/*************************************************************************/ /* particles_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "particles_2d.h" void ParticleAttractor2D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: { _update_owner(); } break; case NOTIFICATION_DRAW: { if (!get_tree()->is_editor_hint()) return; Vector2 pv; float dr = MIN(disable_radius, radius); for (int i = 0; i <= 32; i++) { Vector2 v(Math::sin(i / 32.0 * Math_PI * 2), Math::cos(i / 32.0 * Math_PI * 2)); if (i > 0) { draw_line(pv * radius, v * radius, Color(0, 0, 0.5, 0.9)); if (dr > 0) { draw_line(pv * dr, v * dr, Color(0.5, 0, 0.0, 0.9)); } } pv = v; } } break; case NOTIFICATION_EXIT_TREE: { if (owner) { _set_owner(NULL); } } break; } } void ParticleAttractor2D::_owner_exited() { ERR_FAIL_COND(!owner); owner->attractors.erase(this); owner = NULL; } void ParticleAttractor2D::_update_owner() { if (!is_inside_tree() || !has_node(path)) { _set_owner(NULL); return; } Node *n = get_node(path); ERR_FAIL_COND(!n); Particles2D *pn = n->cast_to(); if (!pn) { _set_owner(NULL); return; } _set_owner(pn); } void ParticleAttractor2D::_set_owner(Particles2D *p_owner) { if (owner == p_owner) return; if (owner) { owner->disconnect("exit_tree", this, "_owner_exited"); owner->attractors.erase(this); owner = NULL; } owner = p_owner; if (owner) { owner->connect("exit_tree", this, "_owner_exited", varray(), CONNECT_ONESHOT); owner->attractors.insert(this); } } void ParticleAttractor2D::_bind_methods() { ObjectTypeDB::bind_method(_MD("set_enabled", "enabled"), &ParticleAttractor2D::set_enabled); ObjectTypeDB::bind_method(_MD("is_enabled"), &ParticleAttractor2D::is_enabled); ObjectTypeDB::bind_method(_MD("set_radius", "radius"), &ParticleAttractor2D::set_radius); ObjectTypeDB::bind_method(_MD("get_radius"), &ParticleAttractor2D::get_radius); ObjectTypeDB::bind_method(_MD("set_disable_radius", "radius"), &ParticleAttractor2D::set_disable_radius); ObjectTypeDB::bind_method(_MD("get_disable_radius"), &ParticleAttractor2D::get_disable_radius); ObjectTypeDB::bind_method(_MD("set_gravity", "gravity"), &ParticleAttractor2D::set_gravity); ObjectTypeDB::bind_method(_MD("get_gravity"), &ParticleAttractor2D::get_gravity); ObjectTypeDB::bind_method(_MD("set_absorption", "absorption"), &ParticleAttractor2D::set_absorption); ObjectTypeDB::bind_method(_MD("get_absorption"), &ParticleAttractor2D::get_absorption); ObjectTypeDB::bind_method(_MD("set_particles_path", "path"), &ParticleAttractor2D::set_particles_path); ObjectTypeDB::bind_method(_MD("get_particles_path"), &ParticleAttractor2D::get_particles_path); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "enabled"), _SCS("set_enabled"), _SCS("is_enabled")); ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.1,16000,0.1"), _SCS("set_radius"), _SCS("get_radius")); ADD_PROPERTY(PropertyInfo(Variant::REAL, "disable_radius", PROPERTY_HINT_RANGE, "0.1,16000,0.1"), _SCS("set_disable_radius"), _SCS("get_disable_radius")); ADD_PROPERTY(PropertyInfo(Variant::REAL, "gravity", PROPERTY_HINT_RANGE, "-512,512,0.01"), _SCS("set_gravity"), _SCS("get_gravity")); ADD_PROPERTY(PropertyInfo(Variant::REAL, "absorption", PROPERTY_HINT_RANGE, "0,512,0.01"), _SCS("set_absorption"), _SCS("get_absorption")); ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "particles_path", PROPERTY_HINT_RESOURCE_TYPE, "Particles2D"), _SCS("set_particles_path"), _SCS("get_particles_path")); } void ParticleAttractor2D::set_enabled(bool p_enabled) { enabled = p_enabled; } bool ParticleAttractor2D::is_enabled() const { return enabled; } void ParticleAttractor2D::set_radius(float p_radius) { radius = p_radius; update(); } float ParticleAttractor2D::get_radius() const { return radius; } void ParticleAttractor2D::set_disable_radius(float p_disable_radius) { disable_radius = p_disable_radius; update(); } float ParticleAttractor2D::get_disable_radius() const { return disable_radius; } void