/*************************************************************************/ /* voxel_light_baker.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "voxel_light_baker.h" #include "core/os/os.h" #include "core/os/threaded_array_processor.h" #include #define FINDMINMAX(x0, x1, x2, min, max) \ min = max = x0; \ if (x1 < min) min = x1; \ if (x1 > max) max = x1; \ if (x2 < min) min = x2; \ if (x2 > max) max = x2; static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { int q; Vector3 vmin, vmax; for (q = 0; q <= 2; q++) { if (normal[q] > 0.0f) { vmin[q] = -maxbox[q]; vmax[q] = maxbox[q]; } else { vmin[q] = maxbox[q]; vmax[q] = -maxbox[q]; } } if (normal.dot(vmin) + d > 0.0f) return false; if (normal.dot(vmax) + d >= 0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p2 = a * v2.y - b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p1 = a * v1.y - b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p2 = -a * v2.x + b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p1 = -a * v1.x + b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a * v1.x - b * v1.y; \ p2 = a * v2.x - b * v2.y; \ if (p2 < p1) { \ min = p2; \ max = p1; \ } else { \ min = p1; \ max = p2; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a * v0.x - b * v0.y; \ p1 = a * v1.x - b * v1.y; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0, v1, v2; float min, max, d, p0, p1, p2, rad, fex, fey, fez; Vector3 normal, e0, e1, e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0 = triverts[0] - boxcenter; v1 = triverts[1] - boxcenter; v2 = triverts[2] - boxcenter; /* compute triangle edges */ e0 = v1 - v0; /* tri edge 0 */ e1 = v2 - v1; /* tri edge 1 */ e2 = v0 - v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x, v1.x, v2.x, min, max); if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y, v1.y, v2.y, min, max); if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z, v1.z, v2.z, min, max); if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal = e0.cross(e1); d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ } static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { r_uv = p_uv[1]; r_normal = p_normal[1]; return; } if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { r_uv = p_uv[2]; r_normal = p_normal[2]; return; } Vector3 v0 = p_vtx[1] - p_vtx[0]; Vector3 v1 = p_vtx[2] - p_vtx[0]; Vector3 v2 = p_pos - p_vtx[0]; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); } void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { if (p_level == cell_subdiv - 1) { //plot the face by guessing its albedo and emission value //find best axis to map to, for scanning values int closest_axis = 0; float closest_dot = 0; Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 normal = plane.normal; for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; float dot = ABS(normal.dot(axis)); if (i == 0 || dot > closest_dot) { closest_axis = i; closest_dot = dot; } } Vector3 axis; axis[closest_axis] = 1.0; Vector3 t1; t1[(closest_axis + 1) % 3] = 1.0; Vector3 t2; t2[(closest_axis + 2) % 3] = 1.0; t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); Color albedo_accum; Color emission_accum; Vector3 normal_accum; float alpha = 0.0; //map to a grid average in the best axis for this face for (int i = 0; i < color_scan_cell_width; i++) { Vector3 ofs_i = float(i) * t1; for (int j = 0; j < color_scan_cell_width; j++) { Vector3 ofs_j = float(j) * t2; Vector3 from = p_aabb.position + ofs_i + ofs_j; Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; Vector3 half = (to - from) * 0.5; //is in this cell? if (!fast_tri_box_overlap(from + half, half, p_vtx)) { continue; //face does not span this cell } //go from -size to +size*2 to avoid skipping collisions Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; if (normal.dot(ray_from - ray_to) < 0) { SWAP(ray_from, ray_to); } Vector3 intersection; if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { intersection = plane.project(ray_from); } else { intersection = plane.project(ray_to); } } intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); Vector2 uv; Vector3 lnormal; get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); if (lnormal == Vector3()) //just in case normal as nor provided lnormal = normal; int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; albedo_accum.r += p_material.albedo[ofs].r; albedo_accum.g += p_material.albedo[ofs].g; albedo_accum.b += p_material.albedo[ofs].b; albedo_accum.a += p_material.albedo[ofs].a; emission_accum.r += p_material.emission[ofs].r; emission_accum.g += p_material.emission[ofs].g; emission_accum.b += p_material.emission[ofs].b; normal_accum += lnormal; alpha += 1.0; } } if (alpha == 0) { //could not in any way get texture information.. so use closest point to center Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); Vector3 lnormal; Vector2 uv; get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); if (lnormal == Vector3()) //just in case normal as nor provided lnormal = normal; int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); albedo_accum.r = p_material.albedo[ofs].r * alpha; albedo_accum.g = p_material.albedo[ofs].g * alpha; albedo_accum.b = p_material.albedo[ofs].b * alpha; albedo_accum.a = p_material.albedo[ofs].a * alpha; emission_accum.r = p_material.emission[ofs].r * alpha; emission_accum.g = p_material.emission[ofs].g * alpha; emission_accum.b = p_material.emission[ofs].b * alpha; normal_accum = lnormal * alpha; } else { float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); alpha *= accdiv; albedo_accum.r *= accdiv; albedo_accum.g *= accdiv; albedo_accum.b *= accdiv; albedo_accum.a *= accdiv; emission_accum.r *= accdiv; emission_accum.g *= accdiv; emission_accum.b *= accdiv; normal_accum *= accdiv; } //put this temporarily here, corrected in a later step bake_cells.write[p_idx].albedo[0] += albedo_accum.r; bake_cells.write[p_idx].albedo[1] += albedo_accum.g; bake_cells.write[p_idx].albedo[2] += albedo_accum.b; bake_cells.write[p_idx].emission[0] += emission_accum.r; bake_cells.write[p_idx].emission[1] += emission_accum.g; bake_cells.write[p_idx].emission[2] += emission_accum.b; bake_cells.write[p_idx].normal[0] += normal_accum.x; bake_cells.write[p_idx].normal[1] += normal_accum.y; bake_cells.write[p_idx].normal[2] += normal_accum.z; bake_cells.write[p_idx].alpha += alpha; } else { //go down int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); for (int i = 0; i < 8; i++) { AABB aabb = p_aabb; aabb.size *= 0.5; int nx = p_x; int ny = p_y; int nz = p_z; if (i & 1) { aabb.position.x += aabb.size.x; nx += half; } if (i & 2) { aabb.position.y += aabb.size.y; ny += half; } if (i & 4) { aabb.position.z += aabb.size.z; nz += half; } //make sure to not plot beyond limits if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) continue; { AABB test_aabb = aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; } } if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { //sub cell must be created uint32_t child_idx = bake_cells.size(); bake_cells.write[p_idx].children[i] = child_idx; bake_cells.resize(bake_cells.size() + 1); bake_cells.write[child_idx].level = p_level + 1; } _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); } } } Vector VoxelLightBaker::_get_bake_texture(Ref p_image, const Color &p_color_mul, const Color &p_color_add) { Vector ret; if (p_image.is_null() || p_image->empty()) { ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { ret.write[i] = p_color_add; } return ret; } p_image = p_image->duplicate(); if (p_image->is_compressed()) { p_image->decompress(); } p_image->convert(Image::FORMAT_RGBA8); p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); PoolVector::Read r = p_image->get_data().read(); ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { Color c; c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; c.a = r[i * 4 + 3] / 255.0; ret.write[i] = c; } return ret; } VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref p_material) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref mat = p_material; Ref material = mat; //hack for now if (material_cache.has(material)) { return material_cache[material]; } MaterialCache mc; if (mat.is_valid()) { Ref albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO); Ref img_albedo; if (albedo_tex.is_valid()) { img_albedo = albedo_tex->get_data(); mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative } else { mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive } Ref emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); float emission_energy = mat->get_emission_energy(); Ref img_emission; if (emission_tex.is_valid()) { img_emission = emission_tex->get_data(); } if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) { mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); } else { mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); } } else { Ref empty; mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); } material_cache[p_material] = mc; return mc; } void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref &p_mesh, const Vector > &p_materials, const Ref &p_override_material) { for (int i = 0; i < p_mesh->get_surface_count(); i++) { if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Ref src_material; if (p_override_material.is_valid()) { src_material = p_override_material; } else if (i < p_materials.size() && p_materials[i].is_valid()) { src_material = p_materials[i]; } else { src_material = p_mesh->surface_get_material(i); } MaterialCache material = _get_material_cache(src_material); Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr = vertices.read(); PoolVector uv = a[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; PoolVector normals = a[Mesh::ARRAY_NORMAL]; PoolVector::Read nr; PoolVector index = a[Mesh::ARRAY_INDEX]; bool read_uv = false; bool read_normals = false; if (uv.size()) { uvr = uv.read(); read_uv = true; } if (normals.size()) { read_normals = true; nr = normals.read(); } if (index.size()) { int facecount = index.size() / 3; PoolVector::Read ir = index.read(); for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[ir[j * 3 + k]]; } } if (read_normals) { for (int k = 0; k < 3; k++) { normal[k] = nr[ir[j * 3 + k]]; } } //test against original bounds if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) continue; //plot _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } } else { int facecount = vertices.size() / 3; for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[j * 3 + k]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[j * 3 + k]; } } if (read_normals) { for (int k = 0; k < 3; k++) { normal[k] = nr[j * 3 + k]; } } //test against original bounds if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) continue; //plot face _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } } } max_original_cells = bake_cells.size(); } void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) { bake_light.write[p_idx].x = p_x; bake_light.write[p_idx].y = p_y; bake_light.write[p_idx].z = p_z; if (p_level == cell_subdiv - 1) { bake_light.write[p_idx].next_leaf = first_leaf; first_leaf = p_idx; } else { //go down int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); for (int i = 0; i < 8; i++) { uint32_t child = bake_cells[p_idx].children[i]; if (child == CHILD_EMPTY) continue; int nx = p_x; int ny = p_y; int nz = p_z; if (i & 1) nx += half; if (i & 2) ny += half; if (i & 4) nz += half; _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx); } } } void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) { _check_init_light(); propagation = p_propagation; bake_quality = p_quality; bake_mode = p_bake_mode; energy = p_energy; } void VoxelLightBaker::_check_init_light() { if (bake_light.size() == 0) { direct_lights_baked = false; leaf_voxel_count = 0; _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting. bake_light.resize(bake_cells.size()); print_line("bake light size: " + itos(bake_light.size())); //zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light)); first_leaf = -1; _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY); } } static float _get_normal_advance(const Vector3 &p_normal) { Vector3 normal = p_normal; Vector3 unorm = normal.abs(); if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { // x code unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { // y code unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { // z code unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); } else { // oh-no we messed up code // has to be unorm = Vector3(1.0, 0.0, 0.0); } return 1.0 / normal.dot(unorm); } static const Vector3 aniso_normal[6] = { Vector3(-1, 0, 0), Vector3(1, 0, 0), Vector3(0, -1, 0), Vector3(0, 1, 0), Vector3(0, 0, -1), Vector3(0, 0, 1) }; uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) { uint32_t cell = 0; int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; int size = 1 << (cell_subdiv - 1); int half = size / 2; if (x < 0 || x >= size) return -1; if (y < 0 || y >= size) return -1; if (z < 0 || z >= size) return -1; for (int i = 0; i < cell_subdiv - 1; i++) { const Cell *bc = &cells[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (cell == CHILD_EMPTY) return CHILD_EMPTY; half >>= 1; } return cell; } void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) { _check_init_light(); float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1; if (p_direct) direct_lights_baked = true; Vector3 light_axis = p_direction; Plane clip[3]; int clip_planes = 0; Light *light_data = bake_light.ptrw(); const Cell *cells = bake_cells.ptr(); for (int i = 0; i < 3; i++) { if (Math::is_zero_approx(light_axis[i])) continue; clip[clip_planes].normal[i] = 1.0; if (light_axis[i] < 0) { clip[clip_planes].d = axis_cell_size[i] + 1; } else { clip[clip_planes].d -= 1.0; } clip_planes++; } float distance_adv = _get_normal_advance(light_axis); int success_count = 0; Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; int idx = first_leaf; while (idx >= 0) { Light *light = &light_data[idx]; Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); to += -light_axis.sign() * 0.47; //make it more likely to receive a ray Vector3 from = to - max_len * light_axis; for (int j = 0; j < clip_planes; j++) { clip[j].intersects_segment(from, to, &from); } float distance = (to - from).length(); distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always from = to - light_axis * distance; uint32_t result = 0xFFFFFFFF; while (distance > -distance_adv) { //use this to avoid precision errors result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); if (result != 0xFFFFFFFF) { break; } from += light_axis * distance_adv; distance -= distance_adv; } if (result == (uint32_t)idx) { //cell hit itself! hooray! Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); if (normal == Vector3()) { for (int i = 0; i < 6; i++) { light->accum[i][0] += light_energy.x * cells[idx].albedo[0]; light->accum[i][1] += light_energy.y * cells[idx].albedo[1]; light->accum[i][2] += light_energy.z * cells[idx].albedo[2]; } } else { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-normal)); light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s; light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s; light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s; } } if (p_direct) { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct light->direct_accum[i][0] += light_energy.x * s; light->direct_accum[i][1] += light_energy.y * s; light->direct_accum[i][2] += light_energy.z * s; } } success_count++; } idx = light_data[idx].next_leaf; } } void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) { _check_init_light(); if (p_direct) direct_lights_baked = true; Plane clip[3]; int clip_planes = 0; // uint64_t us = OS::get_singleton()->get_ticks_usec(); Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; Light *light_data = bake_light.ptrw(); const Cell *cells = bake_cells.ptr(); Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; int idx = first_leaf; while (idx >= 0) { Light *light = &light_data[idx]; Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray Vector3 light_axis = (to - light_pos).normalized(); float distance_adv = _get_normal_advance(light_axis); Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { idx = light_data[idx].next_leaf; continue; } float att = 1.0; { float d = light_pos.distance_to(to); if (d + distance_adv > local_radius) { idx = light_data[idx].next_leaf; continue; // too far away } float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); att *= powf(1.0 - dt, p_attenutation); } clip_planes = 0; for (int c = 0; c < 3; c++) { if (Math::is_zero_approx(light_axis[c])) continue; clip[clip_planes].normal[c] = 1.0; if (light_axis[c] < 0) { clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; } else { clip[clip_planes].d -= 1.0; } clip_planes++; } Vector3 from = light_pos; for (int j = 0; j < clip_planes; j++) { clip[j].intersects_segment(from, to, &from); } float distance = (to - from).length(); distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer from = to - light_axis * distance; to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray uint32_t result = 0xFFFFFFFF; while (distance > -distance_adv) { //use this to avoid precision errors result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); if (result != 0xFFFFFFFF) { break; } from += light_axis * distance_adv; distance -= distance_adv; } if (result == (uint32_t)idx) { //cell hit itself! hooray! if (normal == Vector3()) { for (int i = 0; i < 6; i++) { light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; } } else { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-normal)); light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; } } if (p_direct) { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct light->direct_accum[i][0] += light_energy.x * s * att; light->direct_accum[i][1] += light_energy.y * s * att; light->direct_accum[i][2] += light_energy.z * s * att; } } } idx = light_data[idx].next_leaf; } } void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) { _check_init_light(); if (p_direct) direct_lights_baked = true; Plane clip[3]; int clip_planes = 0; // uint64_t us = OS::get_singleton()->get_ticks_usec(); Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized(); float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; Light *light_data = bake_light.ptrw(); const Cell *cells = bake_cells.ptr(); Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; int