/*
 *  Elliptic curves over GF(p): curve-specific data and functions
 *
 *  Copyright The Mbed TLS Contributors
 *  SPDX-License-Identifier: Apache-2.0
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#include "common.h"

#if defined(MBEDTLS_ECP_C)

#include "mbedtls/ecp.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include "mbedtls/bn_mul.h"

#include "ecp_invasive.h"

#include <string.h>

#if !defined(MBEDTLS_ECP_ALT)

/* Parameter validation macros based on platform_util.h */
#define ECP_VALIDATE_RET(cond)    \
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA)
#define ECP_VALIDATE(cond)        \
    MBEDTLS_INTERNAL_VALIDATE(cond)

#define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }

#define ECP_MPI_INIT_ARRAY(x)   \
    ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)

/*
 * Note: the constants are in little-endian order
 * to be directly usable in MPIs
 */

/*
 * Domain parameters for secp192r1
 */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
static const mbedtls_mpi_uint secp192r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp192r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
    MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
};
static const mbedtls_mpi_uint secp192r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
};
static const mbedtls_mpi_uint secp192r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
    MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
};
static const mbedtls_mpi_uint secp192r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
    MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */

/*
 * Domain parameters for secp224r1
 */
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
static const mbedtls_mpi_uint secp224r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
};
static const mbedtls_mpi_uint secp224r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
    MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
    MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
};
static const mbedtls_mpi_uint secp224r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
    MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
};
static const mbedtls_mpi_uint secp224r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
    MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
};
static const mbedtls_mpi_uint secp224r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
    MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */

/*
 * Domain parameters for secp256r1
 */
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
static const mbedtls_mpi_uint secp256r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp256r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
};
static const mbedtls_mpi_uint secp256r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
};
static const mbedtls_mpi_uint secp256r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
};
static const mbedtls_mpi_uint secp256r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */

/*
 * Domain parameters for secp384r1
 */
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
static const mbedtls_mpi_uint secp384r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp384r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
    MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
};
static const mbedtls_mpi_uint secp384r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
    MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
    MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
};
static const mbedtls_mpi_uint secp384r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
    MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
    MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
};
static const mbedtls_mpi_uint secp384r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
    MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */

/*
 * Domain parameters for secp521r1
 */
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
static const mbedtls_mpi_uint secp521r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
};
static const mbedtls_mpi_uint secp521r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
    MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
    MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
    MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
    MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
};
static const mbedtls_mpi_uint secp521r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
    MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
    MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
    MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
    MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
};
static const mbedtls_mpi_uint secp521r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
    MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
    MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
    MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
    MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
};
static const mbedtls_mpi_uint secp521r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
};
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
static const mbedtls_mpi_uint secp192k1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp192k1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
};
static const mbedtls_mpi_uint secp192k1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
};
static const mbedtls_mpi_uint secp192k1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
};
static const mbedtls_mpi_uint secp192k1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
    MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
};
static const mbedtls_mpi_uint secp192k1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
static const mbedtls_mpi_uint secp224k1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp224k1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
};
static const mbedtls_mpi_uint secp224k1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
};
static const mbedtls_mpi_uint secp224k1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
    MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
};
static const mbedtls_mpi_uint secp224k1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
    MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
    MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
};
static const mbedtls_mpi_uint secp224k1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
    MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
    MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
};
#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
static const mbedtls_mpi_uint secp256k1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
static const mbedtls_mpi_uint secp256k1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
};
static const mbedtls_mpi_uint secp256k1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
};
static const mbedtls_mpi_uint secp256k1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
};
static const mbedtls_mpi_uint secp256k1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
};
static const mbedtls_mpi_uint secp256k1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
    MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
};
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */

/*
 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
 */
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
    MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
};
static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
    MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
    MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
};
static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
    MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
    MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
};
static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
    MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
};
static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
};
static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
    MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
};
#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */

/*
 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
 */
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
    MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
};
static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
    MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
    MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
};
static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
    MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
    MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
};
static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
    MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
};
static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
    MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
};
static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
    MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
};
#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */

/*
 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
 */
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
    MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
    MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
    MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
    MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
};
static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
    MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
    MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
    MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
    MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
    MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
};
static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
    MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
    MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
    MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
    MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
    MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
};
static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
    MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
    MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
    MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
    MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
    MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
    MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
    MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
};
static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
    MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
    MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
    MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
    MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
    MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
    MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
    MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
};
static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
    MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
    MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
    MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
    MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
    MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
    MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
    MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
    MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
};
#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \
    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
/* For these curves, we build the group parameters dynamically. */
#define ECP_LOAD_GROUP
#endif