ParticleAttractor2D::set_gravity(float p_gravity) { gravity = p_gravity; } float ParticleAttractor2D::get_gravity() const { return gravity; } void ParticleAttractor2D::set_absorption(float p_absorption) { absorption = p_absorption; } float ParticleAttractor2D::get_absorption() const { return absorption; } void ParticleAttractor2D::set_particles_path(NodePath p_path) { path = p_path; _update_owner(); update_configuration_warning(); } NodePath ParticleAttractor2D::get_particles_path() const { return path; } String ParticleAttractor2D::get_configuration_warning() const { if (!has_node(path) || !get_node(path) || !get_node(path)->cast_to()) { return TTR("Path property must point to a valid Particles2D node to work."); } return String(); } ParticleAttractor2D::ParticleAttractor2D() { owner = NULL; radius = 50; disable_radius = 0; gravity = 100; absorption = 0; path = String(".."); enabled = true; } /****************************************/ _FORCE_INLINE_ static float _rand_from_seed(uint32_t *seed) { uint32_t k; uint32_t s = (*seed); if (s == 0) s = 0x12345987; k = s / 127773; s = 16807 * (s - k * 127773) - 2836 * k; if (s < 0) s += 2147483647; (*seed) = s; float v = ((float)((*seed) & 0xFFFFF)) / (float)0xFFFFF; v = v * 2.0 - 1.0; return v; } void Particles2D::_process_particles(float p_delta) { if (particles.size() == 0 || lifetime == 0) return; p_delta *= time_scale; float frame_time = p_delta; if (emit_timeout > 0) { time_to_live -= frame_time; if (time_to_live < 0) { emitting = false; _change_notify("config/emitting"); }; }; float next_time = time + frame_time; if (next_time > lifetime) next_time = Math::fmod(next_time, lifetime); Particle *pdata = &particles[0]; int particle_count = particles.size(); Matrix32 xform; if (!local_space) xform = get_global_transform(); active_count = 0; DVector::Read r; int emission_point_count = 0; if (emission_points.size()) { emission_point_count = emission_points.size(); r = emission_points.read(); } int attractor_count = 0; AttractorCache *attractor_ptr = NULL; if (attractors.size()) { if (attractors.size() != attractor_cache.size()) { attractor_cache.resize(attractors.size()); } int idx = 0; Matrix32 m; if (local_space) { m = get_global_transform().affine_inverse(); } for (Set::Element *E = attractors.front(); E; E = E->next()) { attractor_cache[idx].pos = m.xform(E->get()->get_global_pos()); attractor_cache[idx].attractor = E->get(); idx++; } attractor_ptr = attractor_cache.ptr(); attractor_count = attractor_cache.size(); } for (int i = 0; i < particle_count; i++) { Particle &p = pdata[i]; float restart_time = (i * lifetime / particle_count) * explosiveness; bool restart = false; if (next_time < time) { if (restart_time > time || restart_time < next_time) restart = true; } else if (restart_time > time && restart_time < next_time) { restart = true; } if (restart) { if (emitting) { p.pos = emissor_offset; if (emission_point_count) { Vector2 ep = r[Math::rand() % emission_point_count]; if (!local_space) { p.pos = xform.xform(p.pos + ep * extents); } else { p.pos += ep * extents; } } else { if (!local_space) { p.pos = xform.xform(p.pos + Vector2(Math::random(-extents.x, extents.x), Math::random(-extents.y, extents.y))); } else { p.pos += Vector2(Math::random(-extents.x, extents.x), Math::random(-extents.y, extents.y)); } } p.seed = Math::rand() % 12345678; uint32_t rand_seed = p.seed * (i + 1); float angle = Math::deg2rad(param[PARAM_DIRECTION] + _rand_from_seed(&rand_seed) * param[PARAM_SPREAD]); p.velocity = Vector2(Math::sin(angle), Math::cos(angle)); if (!local_space) { p.velocity = xform.basis_xform(p.velocity).normalized(); } p.velocity *= param[PARAM_LINEAR_VELOCITY] + param[PARAM_LINEAR_VELOCITY] * _rand_from_seed(&rand_seed) * randomness[PARAM_LINEAR_VELOCITY]; p.velocity += initial_velocity; p.active = true; p.rot = Math::deg2rad(param[PARAM_INITIAL_ANGLE] + param[PARAM_INITIAL_ANGLE] * randomness[PARAM_INITIAL_ANGLE] * _rand_from_seed(&rand_seed)); active_count++; p.frame = Math::fmod(param[PARAM_ANIM_INITIAL_POS] + randomness[PARAM_ANIM_INITIAL_POS] * _rand_from_seed(&rand_seed), 1.0); } else { p.active = false; } } else { if (!p.active) continue; uint32_t rand_seed = p.seed * (i + 1); Vector2 force; //apply gravity float gravity_dir = Math::deg2rad(param[PARAM_GRAVITY_DIRECTION] + 180 * randomness[PARAM_GRAVITY_DIRECTION] * _rand_from_seed(&rand_seed)); force += Vector2(Math::sin(gravity_dir), Math::cos(gravity_dir)) * (param[PARAM_GRAVITY_STRENGTH] + param[PARAM_GRAVITY_STRENGTH] * randomness[PARAM_GRAVITY_STRENGTH] * _rand_from_seed(&rand_seed)); //apply radial Vector2 rvec = (p.pos - emissor_offset).normalized(); force += rvec * (param[PARAM_RADIAL_ACCEL] + param[PARAM_RADIAL_ACCEL] * randomness[PARAM_RADIAL_ACCEL] * _rand_from_seed(&rand_seed)); //apply orbit float orbitvel = (param[PARAM_ORBIT_VELOCITY] + param[PARAM_ORBIT_VELOCITY] * randomness[PARAM_ORBIT_VELOCITY] * _rand_from_seed(&rand_seed)); if (orbitvel != 0) { Vector2 rel = p.pos - xform.elements[2]; Matrix32 rot(orbitvel * frame_time, Vector2()); p.pos = rot.xform(rel) + xform.elements[2]; } Vector2 tvec = rvec.tangent(); force += tvec * (param[PARAM_TANGENTIAL_ACCEL] + param[PARAM_TANGENTIAL_ACCEL] * randomness[PARAM_TANGENTIAL_ACCEL] * _rand_from_seed(&rand_seed)); for (int j = 0; j < attractor_count; j++) { Vector2 vec = (attractor_ptr[j].pos - p.pos); float vl = vec.length(); if (!attractor_ptr[j].attractor->enabled || vl == 0 || vl > attractor_ptr[j].attractor->radius) continue; force += vec * attractor_ptr[j].attractor->gravity; float fvl = p.velocity.length(); if (fvl && attractor_ptr[j].attractor->absorption) { Vector2 target = vec.normalized(); p.velocity = p.velocity.normalized().linear_interpolate(target, MIN(frame_time * attractor_ptr[j].attractor->absorption, 1)) * fvl; } if (attractor_ptr[j].attractor->disable_radius && vl < attractor_ptr[j].attractor->disable_radius) { p.active = false; } } p.velocity += force * frame_time; if (param[PARAM_DAMPING]) { float dmp = param[PARAM_DAMPING] + param[PARAM_DAMPING] * randomness[PARAM_DAMPING] * _rand_from_seed(&rand_seed); float v = p.velocity.length(); v -= dmp * frame_time; if (v <= 0) { p.velocity = Vector2(); } else { p.velocity = p.velocity.normalized() * v; } } p.pos += p.velocity * frame_time; p.rot += Math::lerp(param[PARAM_SPIN_VELOCITY], param[PARAM_SPIN_VELOCITY] * randomness[PARAM_SPIN_VELOCITY] * _rand_from_seed(&rand_seed), randomness[PARAM_SPIN_VELOCITY]) * frame_time; float anim_spd = param[PARAM_ANIM_SPEED_SCALE] + param[PARAM_ANIM_SPEED_SCALE] * randomness[PARAM_ANIM_SPEED_SCALE] * _rand_from_seed(&rand_seed); p.frame = Math::fposmod(p.frame + (frame_time / lifetime) * anim_spd, 1.0); active_count++; } } time = Math::fmod(time + frame_time, lifetime); if (!emitting && active_count == 0) { set_process(false); set_fixed_process(false); } update(); } void Particles2D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_PROCESS: { _process_particles(get_process_delta_time()); } break; case NOTIFICATION_FIXED_PROCESS: { _process_particles(get_fixed_process_delta_time()); } break; case NOTIFICATION_ENTER_TREE: { // For projects saved before "process_mode" was introduced set_process_mode(process_mode); float ppt = preprocess; while (ppt > 0) { _process_particles(0.1); ppt -= 0.1; } } break; case NOTIFICATION_DRAW: { if (particles.size() == 0 || lifetime == 0) return; RID ci = get_canvas_item(); Size2 size(1, 1); Point2 center; int total_frames = 1; if (!texture.is_null()) { size = texture->get_size(); size.x /= h_frames; size.y /= v_frames; total_frames = h_frames * v_frames; } float time_pos = (time / lifetime); Particle *pdata = &particles[0]; int particle_count = particles.size(); RID texrid; if (texture.is_valid()) texrid = texture->get_rid(); Matrix32 invxform; if (!local_space) invxform = get_global_transform().affine_inverse(); int start_particle = (int)(time * (float)particle_count / lifetime); for (int id = 0; id < particle_count; ++id) { int i = start_particle + id; if (i >= particle_count) { i -= particle_count; } Particle &p = pdata[i]; if (!p.active) continue; float ptime = ((float)i / particle_count) * explosiveness; if (ptime < time_pos) ptime = time_pos - ptime; else ptime = (1.0 - ptime) + time_pos; uint32_t rand_seed = p.seed * (i + 1); Color color; if (color_ramp.is_valid()) { color = color_ramp->get_color_at_offset(ptime); } else { color = default_color; } { float huerand = _rand_from_seed(&rand_seed); float huerot = param[PARAM_HUE_VARIATION] + randomness[PARAM_HUE_VARIATION] * huerand; if (Math::abs(huerot) > CMP_EPSILON) { float h = color.get_h(); float s = color.get_s(); float v = color.get_v(); float a = color.a; //float preh=h; h += huerot; h = Math::abs(Math::fposmod(h, 1.0)); //print_line("rand: "+rtos(randomness[PARAM_HUE_VARIATION])+" rand: "+rtos(huerand)); //print_line(itos(i)+":hue: "+rtos(preh)+" + "+rtos(huerot)+" = "+rtos(h)); color.set_hsv(h, s, v); color.a = a; } } float initial_size = param[PARAM_INITIAL_SIZE] + param[PARAM_INITIAL_SIZE] * _rand_from_seed(&rand_seed) * randomness[PARAM_INITIAL_SIZE]; float final_size = param[PARAM_FINAL_SIZE] + param[PARAM_FINAL_SIZE] * _rand_from_seed(&rand_seed) * randomness[PARAM_FINAL_SIZE]; float size_mult = initial_size * (1.0 - ptime) + final_size * ptime; //Size2 rectsize=size * size_mult; //rectsize=rectsize.floor(); //Rect2 r = Rect2(Vecto,rectsize); Matrix32 xform; if (p.rot) { xform.set_rotation(p.rot); xform.translate(-size * size_mult / 2.0); xform.elements[2] += p.pos; } else { xform.elements[2] = -size * size_mult / 2.0; xform.elements[2] += p.pos; } if (!local_space) { xform = invxform * xform; } xform.scale_basis(Size2(size_mult, size_mult)); VisualServer::get_singleton()->canvas_item_add_set_transform(ci, xform); if (texrid.is_valid()) { Rect2 src_rect; src_rect.size = size; if (total_frames > 1) { int frame = Math::fast_ftoi(Math::floor(p.frame * total_frames)) % total_frames; src_rect.pos.x = size.x * (frame % h_frames); src_rect.pos.y = size.y * (frame / h_frames); } Rect2 dst_rect(Point2(), size); if (flip_h) dst_rect.size.x = -dst_rect.size.x; if (flip_v) dst_rect.size.y = -dst_rect.size.y; texture->draw_rect_region(ci, dst_rect, src_rect, color); //VisualServer::get_singleton()->canvas_item_add_texture_rect(ci,r,texrid,false,color); } else { VisualServer::get_singleton()->canvas_item_add_rect(ci, Rect2(Point2(), size), color); } } } break; } } static const char *_particlesframe_property_names[Particles2D::PARAM_MAX] = { "params/direction", "params/spread", "params/linear_velocity", "params/spin_velocity", "params/orbit_velocity", "params/gravity_direction", "params/gravity_strength", "params/radial_accel", "params/tangential_accel", "params/damping", "params/initial_angle", "params/initial_size", "params/final_size", "params/hue_variation", "params/anim_speed_scale", "params/anim_initial_pos", }; static const char *_particlesframe_property_rnames[Particles2D::PARAM_MAX] = { "randomness/direction", "randomness/spread", "randomness/linear_velocity", "randomness/spin_velocity", "randomness/orbit_velocity", "randomness/gravity_direction", "randomness/gravity_strength", "randomness/radial_accel", "randomness/tangential_accel", "randomness/damping", "randomness/initial_angle", "randomness/initial_size", "randomness/final_size", "randomness/hue_variation", "randomness/anim_speed_scale", "randomness/anim_initial_pos", }; static const char *_particlesframe_property_ranges[Particles2D::PARAM_MAX] = { "0,360,0.01", "0,180,0.01", "-1024,1024,0.01", "-1024,1024,0.01", "-1024,1024,0.01", "0,360,0.01", "0,1024,0.01", "-128,128,0.01", "-128,128,0.01", "0,1024,0.001", "0,360,0.01", "0,1024,0.01", "0,1024,0.01", "0,1,0.01", "0,128,0.01", "0,1,0.01", }; void Particles2D::set_emitting(bool p_emitting) { if (emitting == p_emitting) return; if (p_emitting) { if (active_count == 0) time = 0; set_process(process_mode == PROCESS_IDLE); set_fixed_process(process_mode == PROCESS_FIXED); time_to_live = emit_timeout; } emitting = p_emitting; _change_notify("config/emitting"); } bool Particles2D::is_emitting() const { return emitting; } void Particles2D::set_process_mode(ProcessMode p_mode) { process_mode = p_mode; const bool should_process = emitting || active_count != 0; set_process(should_process && process_mode == PROCESS_IDLE); set_fixed_process(should_process && process_mode == PROCESS_FIXED); } Particles2D::ProcessMode Particles2D::get_process_mode() const { return process_mode; } void Particles2D::set_amount(int p_amount) { ERR_FAIL_INDEX(p_amount, 1024 + 1); particles.resize(p_amount); } int Particles2D::get_amount() const { return particles.size(); } void Particles2D::set_emit_timeout(float p_timeout) { emit_timeout = p_timeout; time_to_live = p_timeout; }; float Particles2D::get_emit_timeout() const { return emit_timeout; }; void Particles2D::set_lifetime(float p_lifetime) { ERR_FAIL_INDEX(p_lifetime, 3600 + 1); lifetime = p_lifetime; } float Particles2D::get_lifetime() const { return lifetime; } void Particles2D::set_time_scale(float p_time_scale) { time_scale = p_time_scale; } float Particles2D::get_time_scale() const { return time_scale; } void Particles2D::set_pre_process_time(float p_pre_process_time) { preprocess = p_pre_process_time; } float Particles2D::get_pre_process_time() const { return preprocess; } void Particles2D::set_param(Parameter p_param, float p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); param[p_param] = p_value; } float Particles2D::get_param(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return param[p_param]; } void Particles2D::set_randomness(Parameter p_param, float p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); randomness[p_param] = p_value; } float Particles2D::get_randomness(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return randomness[p_param]; } void Particles2D::set_texture(const Ref &p_texture) { texture = p_texture; } Ref Particles2D::get_texture() const { return texture; } void Particles2D::set_color(const Color &p_color) { default_color = p_color; } Color Particles2D::get_color() const { return default_color; } void Particles2D::set_color_ramp(const Ref &p_color_ramp) { color_ramp = p_color_ramp; } Ref Particles2D::get_color_ramp() const { return color_ramp; } void Particles2D::set_emissor_offset(const Point2 &p_offset) { emissor_offset = p_offset; } Point2 Particles2D::get_emissor_offset() const { return emissor_offset; } void Particles2D::set_use_local_space(bool p_use) { local_space = p_use; } bool Particles2D::is_using_local_space() const { return local_space; } //Deprecated. Converts color phases to color ramp void Particles2D::set_color_phases(int p_phases) { //Create color ramp if we have 2 or more phases. //Otherwise first phase phase will be assigned to default color. if (p_phases > 1 && color_ramp.is_null()) { color_ramp = Ref(memnew(ColorRamp())); } if (color_ramp.is_valid()) { color_ramp->get_points().resize(p_phases); } } //Deprecated. int Particles2D::get_color_phases() const { if (color_ramp.is_valid()) { return color_ramp->get_points_count(); } return 0; } //Deprecated. Converts color phases to color ramp void Particles2D::set_color_phase_color(int p_phase, const Color &p_color) { ERR_FAIL_INDEX(p_phase, MAX_COLOR_PHASES); if (color_ramp.is_valid()) { if (color_ramp->get_points_count() > p_phase) color_ramp->set_color(p_phase, p_color); } else { if (p_phase == 0) default_color = p_color; } } //Deprecated. Color Particles2D::get_color_phase_color(int p_phase) const { ERR_FAIL_INDEX_V(p_phase, MAX_COLOR_PHASES, Color()); if (color_ramp.is_valid()) { return color_ramp->get_color(p_phase); } return Color(0, 0, 0, 1); } //Deprecated. Converts color phases to color ramp void Particles2D::set_color_phase_pos(int