idx = first_leaf; while (idx >= 0) { Light *light = &light_data[idx]; Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); Vector3 light_axis = (to - light_pos).normalized(); float distance_adv = _get_normal_advance(light_axis); Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { idx = light_data[idx].next_leaf; continue; } float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis))); if (angle > p_spot_angle) { idx = light_data[idx].next_leaf; continue; // too far away } float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation); { float d = light_pos.distance_to(to); if (d + distance_adv > local_radius) { idx = light_data[idx].next_leaf; continue; // too far away } float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); att *= powf(1.0 - dt, p_attenutation); } clip_planes = 0; for (int c = 0; c < 3; c++) { if (Math::is_zero_approx(light_axis[c])) continue; clip[clip_planes].normal[c] = 1.0; if (light_axis[c] < 0) { clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; } else { clip[clip_planes].d -= 1.0; } clip_planes++; } Vector3 from = light_pos; for (int j = 0; j < clip_planes; j++) { clip[j].intersects_segment(from, to, &from); } float distance = (to - from).length(); distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer from = to - light_axis * distance; uint32_t result = 0xFFFFFFFF; while (distance > -distance_adv) { //use this to avoid precision errors result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); if (result != 0xFFFFFFFF) { break; } from += light_axis * distance_adv; distance -= distance_adv; } if (result == (uint32_t)idx) { //cell hit itself! hooray! if (normal == Vector3()) { for (int i = 0; i < 6; i++) { light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; } } else { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-normal)); light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; } } if (p_direct) { for (int i = 0; i < 6; i++) { float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct light->direct_accum[i][0] += light_energy.x * s * att; light->direct_accum[i][1] += light_energy.y * s * att; light->direct_accum[i][2] += light_energy.z * s * att; } } } idx = light_data[idx].next_leaf; } } void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) { if (p_level == cell_subdiv - 1) { leaf_voxel_count++; float alpha = bake_cells[p_idx].alpha; bake_cells.write[p_idx].albedo[0] /= alpha; bake_cells.write[p_idx].albedo[1] /= alpha; bake_cells.write[p_idx].albedo[2] /= alpha; //transfer emission to light bake_cells.write[p_idx].emission[0] /= alpha; bake_cells.write[p_idx].emission[1] /= alpha; bake_cells.write[p_idx].emission[2] /= alpha; bake_cells.write[p_idx].normal[0] /= alpha; bake_cells.write[p_idx].normal[1] /= alpha; bake_cells.write[p_idx].normal[2] /= alpha; Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); if (n.length() < 0.01) { //too much fight over normal, zero it bake_cells.write[p_idx].normal[0] = 0; bake_cells.write[p_idx].normal[1] = 0; bake_cells.write[p_idx].normal[2] = 0; } else { n.normalize(); bake_cells.write[p_idx].normal[0] = n.x; bake_cells.write[p_idx].normal[1] = n.y; bake_cells.write[p_idx].normal[2] = n.z; } bake_cells.write[p_idx].alpha = 1.0; /*if (bake_light.size()) { for(int i=0;i<6;i++) { } }*/ } else { //go down bake_cells.write[p_idx].emission[0] = 0; bake_cells.write[p_idx].emission[1] = 0; bake_cells.write[p_idx].emission[2] = 0; bake_cells.write[p_idx].normal[0] = 0; bake_cells.write[p_idx].normal[1] = 0; bake_cells.write[p_idx].normal[2] = 0; bake_cells.write[p_idx].albedo[0] = 0; bake_cells.write[p_idx].albedo[1] = 0; bake_cells.write[p_idx].albedo[2] = 0; if (bake_light.size()) { for (int j = 0; j < 6; j++) { bake_light.write[p_idx].accum[j][0] = 0; bake_light.write[p_idx].accum[j][1] = 0; bake_light.write[p_idx].accum[j][2] = 0; } } float alpha_average = 0; int children_found = 0; for (int i = 0; i < 8; i++) { uint32_t child = bake_cells[p_idx].children[i]; if (child == CHILD_EMPTY) continue; _fixup_plot(child, p_level + 1); alpha_average += bake_cells[child].alpha; if (bake_light.size() > 0) { for (int j = 0; j < 6; j++) { bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0]; bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1]; bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2]; } bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0]; bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1]; bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2]; } children_found++; } bake_cells.write[p_idx].alpha = alpha_average / 8.0; if (bake_light.size() && children_found) { float divisor = Math::lerp(8, children_found, propagation); for (int j = 0; j < 6; j++) { bake_light.write[p_idx].accum[j][0] /= divisor; bake_light.write[p_idx].accum[j][1] /= divisor; bake_light.write[p_idx].accum[j][2] /= divisor; } bake_cells.write[p_idx].emission[0] /= divisor; bake_cells.write[p_idx].emission[1] /= divisor; bake_cells.write[p_idx].emission[2] /= divisor; } } } //make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) { int x[3]; int y[3]; for (int j = 0; j < 3; j++) { x[j] = vertices[j].x * width; y[j] = vertices[j].y * height; //x[j] = CLAMP(x[j], 0, bt.width - 1); //y[j] = CLAMP(y[j], 0, bt.height - 1); } // sort the points vertically if (y[1] > y[2]) { SWAP(x[1], x[2]); SWAP(y[1], y[2]); SWAP(positions[1], positions[2]); SWAP(normals[1], normals[2]); } if (y[0] > y[1]) { SWAP(x[0], x[1]); SWAP(y[0], y[1]); SWAP(positions[0], positions[1]); SWAP(normals[0], normals[1]); } if (y[1] > y[2]) { SWAP(x[1], x[2]); SWAP(y[1], y[2]); SWAP(positions[1], positions[2]); SWAP(normals[1], normals[2]); } double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1); double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1); double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1); double xf = x[0]; double xt = x[0] + dx_upper; // if y[0] == y[1], special case for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) { if (yi >= 0) { for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) { //pixels[int(x + y * width)] = color; Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); //vertices[2] - vertices[0]; Vector2 