) { shape_outline.push_back(Point2(static_cast(mesh_path_point.x), static_cast(mesh_path_point.y))); } for (int j = 0; j < shape_outline.size(); j++) { shape_outline.write[j] = multimesh_instance_mesh_instance_xform.xform(shape_outline[j]); } p_source_geometry_data->add_obstruction_outline(shape_outline); } } } void NavMeshGenerator2D::generator_parse_polygon2d_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { Polygon2D *polygon_2d = Object::cast_to(p_node); if (polygon_2d == nullptr) { return; } NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type(); if (parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) { const Transform2D polygon_2d_xform = p_source_geometry_data->root_node_transform * polygon_2d->get_global_transform(); Vector shape_outline = polygon_2d->get_polygon(); for (int i = 0; i < shape_outline.size(); i++) { shape_outline.write[i] = polygon_2d_xform.xform(shape_outline[i]); } p_source_geometry_data->add_obstruction_outline(shape_outline); } } void NavMeshGenerator2D::generator_parse_staticbody2d_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { StaticBody2D *static_body = Object::cast_to(p_node); if (static_body == nullptr) { return; } NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type(); if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) { return; } uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask(); if (!(static_body->get_collision_layer() & parsed_collision_mask)) { return; } List shape_owners; static_body->get_shape_owners(&shape_owners); for (uint32_t shape_owner : shape_owners) { if (static_body->is_shape_owner_disabled(shape_owner)) { continue; } const int shape_count = static_body->shape_owner_get_shape_count(shape_owner); for (int shape_index = 0; shape_index < shape_count; shape_index++) { Ref s = static_body->shape_owner_get_shape(shape_owner, shape_index); if (s.is_null()) { continue; } const Transform2D static_body_xform = p_source_geometry_data->root_node_transform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner); RectangleShape2D *rectangle_shape = Object::cast_to(*s); if (rectangle_shape) { Vector shape_outline; const Vector2 &rectangle_size = rectangle_shape->get_size(); shape_outline.resize(5); shape_outline.write[0] = static_body_xform.xform(-rectangle_size * 0.5); shape_outline.write[1] = static_body_xform.xform(Vector2(rectangle_size.x, -rectangle_size.y) * 0.5); shape_outline.write[2] = static_body_xform.xform(rectangle_size * 0.5); shape_outline.write[3] = static_body_xform.xform(Vector2(-rectangle_size.x, rectangle_size.y) * 0.5); shape_outline.write[4] = static_body_xform.xform(-rectangle_size * 0.5); p_source_geometry_data->add_obstruction_outline(shape_outline); } CapsuleShape2D *capsule_shape = Object::cast_to(*s); if (capsule_shape) { const real_t capsule_height = capsule_shape->get_height(); const real_t capsule_radius = capsule_shape->get_radius(); Vector shape_outline; const real_t turn_step = Math_TAU / 12.0; shape_outline.resize(14); int shape_outline_inx = 0; for (int i = 0; i < 12; i++) { Vector2 ofs = Vector2(0, (i > 3 && i <= 9) ? -capsule_height * 0.5 + capsule_radius : capsule_height * 0.5 - capsule_radius); shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius + ofs); shape_outline_inx += 1; if (i == 3 || i == 9) { shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius - ofs); shape_outline_inx += 1; } } p_source_geometry_data->add_obstruction_outline(shape_outline); } CircleShape2D *circle_shape = Object::cast_to(*s); if (circle_shape) { const real_t circle_radius = circle_shape->get_radius(); Vector shape_outline; int circle_edge_count = 12; shape_outline.resize(circle_edge_count); const real_t turn_step = Math_TAU / real_t(circle_edge_count); for (int i = 0; i < circle_edge_count; i++) { shape_outline.write[i] = static_body_xform.xform(Vector2(Math::cos(i * turn_step), Math::sin(i * turn_step)) * circle_radius); } p_source_geometry_data->add_obstruction_outline(shape_outline); } ConcavePolygonShape2D *concave_polygon_shape = Object::cast_to(*s); if (concave_polygon_shape) { Vector shape_outline = concave_polygon_shape->get_segments(); for (int i = 0; i < shape_outline.size(); i++) { shape_outline.write[i] = static_body_xform.xform(shape_outline[i]); } p_source_geometry_data->add_obstruction_outline(shape_outline); } ConvexPolygonShape2D *convex_polygon_shape = Object::cast_to(*s); if (convex_polygon_shape) { Vector shape_outline = convex_polygon_shape->get_points(); for (int i = 0; i < shape_outline.size(); i++) { shape_outline.write[i] = static_body_xform.xform(shape_outline[i]); } p_source_geometry_data->add_obstruction_outline(shape_outline); } } } } void NavMeshGenerator2D::generator_parse_tile_map_layer_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { TileMapLayer *tile_map_layer = Object::cast_to(p_node); if (tile_map_layer == nullptr) { return; } Ref tile_set = tile_map_layer->get_tile_set(); if (!tile_set.is_valid()) { return; } int physics_layers_count = tile_set->get_physics_layers_count(); int navigation_layers_count = tile_set->get_navigation_layers_count(); if (physics_layers_count <= 0 && navigation_layers_count <= 0) { return; } NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type(); uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask(); const Transform2D tilemap_xform = p_source_geometry_data->root_node_transform * tile_map_layer->get_global_transform(); TypedArray used_cells = tile_map_layer->get_used_cells(); for (int used_cell_index = 0; used_cell_index < used_cells.size(); used_cell_index++) { const Vector2i &cell = used_cells[used_cell_index]; const TileData *tile_data = tile_map_layer->get_cell_tile_data(cell); if (tile_data == nullptr) { continue; } // Transform flags. const int alternative_id = tile_map_layer->get_cell_alternative_tile(cell); bool flip_h = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_H); bool flip_v = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_V); bool transpose = (alternative_id & TileSetAtlasSource::TRANSFORM_TRANSPOSE); Transform2D tile_transform; tile_transform.set_origin(tile_map_layer->map_to_local(cell)); const Transform2D tile_transform_offset = tilemap_xform * tile_transform; // Parse traversable polygons. for (int navigation_layer = 0; navigation_layer < navigation_layers_count; navigation_layer++) { Ref navigation_polygon = tile_data->get_navigation_polygon(navigation_layer, flip_h, flip_v, transpose); if (navigation_polygon.is_valid()) { for (int outline_index = 0; outline_index < navigation_polygon->get_outline_count(); outline_index++) { const Vector &navigation_polygon_outline = navigation_polygon->get_outline(outline_index); if (navigation_polygon_outline.is_empty()) { continue; } Vector traversable_outline; traversable_outline.resize(navigation_polygon_outline.size()); const Vector2 *navigation_polygon_outline_ptr = navigation_polygon_outline.ptr(); Vector2 *traversable_outline_ptrw = traversable_outline.ptrw(); for (int traversable_outline_index = 0; traversable_outline_index < traversable_outline.size(); traversable_outline_index++) { traversable_outline_ptrw[traversable_outline_index] = tile_transform_offset.xform(navigation_polygon_outline_ptr[traversable_outline_index]); } p_source_geometry_data->_add_traversable_outline(traversable_outline); } } } // Parse obstacles. for (int physics_layer = 0; physics_layer < physics_layers_count; physics_layer++) { if ((parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) && (tile_set->get_physics_layer_collision_layer(physics_layer) & parsed_collision_mask)) { for (int collision_polygon_index = 0; collision_polygon_index < tile_data->get_collision_polygons_count(physics_layer); collision_polygon_index++) { PackedVector2Array collision_polygon_points = tile_data->get_collision_polygon_points(physics_layer, collision_polygon_index); if (collision_polygon_points.is_empty()) { continue; } if (flip_h || flip_v || transpose) { collision_polygon_points = TileData::get_transformed_vertices(collision_polygon_points, flip_h, flip_v, transpose); } Vector obstruction_outline; obstruction_outline.resize(collision_polygon_points.size()); const Vector2 *collision_polygon_points_ptr = collision_polygon_points.ptr(); Vector2 *obstruction_outline_ptrw = obstruction_outline.ptrw(); for (int obstruction_outline_index = 0; obstruction_outline_index < obstruction_outline.size(); obstruction_outline_index++) { obstruction_outline_ptrw[obstruction_outline_index] = tile_transform_offset.xform(collision_polygon_points_ptr[obstruction_outline_index]); } p_source_geometry_data->_add_obstruction_outline(obstruction_outline); } } } } } void NavMeshGenerator2D::generator_parse_navigationobstacle_node(const Ref &p_navigation_mesh, Ref p_source_geometry_data, Node *p_node) { NavigationObstacle2D *obstacle = Object::cast_to(p_node); if (obstacle == nullptr) { return; } if (!obstacle->get_affect_navigation_mesh()) { return; } const Transform2D node_xform = p_source_geometry_data->root_node_transform * Transform2D(0.0, obstacle->get_global_position()); const float obstacle_radius = obstacle->get_radius(); if (obstacle_radius > 0.0) { Vector obstruction_circle_vertices; // The point of this is that the moving obstacle can make a simple hole in the navigation mesh and affect the pathfinding. // Without, navigation paths can go directly through the middle of the obstacle and conflict with the avoidance to get agents stuck. // No place for excessive "round" detail here. Every additional edge adds a high cost for something that needs to be quick, not pretty. static const int circle_points = 12; obstruction_circle_vertices.resize(circle_points); Vector2 *circle_vertices_ptrw = obstruction_circle_vertices.ptrw(); const real_t circle_point_step = Math_TAU / circle_points; for (int i = 0; i < circle_points; i++) { const float angle = i * circle_point_step; circle_vertices_ptrw[i] = node_xform.xform(Vector2(Math::cos(angle) * obstacle_radius, Math::sin(angle) * obstacle_radius)); } p_source_geometry_data->add_projected_obstruction(obstruction_circle_vertices, obstacle->get_carve_navigation_mesh()); } const Vector &obstacle_vertices = obstacle->get_vertices(); if (obstacle_vertices.is_empty()) { return; } Vector obstruction_shape_vertices; obstruction_shape_vertices.resize(obstacle_vertices.size()); const Vector2 *obstacle_vertices_ptr = obstacle_vertices.ptr(); Vector2 *obstruction_shape_vertices_ptrw = obstruction_shape_vertices.ptrw(); for (int i = 0; i < obstacle_vertices.size(); i++) { obstruction_shape_vertices_ptrw[i] = node_xform.xform(obstacle_vertices_ptr[i]); } p_source_geometry_data->add_projected_obstruction(obstruction_shape_vertices, obstacle->get_carve_navigation_mesh()); } void NavMeshGenerator2D::generator_parse_source_geometry_data(Ref p_navigation_mesh, Ref p_source_geometry_data, Node *p_root_node) { List parse_nodes; if (p_navigation_mesh->get_source_geometry_mode() == NavigationPolygon::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) { parse_nodes.push_back(p_root_node); } else { p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_geometry_group_name(), &parse_nodes); } Transform2D root_node_transform = Transform2D(); if (Object::cast_to(p_root_node)) { root_node_transform = Object::cast_to(p_root_node)->get_global_transform().affine_inverse(); } p_source_geometry_data->clear(); p_source_geometry_data->root_node_transform = root_node_transform; bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationPolygon::SOURCE_GEOMETRY_GROUPS_EXPLICIT; for (Node *E : parse_nodes) { generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, E, recurse_children); } }; static void generator_recursive_process_polytree_items(List &p_tppl_in_polygon, const Clipper2Lib::PolyPathD *p_polypath_item) { using namespace Clipper2Lib; Vector polygon_vertices; for (const PointD &polypath_point : p_polypath_item->Polygon()) { polygon_vertices.push_back(Vector2(static_cast(polypath_point.x), static_cast(polypath_point.y))); } TPPLPoly tp; tp.Init(polygon_vertices.size()); for (int j = 0; j < polygon_vertices.size(); j++) { tp[j] = polygon_vertices[j]; } if (p_polypath_item->IsHole()) { tp.SetOrientation(TPPL_ORIENTATION_CW); tp.SetHole(true); } else { tp.SetOrientation(TPPL_ORIENTATION_CCW); } p_tppl_in_polygon.push_back(tp); for (size_t i = 0; i < p_polypath_item->Count(); i++) { const PolyPathD *polypath_item = p_polypath_item->Child(i); generator_recursive_process_polytree_items(p_tppl_in_polygon, polypath_item); } } bool NavMeshGenerator2D::generator_emit_callback(const Callable &p_callback) { ERR_FAIL_COND_V(!p_callback.is_valid(), false); Callable::CallError