p_phase, float p_pos) { ERR_FAIL_INDEX(p_phase, MAX_COLOR_PHASES); ERR_FAIL_COND(p_pos < 0.0 || p_pos > 1.0); if (color_ramp.is_valid() && color_ramp->get_points_count() > p_phase) { return color_ramp->set_offset(p_phase, p_pos); } } //Deprecated. float Particles2D::get_color_phase_pos(int p_phase) const { ERR_FAIL_INDEX_V(p_phase, MAX_COLOR_PHASES, 0); if (color_ramp.is_valid()) { return color_ramp->get_offset(p_phase); } return 0; } void Particles2D::set_emission_half_extents(const Vector2 &p_extents) { extents = p_extents; } Vector2 Particles2D::get_emission_half_extents() const { return extents; } void Particles2D::testee(int a, int b, int c, int d, int e) { print_line(itos(a)); print_line(itos(b)); print_line(itos(c)); print_line(itos(d)); print_line(itos(e)); } void Particles2D::set_initial_velocity(const Vector2 &p_velocity) { initial_velocity = p_velocity; } Vector2 Particles2D::get_initial_velocity() const { return initial_velocity; } void Particles2D::pre_process(float p_delta) { _process_particles(p_delta); } void Particles2D::set_explosiveness(float p_value) { explosiveness = p_value; } float Particles2D::get_explosiveness() const { return explosiveness; } void Particles2D::set_flip_h(bool p_flip) { flip_h = p_flip; } bool Particles2D::is_flipped_h() const { return flip_h; } void Particles2D::set_flip_v(bool p_flip) { flip_v = p_flip; } bool Particles2D::is_flipped_v() const { return flip_v; } void Particles2D::set_h_frames(int p_frames) { ERR_FAIL_COND(p_frames < 1); h_frames = p_frames; } int Particles2D::get_h_frames() const { return h_frames; } void Particles2D::set_v_frames(int p_frames) { ERR_FAIL_COND(p_frames < 1); v_frames = p_frames; } int Particles2D::get_v_frames() const { return v_frames; } void Particles2D::set_emission_points(const DVector &p_points) { emission_points = p_points; } DVector Particles2D::get_emission_points() const { return emission_points; } void Particles2D::reset() { for (int i = 0; i < particles.size(); i++) { particles[i].active = false; } time = 0; active_count = 0; } void Particles2D::_bind_methods() { ObjectTypeDB::bind_method(_MD("set_emitting", "active"), &Particles2D::set_emitting); ObjectTypeDB::bind_method(_MD("is_emitting"), &Particles2D::is_emitting); ObjectTypeDB::bind_method(_MD("set_process_mode", "mode"), &Particles2D::set_process_mode); ObjectTypeDB::bind_method(_MD("get_process_mode"), &Particles2D::get_process_mode); ObjectTypeDB::bind_method(_MD("set_amount", "amount"), &Particles2D::set_amount); ObjectTypeDB::bind_method(_MD("get_amount"), &Particles2D::get_amount); ObjectTypeDB::bind_method(_MD("set_lifetime", "lifetime"), &Particles2D::set_lifetime); ObjectTypeDB::bind_method(_MD("get_lifetime"), &Particles2D::get_lifetime); ObjectTypeDB::bind_method(_MD("set_time_scale", "time_scale"), &Particles2D::set_time_scale); ObjectTypeDB::bind_method(_MD("get_time_scale"), &Particles2D::get_time_scale); ObjectTypeDB::bind_method(_MD("set_pre_process_time", "time"), &Particles2D::set_pre_process_time); ObjectTypeDB::bind_method(_MD("get_pre_process_time"), &Particles2D::get_pre_process_time); ObjectTypeDB::bind_method(_MD("set_emit_timeout", "value"), &Particles2D::set_emit_timeout); ObjectTypeDB::bind_method(_MD("get_emit_timeout"), &Particles2D::get_emit_timeout); ObjectTypeDB::bind_method(_MD("set_param", "param", "value"), &Particles2D::set_param); ObjectTypeDB::bind_method(_MD("get_param", "param"), &Particles2D::get_param); ObjectTypeDB::bind_method(_MD("set_randomness", "param", "value"), &Particles2D::set_randomness); ObjectTypeDB::bind_method(_MD("get_randomness", "param"), &Particles2D::get_randomness); ObjectTypeDB::bind_method(_MD("set_texture:Texture", "texture"), &Particles2D::set_texture); ObjectTypeDB::bind_method(_MD("get_texture:Texture"), &Particles2D::get_texture); ObjectTypeDB::bind_method(_MD("set_color", "color"), &Particles2D::set_color); ObjectTypeDB::bind_method(_MD("get_color