v2 = Vector2(xi - x[0], yi - y[0]); float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); Vector3 pos; Vector3 normal; if (denom == 0) { pos = positions[0]; normal = normals[0]; } else { float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; pos = positions[0] * u + positions[1] * v + positions[2] * w; normal = normals[0] * u + normals[1] * v + normals[2] * w; } int ofs = yi * width + xi; pixels[ofs].normal = normal; pixels[ofs].pos = pos; } for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) { //pixels[int(x + y * width)] = color; Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); //vertices[2] - vertices[0]; Vector2 v2 = Vector2(xi - x[0], yi - y[0]); float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); Vector3 pos; Vector3 normal; if (denom == 0) { pos = positions[0]; normal = normals[0]; } else { float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; pos = positions[0] * u + positions[1] * v + positions[2] * w; normal = normals[0] * u + normals[1] * v + normals[2] * w; } int ofs = yi * width + xi; pixels[ofs].normal = normal; pixels[ofs].pos = pos; } } xf += dx_far; if (yi < y[1]) xt += dx_upper; else xt += dx_low; } } void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) { int size = 1 << (cell_subdiv - 1); int clamp_v = size - 1; //first of all, clamp Vector3 pos; pos.x = CLAMP(p_posf.x, 0, clamp_v); pos.y = CLAMP(p_posf.y, 0, clamp_v); pos.z = CLAMP(p_posf.z, 0, clamp_v); float level = (cell_subdiv - 1) - p_level; int target_level; float level_filter; if (level <= 0.0) { level_filter = 0; target_level = 0; } else { target_level = Math::ceil(level); level_filter = target_level - level; } const Cell *cells = bake_cells.ptr(); const Light *light = bake_light.ptr(); Vector3 color[2][8]; float alpha[2][8]; zeromem(alpha, sizeof(float) * 2 * 8); //find cell at given level first for (int c = 0; c < 2; c++) { int current_level = MAX(0, target_level - c); int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level; for (int n = 0; n < 8; n++) { int x = int(pos.x); int y = int(pos.y); int z = int(pos.z); if (n & 1) x += level_cell_size; if (n & 2) y += level_cell_size; if (n & 4) z += level_cell_size; int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; x = CLAMP(x, 0, clamp_v); y = CLAMP(y, 0, clamp_v); z = CLAMP(z, 0, clamp_v); int half = size / 2; uint32_t cell = 0; for (int i = 0; i < current_level; i++) { const Cell *bc = &cells[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (cell == CHILD_EMPTY) break; half >>= 1; } if (cell == CHILD_EMPTY) { alpha[c][n] = 0; } else { alpha[c][n] = cells[cell].alpha; for (int i = 0; i < 6; i++) { //anisotropic read light float amount = p_direction.dot(aniso_normal[i]); if (amount < 0) amount = 0; color[c][n].x += light[cell].accum[i][0] * amount; color[c][n].y += light[cell].accum[i][1] * amount; color[c][n].z += light[cell].accum[i][2] * amount; } color[c][n].x += cells[cell].emission[0]; color[c][n].y += cells[cell].emission[1]; color[c][n].z += cells[cell].emission[2]; } } } float target_level_size = size >> target_level; Vector3 pos_fract[2]; pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; target_level_size = size >> MAX(0, target_level - 1); pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; float alpha_interp[2]; Vector3 color_interp[2]; for (int i = 0; i < 2; i++) { Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); } r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); } Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) { float bias = 2.5; float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length(); float dist = bias; float alpha = 0.0; Vector3 color; Vector3 scolor; float salpha; while (dist < max_distance && alpha < 0.95) { float diameter = MAX(1.0, 2.0 * p_aperture * dist); _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha); float a = (1.0 - alpha); color += scolor * a; alpha += a * salpha; dist += diameter * 0.5; } /*if (blend_ambient) { color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); }*/ return color; } Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { //find arbitrary tangent and bitangent, then build a matrix Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); Vector3 tangent = v0.cross(p_normal).normalized(); Vector3 bitangent = tangent.cross(p_normal).normalized(); Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); const Vector3 *cone_dirs = NULL; const float *cone_weights = NULL; int cone_dir_count = 0; float cone_aperture = 0; switch (bake_quality) { case BAKE_QUALITY_LOW: { //default quality static const Vector3 dirs[4] = { Vector3(Math_SQRT12, 0, Math_SQRT12), Vector3(0, Math_SQRT12, Math_SQRT12), Vector3(-Math_SQRT12, 0, Math_SQRT12), Vector3(0, -Math_SQRT12, Math_SQRT12) }; static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 }; cone_dirs = dirs; cone_dir_count = 4; cone_aperture = 1.0; // tan(angle) 90 degrees cone_weights = weights; } break; case BAKE_QUALITY_MEDIUM: { //default quality static const Vector3 dirs[6] = { Vector3(0, 0, 1), Vector3(0.866025, 0, 0.5), Vector3(0.267617, 0.823639, 0.5), Vector3(-0.700629, 0.509037, 0.5), Vector3(-0.700629, -0.509037, 0.5), Vector3(0.267617, -0.823639, 0.5) }; static const float weights[6] = { 0.25f, 0.15f, 0.15f, 0.15f, 0.15f, 0.15f }; // cone_dirs = dirs; cone_dir_count = 6; cone_aperture = 0.577; // tan(angle) 60 degrees cone_weights = weights; } break; case BAKE_QUALITY_HIGH: { //high qualily static const Vector3 dirs[10] = { Vector3(0.8781648411741658, 0.0, 0.478358141694643), Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606), Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645), Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604), Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604), Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645), Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606), Vector3(-0.4451656858129485, 0.0, 0.8954482185892644), Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214), Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214), }; static const float weights[10] = { 