ce; Variant result; p_callback.callp(nullptr, 0, result, ce); return ce.error == Callable::CallError::CALL_OK; } RID NavMeshGenerator2D::source_geometry_parser_create() { RWLockWrite write_lock(generator_rid_rwlock); RID rid = generator_parser_owner.make_rid(); NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(rid); parser->self = rid; generator_parsers.push_back(parser); return rid; } void NavMeshGenerator2D::source_geometry_parser_set_callback(RID p_parser, const Callable &p_callback) { RWLockWrite write_lock(generator_rid_rwlock); NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_parser); ERR_FAIL_NULL(parser); parser->callback = p_callback; } bool NavMeshGenerator2D::owns(RID p_object) { RWLockRead read_lock(generator_rid_rwlock); return generator_parser_owner.owns(p_object); } void NavMeshGenerator2D::free(RID p_object) { RWLockWrite write_lock(generator_rid_rwlock); if (generator_parser_owner.owns(p_object)) { NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_object); generator_parsers.erase(parser); generator_parser_owner.free(p_object); } else { ERR_PRINT("Attempted to free a NavMeshGenerator2D RID that did not exist (or was already freed)."); } } void NavMeshGenerator2D::generator_bake_from_source_geometry_data(Ref p_navigation_mesh, Ref p_source_geometry_data) { if (p_navigation_mesh.is_null() || p_source_geometry_data.is_null()) { return; } if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) { return; } int outline_count = p_navigation_mesh->get_outline_count(); Vector> traversable_outlines; Vector> obstruction_outlines; Vector projected_obstructions; p_source_geometry_data->get_data( traversable_outlines, obstruction_outlines, projected_obstructions); if (outline_count == 0 && traversable_outlines.size() == 0) { return; } using namespace Clipper2Lib; PathsD traversable_polygon_paths; PathsD obstruction_polygon_paths; traversable_polygon_paths.reserve(outline_count + traversable_outlines.size()); obstruction_polygon_paths.reserve(obstruction_outlines.size()); for (int i = 0; i < outline_count; i++) { const Vector &traversable_outline = p_navigation_mesh->get_outline(i); PathD subject_path; subject_path.reserve(traversable_outline.size()); for (const Vector2 &traversable_point : traversable_outline) { const PointD &point = PointD(traversable_point.x, traversable_point.y); subject_path.push_back(point); } traversable_polygon_paths.push_back(subject_path); } for (const Vector &traversable_outline : traversable_outlines) { PathD subject_path; subject_path.reserve(traversable_outline.size()); for (const Vector2 &traversable_point : traversable_outline) { const PointD &point = PointD(traversable_point.x, traversable_point.y); subject_path.push_back(point); } traversable_polygon_paths.push_back(subject_path); } for (const Vector &obstruction_outline : obstruction_outlines) { PathD clip_path; clip_path.reserve(obstruction_outline.size()); for (const Vector2 &obstruction_point : obstruction_outline) { const PointD &point = PointD(obstruction_point.x, obstruction_point.y); clip_path.push_back(point); } obstruction_polygon_paths.push_back(clip_path); } if (!projected_obstructions.is_empty()) { for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) { if (projected_obstruction.carve) { continue; } if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) { continue; } PathD clip_path; clip_path.reserve(projected_obstruction.vertices.size() / 2); for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) { const PointD &point = PointD(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]); clip_path.push_back(point); } if (!IsPositive(clip_path)) { std::reverse(clip_path.begin(), clip_path.end()); } obstruction_polygon_paths.push_back(clip_path); } } Rect2 baking_rect = p_navigation_mesh->get_baking_rect(); if (baking_rect.has_area()) { Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset(); const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x; const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y; const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x; const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y; RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y); traversable_polygon_paths = RectClip(clipper_rect, traversable_polygon_paths); obstruction_polygon_paths = RectClip(clipper_rect, obstruction_polygon_paths); } PathsD path_solution; // first merge all traversable polygons according to user specified fill rule PathsD dummy_clip_path; traversable_polygon_paths = Union(traversable_polygon_paths, dummy_clip_path, FillRule::NonZero); // merge all obstruction polygons, don't allow holes for what is considered "solid" 2D geometry obstruction_polygon_paths = Union(obstruction_polygon_paths, dummy_clip_path, FillRule::NonZero); path_solution = Difference(traversable_polygon_paths, obstruction_polygon_paths, FillRule::NonZero); real_t agent_radius_offset = p_navigation_mesh->get_agent_radius(); if (agent_radius_offset > 0.0) { path_solution = InflatePaths(path_solution, -agent_radius_offset, JoinType::Miter, EndType::Polygon); } if (!projected_obstructions.is_empty()) { obstruction_polygon_paths.resize(0); for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) { if (!projected_obstruction.carve) { continue; } if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) { continue; } PathD clip_path; clip_path.reserve(projected_obstruction.vertices.size() / 2); for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) { const PointD &point = PointD(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]); clip_path.push_back(point); } if (!IsPositive(clip_path)) { std::reverse(clip_path.begin(), clip_path.end()); } obstruction_polygon_paths.push_back(clip_path); } if (obstruction_polygon_paths.size() > 0) { path_solution = Difference(path_solution, obstruction_polygon_paths, FillRule::NonZero); } } //path_solution = RamerDouglasPeucker(path_solution, 0.025); // real_t border_size = p_navigation_mesh->get_border_size(); if (baking_rect.has_area() && border_size > 0.0) { Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset(); const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x + border_size; const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y + border_size; const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x - border_size; const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y - border_size; RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y); path_solution = RectClip(clipper_rect, path_solution); } Vector> new_baked_outlines; for (const PathD &scaled_path : path_solution) { Vector polypath; for (const PointD &scaled_point : scaled_path) { polypath.push_back(Vector2(static_cast(scaled_point.x), static_cast(scaled_point.y))); } new_baked_outlines.push_back(polypath); } if (new_baked_outlines.size() == 0) { p_navigation_mesh->clear(); return; } PathsD polygon_paths; polygon_paths.reserve(new_baked_outlines.size()); for (const Vector &baked_outline : new_baked_outlines) { PathD polygon_path; for (const Vector2 &baked_outline_point : baked_outline) { const PointD &point = PointD(baked_outline_point.x, baked_outline_point.y); polygon_path.push_back(point); } polygon_paths.push_back(polygon_path); } ClipType clipper_cliptype = ClipType::Union; List tppl_in_polygon, tppl_out_polygon; PolyTreeD polytree; ClipperD clipper_D; clipper_D.AddSubject(polygon_paths); clipper_D.Execute(clipper_cliptype, FillRule::NonZero, polytree); for (size_t i = 0; i < polytree.Count(); i++) { const PolyPathD *polypath_item = polytree[i]; generator_recursive_process_polytree_items(tppl_in_polygon, polypath_item); } TPPLPartition tpart; if (tpart.ConvexPartition_HM(&tppl_in_polygon, &tppl_out_polygon) == 0) { //failed! ERR_PRINT("NavigationPolygon Convex partition failed. Unable to create a valid NavigationMesh from defined polygon outline paths."); p_navigation_mesh->clear(); return; } Vector new_vertices; Vector> new_polygons; HashMap points; for (List::Element *I = tppl_out_polygon.front(); I; I = I->next()) { TPPLPoly &tp = I->get(); Vector new_polygon; for (int64_t i = 0; i < tp.GetNumPoints(); i++) { HashMap::Iterator E = points.find(tp[i]); if (!E) { E = points.insert(tp[i], new_vertices.size()); new_vertices.push_back(tp[i]); } new_polygon.push_back(E->value); } new_polygons.push_back(new_polygon); } p_navigation_mesh->set_data(new_vertices, new_polygons); } #endif // CLIPPER2_ENABLED