"), &Particles2D::get_color); ObjectTypeDB::bind_method(_MD("set_color_ramp:ColorRamp", "color_ramp"), &Particles2D::set_color_ramp); ObjectTypeDB::bind_method(_MD("get_color_ramp:ColorRamp"), &Particles2D::get_color_ramp); ObjectTypeDB::bind_method(_MD("set_emissor_offset", "offset"), &Particles2D::set_emissor_offset); ObjectTypeDB::bind_method(_MD("get_emissor_offset"), &Particles2D::get_emissor_offset); ObjectTypeDB::bind_method(_MD("set_flip_h", "enable"), &Particles2D::set_flip_h); ObjectTypeDB::bind_method(_MD("is_flipped_h"), &Particles2D::is_flipped_h); ObjectTypeDB::bind_method(_MD("set_flip_v", "enable"), &Particles2D::set_flip_v); ObjectTypeDB::bind_method(_MD("is_flipped_v"), &Particles2D::is_flipped_v); ObjectTypeDB::bind_method(_MD("set_h_frames", "enable"), &Particles2D::set_h_frames); ObjectTypeDB::bind_method(_MD("get_h_frames"), &Particles2D::get_h_frames); ObjectTypeDB::bind_method(_MD("set_v_frames", "enable"), &Particles2D::set_v_frames); ObjectTypeDB::bind_method(_MD("get_v_frames"), &Particles2D::get_v_frames); ObjectTypeDB::bind_method(_MD("set_emission_half_extents", "extents"), &Particles2D::set_emission_half_extents); ObjectTypeDB::bind_method(_MD("get_emission_half_extents"), &Particles2D::get_emission_half_extents); ObjectTypeDB::bind_method(_MD("set_color_phases", "phases"), &Particles2D::set_color_phases); ObjectTypeDB::bind_method(_MD("get_color_phases"), &Particles2D::get_color_phases); ObjectTypeDB::bind_method(_MD("set_color_phase_color", "phase", "color"), &Particles2D::set_color_phase_color); ObjectTypeDB::bind_method(_MD("get_color_phase_color", "phase"), &Particles2D::get_color_phase_color); ObjectTypeDB::bind_method(_MD("set_color_phase_pos", "phase", "pos"), &Particles2D::set_color_phase_pos); ObjectTypeDB::bind_method(_MD("get_color_phase_pos", "phase"), &Particles2D::get_color_phase_pos); ObjectTypeDB::bind_method(_MD("pre_process", "time"), &Particles2D::pre_process); ObjectTypeDB::bind_method(_MD("reset"), &Particles2D::reset); ObjectTypeDB::bind_method(_MD("set_use_local_space", "enable"), &Particles2D::set_use_local_space); ObjectTypeDB::bind_method(_MD("is_using_local_space"), &Particles2D::is_using_local_space); ObjectTypeDB::bind_method(_MD("set_initial_velocity", "velocity"), &Particles2D::set_initial_velocity); ObjectTypeDB::bind_method(_MD("get_initial_velocity"), &Particles2D::get_initial_velocity); ObjectTypeDB::bind_method(_MD("set_explosiveness", "amount"), &Particles2D::set_explosiveness); ObjectTypeDB::bind_method(_MD("get_explosiveness"), &Particles2D::get_explosiveness); ObjectTypeDB::bind_method(_MD("set_emission_points", "points"), &Particles2D::set_emission_points); ObjectTypeDB::bind_method(_MD("get_emission_points"), &Particles2D::get_emission_points); ADD_PROPERTY(PropertyInfo(Variant::INT, "config/amount", PROPERTY_HINT_EXP_RANGE, "1,1024"), _SCS("set_amount"), _SCS("get_amount")); ADD_PROPERTY(PropertyInfo(Variant::REAL, "config/lifetime", PROPERTY_HINT_EXP_RANGE, "0.1,3600,0.1"), _SCS("set_lifetime"), _SCS("get_lifetime")); ADD_PROPERTYNO(PropertyInfo(Variant::REAL, "config/time_scale", PROPERTY_HINT_EXP_RANGE, "0.01,128,0.01"), _SCS("set_time_scale"), _SCS("get_time_scale")); ADD_PROPERTYNZ(PropertyInfo(Variant::REAL, "config/preprocess", PROPERTY_HINT_EXP_RANGE, "0,3600,0.1"), _SCS("set_pre_process_time"), _SCS("get_pre_process_time")); ADD_PROPERTYNZ(PropertyInfo(Variant::REAL, "config/emit_timeout", PROPERTY_HINT_RANGE, "0,3600,0.1"), _SCS("set_emit_timeout"), _SCS("get_emit_timeout")); ADD_PROPERTYNO(PropertyInfo(Variant::BOOL, "config/emitting"), _SCS("set_emitting"), _SCS("is_emitting")); ADD_PROPERTY(PropertyInfo(Variant::INT, "config/process_mode", PROPERTY_HINT_ENUM, "Fixed,Idle"), _SCS("set_process_mode"), _SCS("get_process_mode")); ADD_PROPERTYNZ(PropertyInfo(Variant::VECTOR2, "config/offset"), _SCS("set_emissor_offset"), _SCS("get_emissor_offset")); ADD_PROPERTYNZ(PropertyInfo(Variant