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.133333f, 0.133333f, 0.13333f }; cone_dirs = dirs; cone_dir_count = 10; cone_aperture = 0.404; // tan(angle) 45 degrees cone_weights = weights; } break; } Vector3 accum; for (int i = 0; i < cone_dir_count; i++) { Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i]; } return accum; } _ALWAYS_INLINE_ uint32_t xorshift32(uint32_t *state) { /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */ uint32_t x = *state; x ^= x << 13; x ^= x >> 17; x ^= x << 5; *state = x; return x; } Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { int samples_per_quality[3] = { 48, 128, 512 }; int samples = samples_per_quality[bake_quality]; //create a basis in Z Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); Vector3 tangent = v0.cross(p_normal).normalized(); Vector3 bitangent = tangent.cross(p_normal).normalized(); Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); float bias = 1.5; int max_level = cell_subdiv - 1; int size = 1 << max_level; Vector3 accum; float spread = Math::deg2rad(80.0); const Light *light = bake_light.ptr(); const Cell *cells = bake_cells.ptr(); uint32_t local_rng_state = rand(); //needs to be fixed again for (int i = 0; i < samples; i++) { float random_angle1 = (((xorshift32(&local_rng_state) % 65535) / 65535.0) * 2.0 - 1.0) * spread; Vector3 axis(0, sin(random_angle1), cos(random_angle1)); float random_angle2 = ((xorshift32(&local_rng_state) % 65535) / 65535.0) * Math_PI * 2.0; Basis rot(Vector3(0, 0, 1), random_angle2); axis = rot.xform(axis); Vector3 direction = normal_xform.xform(axis).normalized(); Vector3 advance = direction * _get_normal_advance(direction); Vector3 pos = p_pos /*+ Vector3(0.5, 0.5, 0.5)*/ + advance * bias; uint32_t cell = CHILD_EMPTY; while (cell == CHILD_EMPTY) { int x = int(pos.x); int y = int(pos.y); int z = int(pos.z); int ofs_x = 0; int ofs_y = 0; int ofs_z = 0; int half = size / 2; if (x < 0 || x >= size) break; if (y < 0 || y >= size) break; if (z < 0 || z >= size) break; //int level_limit = max_level; cell = 0; //start from root for (int j = 0; j < max_level; j++) { const Cell *bc = &cells[cell]; int child = 0; if (x >= ofs_x + half) { child |= 1; ofs_x += half; } if (y >= ofs_y + half) { child |= 2; ofs_y += half; } if (z >= ofs_z + half) { child |= 4; ofs_z += half; } cell = bc->children[child]; if (unlikely(cell == CHILD_EMPTY)) break; half >>= 1; } pos += advance; } if (unlikely(cell != CHILD_EMPTY)) { for (int j = 0; j < 6; j++) { //anisotropic read light float amount = direction.dot(aniso_normal[j]); if (amount <= 0) continue; accum.x += light[cell].accum[j][0] * amount; accum.y += light[cell].accum[j][1] * amount; accum.z += light[cell].accum[j][2] * amount; } accum.x += cells[cell].emission[0]; accum.y += cells[cell].emission[1]; accum.z += cells[cell].emission[2]; } } // Make sure we don't reset this thread's RNG state return accum / samples; } void VoxelLightBaker::_lightmap_bake_point(uint32_t p_x, LightMap *p_line) { LightMap *pixel = &p_line[p_x]; if (pixel->pos == Vector3()) return; switch (bake_mode) { case BAKE_MODE_CONE_TRACE: { pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy; } break; case BAKE_MODE_RAY_TRACE: { pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy; } break; } } Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) { //transfer light information to a lightmap Ref mesh = p_mesh; //step 1 - create lightmap int width; int height; Vector lightmap; Transform xform = to_cell_space * p_xform; if (mesh->get_lightmap_size_hint() == Size2()) { double area = 0; double uv_area = 0; for (int i = 0; i < mesh->get_surface_count(); i++) { Array arrays = mesh->surface_get_arrays(i); PoolVector vertices = arrays[Mesh::ARRAY_VERTEX]; PoolVector uv2 = arrays[Mesh::ARRAY_TEX_UV2]; PoolVector indices = arrays[Mesh::ARRAY_INDEX]; ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); int vc = vertices.size(); PoolVector::Read vr = vertices.read(); PoolVector::Read u2r = uv2.read(); PoolVector::Read ir; int ic = 0; if (indices.size()) { ic = indices.size(); ir = indices.read(); } int faces = ic ? ic / 3 : vc / 3; for (int j = 0; j < faces; j++) { Vector3 vertex[3]; Vector2 uv[3]; for (int k = 0; k < 3; k++) { int idx = ic ? ir[j * 3 + k] : j * 3 + k; vertex[k] = xform.xform(vr[idx]); uv[k] = u2r[idx]; } Vector3 p1 = vertex[0]; Vector3 p2 = vertex[1]; Vector3 p3 = vertex[2]; double a = p1.distance_to(p2); double b = p2.distance_to(p3); double c = p3.distance_to(p1); double halfPerimeter = (a + b + c) / 2.0; area += sqrt(halfPerimeter * (halfPerimeter - a) * (halfPerimeter - b) * (halfPerimeter - c)); Vector2 uv_p1 = uv[0]; Vector2 uv_p2 = uv[1]; Vector2 uv_p3 = uv[2]; double uv_a = uv_p1.distance_to(uv_p2); double uv_b = uv_p2.distance_to(uv_p3); double uv_c = uv_p3.distance_to(uv_p1); double uv_halfPerimeter = (uv_a + uv_b + uv_c) / 2.0; uv_area += sqrt(uv_halfPerimeter * (uv_halfPerimeter - uv_a) * (uv_halfPerimeter - uv_b) * (uv_halfPerimeter - uv_c)); } } if (uv_area < 0.0001f) { uv_area = 1.0; } int pixels = (ceil((1.0 / sqrt(uv_area)) * sqrt(area * default_texels_per_unit))); width = height = CLAMP(pixels, 2, 4096); } else { width = mesh->get_lightmap_size_hint().x; height = mesh->get_lightmap_size_hint().y; } lightmap.resize(width * height); //step 2 plot faces to lightmap for (int i = 0; i < mesh->get_surface_count(); i++) { Array arrays = mesh->surface_get_arrays(i); PoolVector vertices = arrays[Mesh::ARRAY_VERTEX]; PoolVector normals = arrays[Mesh::ARRAY_NORMAL]; PoolVector uv2 = arrays[Mesh::ARRAY_TEX_UV2]; PoolVector indices = arrays[Mesh::ARRAY_INDEX]; ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); int vc = vertices.size(); PoolVector::Read vr = vertices.read(); PoolVector::Read nr = normals.read(); PoolVector::Read u2r = uv2.read(); PoolVector::Read ir; int ic = 0; if (indices.size()) { ic = indices.size(); ir = indices.read(); } int faces = ic ? ic / 3 : vc / 3; for (int j = 0; j < faces; j++) { Vector3 vertex[3]; Vector3 normal[3]; Vector2 uv[3]; for (int k = 0; k < 3; k++) { int idx = ic ? ir[j * 3 + k] : j * 3 + k; vertex[k] = xform.xform(vr[idx]); normal[k] = xform.basis.xform(nr[idx]).normalized(); uv[k] = u2r[idx]; } _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height); } } //step 3 perform voxel cone trace on lightmap pixels { LightMap *lightmap_ptr = lightmap.ptrw(); uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); volatile int lines = 0; // make sure our OS-level rng is seeded for (int i = 0; i < height; i++) { thread_process_array(width, this, &VoxelLightBaker::_lightmap_bake_point, &lightmap_ptr[i * width]); lines = MAX(lines, i); //for multithread if (p_bake_time_func) { uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; float elapsed_sec = double(elapsed) / 1000000.0; float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1); if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) { return ERR_SKIP; } } } if (bake_mode == BAKE_MODE_RAY_TRACE) { //blur //gauss kernel, 7 step sigma 2 static const float gauss_kernel[4] = { 0.214607f, 0.189879f, 0.131514f, 0.071303f }; //horizontal pass for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { if (lightmap_ptr[i * width + j].normal == Vector3()) { continue; //empty } float gauss_sum = gauss_kernel[0]; Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0]; for (int k = 1; k < 4; k++) { int new_x = j + k; if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3()) break; gauss_sum += gauss_kernel[k]; accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; } for (int k = 1; k < 4; k++) { int new_x = j - k; if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3()) break; gauss_sum += gauss_kernel[k]; accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; } lightmap_ptr[i * width + j].pos = accum /= gauss_sum; } } //vertical pass for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { if (lightmap_ptr[i * width + j].normal == Vector3()) continue; //empty, don't write over it anyway float gauss_sum = gauss_kernel[0]; Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0]; for (int k = 1; k < 4; k++) { int new_y = i + k; if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3()) break; gauss_sum += gauss_kernel[k]; accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; } for (int k = 1; k < 4; k++) { int new_y = i - k; if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3()) break; gauss_sum += gauss_kernel[k]; accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; } lightmap_ptr[i * width + j].light = accum /= gauss_sum; } } } //add directional light (do this after blur) { const Cell *cells = bake_cells.ptr(); const Light *light = bake_light.ptr(); #ifdef _OPENMP #pragma omp parallel #endif for (int i = 0; i < height; i++) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 1) #endif for (int j = 0; j < width; j++) { //if (i == 125 && j == 280) { LightMap *pixel = &lightmap_ptr[i * width + j]; if (pixel->pos == Vector3()) continue; //unused, skipe int x = int(pixel->pos.x) - 1; int y = int(pixel->pos.y) - 1; int z = int(pixel->pos.z) - 1; Color accum; int size = 1 << (cell_subdiv - 1); int found = 0; for (int k = 0; k < 8; k++) { int ofs_x = x; int ofs_y = y; int ofs_z = z; if (k & 1) ofs_x++; if (k & 2) ofs_y++; if (k & 4) ofs_z++; if (x < 0 || x >= size) continue; if (y < 0 || y >= size) continue; if (z < 0 || z >= size) continue; uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z); if (cell == CHILD_EMPTY) continue; for (int l = 0; l < 6; l++) { float s = pixel->normal.dot(aniso_normal[l]); if (s < 0) s = 0; accum.r += light[cell].direct_accum[l][0] * s; accum.g += light[cell].direct_accum[l][1] * s; accum.b += light[cell].direct_accum[l][2] * s; } found++; } if (found) { accum /= found; pixel->light.x += accum.r; pixel->light.y += accum.g; pixel->light.z += accum.b; } } } } { //fill gaps with neighbour vertices to avoid filter fades to black on edges for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { if (lightmap_ptr[i * width + j].normal != Vector3()) { continue; //filled, skip } //this can't be made separatable.. int closest_i = -1, closest_j = 1; float closest_dist = 1e20; const int margin = 3; for (int y = i - margin; y <= i + margin; y++) { for (int x = j - margin; x <= j + margin; x++) { if (x == j && y == i) continue; if (x < 0 || x >= width) continue; if (y < 0 || y >= height) continue; if (lightmap_ptr[y * width + x].normal == Vector3()) continue; //also ensures that blitted stuff is not reused float dist = Vector2(i - y, j - x).length(); if (dist > closest_dist) continue; closest_dist = dist; closest_i = y; closest_j = x; } } if (closest_i != -1) { lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light; } } } } { //fill the lightmap data r_lightmap.width = width; r_lightmap.height = height; r_lightmap.light.resize(lightmap.size() * 3); PoolVector::Write w = r_lightmap.light.write(); for (int i = 0; i < lightmap.size(); i++) { w[i * 3 + 0] = lightmap[i].light.x; w[i * 3 + 1] = lightmap[i].light.y; w[i * 3 + 2] = lightmap[i].light.z; } } #if 0 // Enable for debugging. { PoolVector img; int ls = lightmap.size(); img.resize(ls * 3); { PoolVector::Write w = img.write(); for (int i = 0; i < ls; i++) { w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255); w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255); w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255); //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255); //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255); //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255); //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255); //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255); //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255); } } Ref image; image.instance(); image->create(width, height, false, Image::FORMAT_RGB8, img); String name = p_mesh->get_name(); if (name == "") { name = "Mesh" + itos(p_mesh->get_instance_id()); } image->save_png(name + ".png"); } #endif } return OK; } void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) { original_bounds = p_bounds; cell_subdiv = p_subdiv; bake_cells.resize(1); material_cache.clear(); //find out the actual real bounds, power of 2, which gets the highest subdivision po2_bounds = p_bounds; int longest_axis = po2_bounds.get_longest_axis_index(); axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1)); leaf_voxel_count = 0; for (int i = 0; i < 3; i++) { if (i == longest_axis) continue; axis_cell_size[i] = axis_cell_size[longest_axis]; float axis_size = po2_bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size / 2.0 >= po2_bounds.size[i]) { axis_size /= 2.0; axis_cell_size[i] >>= 1; } po2_bounds.size[i] = po2_bounds.size[longest_axis]; } Transform to_bounds; to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); to_bounds.origin = po2_bounds.position; Transform to_grid; to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); to_cell_space = to_grid * to_bounds.affine_inverse(); cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; } void VoxelLightBaker::end_bake() { _fixup_plot(0, 0); } //create the data for visual server PoolVector VoxelLightBaker::create_gi_probe_data() { PoolVector data; data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest. { PoolVector::Write w = data.write(); uint32_t *w32 = (uint32_t *)w.ptr(); w32[0] = 0; //version w32[1] = cell_subdiv; //subdiv w32[2] = axis_cell_size[0]; w32[3] = axis_cell_size[1]; w32[4] = axis_cell_size[2]; w32[5] = bake_cells.size(); w32[6] = leaf_voxel_count; int ofs = 16; for (int i = 0; i < bake_cells.size(); i++) { for (int j = 0; j < 8; j++) { w32[ofs++] = bake_cells[i].children[j]; } { //albedo uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; w32[ofs++] = rgba; } { //emission Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]); float l = e.length(); if (l > 0) { e.normalize(); l = CLAMP(l / 8.0, 0, 1.0); } uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; em |= uint32_t(CLAMP(l * 255, 0, 255)); w32[ofs++] = em; } //w32[ofs++]=bake_cells[i].used_sides; { //normal Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); uint32_t norm = 0; norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; w32[ofs++] = norm; } { uint16_t alpha = MIN(uint32_t(bake_cells[i].alpha * 65535.0), 65535); uint16_t level = bake_cells[i].level; w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); } } } return data; } void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref &p_multimesh, int &idx, DebugMode p_mode) { if (p_level == cell_subdiv - 1) { Vector3 center = p_aabb.position + p_aabb.size * 0.5; Transform xform; xform.origin = center; xform.basis.scale(p_aabb.size * 0.5); p_multimesh->set_instance_transform(idx, xform); Color col; if (p_mode == DEBUG_ALBEDO) { col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); } else if (p_mode == DEBUG_LIGHT) { for (int i = 0; i < 6; i++) { col.r += bake_light[p_idx].accum[i][0]; col.g += bake_light[p_idx].accum[i][1]; col.b += bake_light[p_idx].accum[i][2]; col.r += bake_light[p_idx].direct_accum[i][0]; col.g += bake_light[p_idx].direct_accum[i][1]; col.b += bake_light[p_idx].direct_accum[i][2]; } } //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); p_multimesh->set_instance_color(idx, col); idx++; } else { for (int i = 0; i < 8; i++) { uint32_t child = bake_cells[p_idx].children[i]; if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) continue; AABB aabb = p_aabb; aabb.size *= 0.5; if (i & 1) aabb.position.x += aabb.size.x; if (i & 2) aabb.position.y += aabb.size.y; if (i & 4) aabb.position.z += aabb.size.z; _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode); } } } Ref VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) { Ref mm; ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm); mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_color_format(MultiMesh::COLOR_8BIT); mm->set_instance_count(leaf_voxel_count); Ref mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector vertices; PoolVector colors; #define ADD_VTX(m_idx) \ ; \ vertices.push_back(face_points[m_idx]); \ colors.push_back(Color(1, 1, 1, 1)); for (int i = 0; i < 6; i++) { Vector3 face_points[4]; for (int j = 0; j < 4; j++) { float v[3]; v[0] = 1.0; v[1] = 1 - 2 * ((j >> 1) & 1); v[2] = v[1] * (1 - 2 * (j & 1)); for (int k = 0; k < 3; k++) { if (i < 3) face_points[j][(i + k) % 3] = v[k]; else face_points[3 - j][(i + k) % 3] = -v[k]; } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX] = vertices; arr[Mesh::ARRAY_COLOR] = colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); } { Ref fsm; fsm.instance(); fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true); fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true); fsm->set_albedo(Color(1, 1, 1, 1)); mesh->surface_set_material(0, fsm); } mm->set_mesh(mesh); int idx = 0; _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode); return mm; } struct VoxelLightBakerOctree { enum { CHILD_EMPTY = 0xFFFFFFFF }; uint16_t light[6][3]; //anisotropic light float alpha; uint32_t children[8]; }; PoolVector VoxelLightBaker::create_capture_octree(int p_subdiv) { p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one Vector remap; int bc = bake_cells.size(); remap.resize(bc); Vector demap; int new_size = 0; for (int i = 0; i < bc; i++) { uint32_t c = CHILD_EMPTY; if (bake_cells[i].level < p_subdiv) { c = new_size; new_size++; demap.push_back(i); } remap.write[i] = c; } Vector octree; octree.resize(new_size); for (int i = 0; i < new_size; i++) { octree.write[i].alpha = bake_cells[demap[i]].alpha; for (int j = 0; j < 6; j++) { for (int k = 0; k < 3; k++) { float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light l += bake_cells[demap[i]].emission[k]; //add emission octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree } } for (int j = 0; j < 8; j++) { uint32_t child = bake_cells[demap[i]].children[j]; octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child]; } } PoolVector ret; int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree); ret.resize(ret_bytes); { PoolVector::Write w = ret.write(); copymem(w.ptr(), octree.ptr(), ret_bytes); } return ret; } float VoxelLightBaker::get_cell_size() const { return cell_size; } Transform VoxelLightBaker::get_to_cell_space_xform() const { return to_cell_space; } VoxelLightBaker::VoxelLightBaker() { color_scan_cell_width = 4; bake_texture_size = 128; propagation = 0.85; energy = 1.0; }