::VECTOR2, "config/half_extents"), _SCS("set_emission_half_extents"), _SCS("get_emission_half_extents")); ADD_PROPERTYNO(PropertyInfo(Variant::BOOL, "config/local_space"), _SCS("set_use_local_space"), _SCS("is_using_local_space")); ADD_PROPERTYNO(PropertyInfo(Variant::REAL, "config/explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), _SCS("set_explosiveness"), _SCS("get_explosiveness")); ADD_PROPERTYNZ(PropertyInfo(Variant::BOOL, "config/flip_h"), _SCS("set_flip_h"), _SCS("is_flipped_h")); ADD_PROPERTYNZ(PropertyInfo(Variant::BOOL, "config/flip_v"), _SCS("set_flip_v"), _SCS("is_flipped_v")); ADD_PROPERTYNZ(PropertyInfo(Variant::OBJECT, "config/texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture"), _SCS("set_texture"), _SCS("get_texture")); ADD_PROPERTYNO(PropertyInfo(Variant::INT, "config/h_frames", PROPERTY_HINT_RANGE, "1,512,1"), _SCS("set_h_frames"), _SCS("get_h_frames")); ADD_PROPERTYNO(PropertyInfo(Variant::INT, "config/v_frames", PROPERTY_HINT_RANGE, "1,512,1"), _SCS("set_v_frames"), _SCS("get_v_frames")); for (int i = 0; i < PARAM_MAX; i++) { ADD_PROPERTYI(PropertyInfo(Variant::REAL, _particlesframe_property_names[i], PROPERTY_HINT_RANGE, _particlesframe_property_ranges[i]), _SCS("set_param"), _SCS("get_param"), i); } for (int i = 0; i < PARAM_MAX; i++) { ADD_PROPERTYINZ(PropertyInfo(Variant::REAL, _particlesframe_property_rnames[i], PROPERTY_HINT_RANGE, "-1,1,0.01"), _SCS("set_randomness"), _SCS("get_randomness"), i); } ADD_PROPERTYNZ(PropertyInfo(Variant::INT, "color_phases/count", PROPERTY_HINT_RANGE, "0,4,1", 0), _SCS("set_color_phases"), _SCS("get_color_phases")); //Backward compatibility. They will be converted to color ramp for (int i = 0; i < MAX_COLOR_PHASES; i++) { String phase = "phase_" + itos(i) + "/"; ADD_PROPERTYI(PropertyInfo(Variant::REAL, phase + "pos", PROPERTY_HINT_RANGE, "0,1,0.01", 0), _SCS("set_color_phase_pos"), _SCS("get_color_phase_pos"), i); ADD_PROPERTYI(PropertyInfo(Variant::COLOR, phase + "color", PROPERTY_HINT_NONE, "", 0), _SCS("set_color_phase_color"), _SCS("get_color_phase_color"), i); } ADD_PROPERTYNO(PropertyInfo(Variant::COLOR, "color/color"), _SCS("set_color"), _SCS("get_color")); ADD_PROPERTYNZ(PropertyInfo(Variant::OBJECT, "color/color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "ColorRamp"), _SCS("set_color_ramp"), _SCS("get_color_ramp")); ADD_PROPERTYNZ(PropertyInfo(Variant::VECTOR2_ARRAY, "emission_points", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), _SCS("set_emission_points"), _SCS("get_emission_points")); BIND_CONSTANT(PARAM_DIRECTION); BIND_CONSTANT(PARAM_SPREAD); BIND_CONSTANT(PARAM_LINEAR_VELOCITY); BIND_CONSTANT(PARAM_SPIN_VELOCITY); BIND_CONSTANT(PARAM_ORBIT_VELOCITY); BIND_CONSTANT(PARAM_GRAVITY_DIRECTION); BIND_CONSTANT(PARAM_GRAVITY_STRENGTH); BIND_CONSTANT(PARAM_RADIAL_ACCEL); BIND_CONSTANT(PARAM_TANGENTIAL_ACCEL); BIND_CONSTANT(PARAM_DAMPING); BIND_CONSTANT(PARAM_INITIAL_ANGLE); BIND_CONSTANT(PARAM_INITIAL_SIZE); BIND_CONSTANT(PARAM_FINAL_SIZE); BIND_CONSTANT(PARAM_HUE_VARIATION); BIND_CONSTANT(PARAM_ANIM_SPEED_SCALE); BIND_CONSTANT(PARAM_ANIM_INITIAL_POS); BIND_CONSTANT(PARAM_MAX); BIND_CONSTANT(MAX_COLOR_PHASES); } Particles2D::Particles2D() { for (int i = 0; i < PARAM_MAX; i++) { param[i] = 0; randomness[i] = 0; } set_param(PARAM_SPREAD, 10); set_param(PARAM_LINEAR_VELOCITY, 20); set_param(PARAM_GRAVITY_STRENGTH, 9.8); set_param(PARAM_RADIAL_ACCEL, 0); set_param(PARAM_TANGENTIAL_ACCEL, 0); set_param(PARAM_INITIAL_ANGLE, 0.0); set_param(PARAM_INITIAL_SIZE, 1.0); set_param(PARAM_FINAL_SIZE, 1.0); set_param(PARAM_ANIM_SPEED_SCALE, 1.0); set_color(Color(1, 1, 1, 1)); time = 0; lifetime = 2; emitting = false; particles.resize(32); active_count = -1; set_emitting(true); process_mode = PROCESS_IDLE; local_space = true; preprocess = 0; time_scale = 1.0; flip_h = false; flip_v = false; v_frames = 1; h_frames = 1; emit_timeout = 0; time_to_live = 0; explosiveness = 1.0; }