#if defined(ECP_LOAD_GROUP)
/*
 * Create an MPI from embedded constants
 * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint))
 */
static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
{
    X->s = 1;
    X->n = len / sizeof(mbedtls_mpi_uint);
    X->p = (mbedtls_mpi_uint *) p;
}

/*
 * Set an MPI to static value 1
 */
static inline void ecp_mpi_set1(mbedtls_mpi *X)
{
    static mbedtls_mpi_uint one[] = { 1 };
    X->s = 1;
    X->n = 1;
    X->p = one;
}

/*
 * Make group available from embedded constants
 */
static int ecp_group_load(mbedtls_ecp_group *grp,
                          const mbedtls_mpi_uint *p,  size_t plen,
                          const mbedtls_mpi_uint *a,  size_t alen,
                          const mbedtls_mpi_uint *b,  size_t blen,
                          const mbedtls_mpi_uint *gx, size_t gxlen,
                          const mbedtls_mpi_uint *gy, size_t gylen,
                          const mbedtls_mpi_uint *n,  size_t nlen)
{
    ecp_mpi_load(&grp->P, p, plen);
    if (a != NULL) {
        ecp_mpi_load(&grp->A, a, alen);
    }
    ecp_mpi_load(&grp->B, b, blen);
    ecp_mpi_load(&grp->N, n, nlen);

    ecp_mpi_load(&grp->G.X, gx, gxlen);
    ecp_mpi_load(&grp->G.Y, gy, gylen);
    ecp_mpi_set1(&grp->G.Z);

    grp->pbits = mbedtls_mpi_bitlen(&grp->P);
    grp->nbits = mbedtls_mpi_bitlen(&grp->N);

    grp->h = 1;

    return 0;
}
#endif /* ECP_LOAD_GROUP */

#if defined(MBEDTLS_ECP_NIST_OPTIM)
/* Forward declarations */
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
static int ecp_mod_p192(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
static int ecp_mod_p224(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
static int ecp_mod_p256(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
static int ecp_mod_p384(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
static int ecp_mod_p521(mbedtls_mpi *);
#endif

#define NIST_MODP(P)      grp->modp = ecp_mod_ ## P;
#else
#define NIST_MODP(P)
#endif /* MBEDTLS_ECP_NIST_OPTIM */

/* Additional forward declarations */
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
static int ecp_mod_p255(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
static int ecp_mod_p448(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
static int ecp_mod_p192k1(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
static int ecp_mod_p224k1(mbedtls_mpi *);
#endif
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
static int ecp_mod_p256k1(mbedtls_mpi *);
#endif

#if defined(ECP_LOAD_GROUP)
#define LOAD_GROUP_A(G)   ecp_group_load(grp,            \
                                         G ## _p,  sizeof(G ## _p),   \
                                         G ## _a,  sizeof(G ## _a),   \
                                         G ## _b,  sizeof(G ## _b),   \
                                         G ## _gx, sizeof(G ## _gx),   \
                                         G ## _gy, sizeof(G ## _gy),   \
                                         G ## _n,  sizeof(G ## _n))

#define LOAD_GROUP(G)     ecp_group_load(grp,            \
                                         G ## _p,  sizeof(G ## _p),   \
                                         NULL,     0,                    \
                                         G ## _b,  sizeof(G ## _b),   \
                                         G ## _gx, sizeof(G ## _gx),   \
                                         G ## _gy, sizeof(G ## _gy),   \
                                         G ## _n,  sizeof(G ## _n))
#endif /* ECP_LOAD_GROUP */

#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
/* Constants used by ecp_use_curve25519() */
static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
static const unsigned char curve25519_part_of_n[] = {
    0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
    0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
};

/*
 * Specialized function for creating the Curve25519 group
 */
static int ecp_use_curve25519(mbedtls_ecp_group *grp)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;

    /* Actually ( A + 2 ) / 4 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));

    /* P = 2^255 - 19 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255));
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19));
    grp->pbits = mbedtls_mpi_bitlen(&grp->P);

    /* N = 2^252 + 27742317777372353535851937790883648493 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N,
                                            curve25519_part_of_n, sizeof(curve25519_part_of_n)));
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1));

    /* Y intentionally not set, since we use x/z coordinates.
     * This is used as a marker to identify Montgomery curves! */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
    mbedtls_mpi_free(&grp->G.Y);

    /* Actually, the required msb for private keys */
    grp->nbits = 254;

cleanup:
    if (ret != 0) {
        mbedtls_ecp_group_free(grp);
    }

    return ret;
}
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */

#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
/* Constants used by ecp_use_curve448() */
static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
static const unsigned char curve448_part_of_n[] = {
    0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
    0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
    0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
    0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
};

/*
 * Specialized function for creating the Curve448 group
 */
static int ecp_use_curve448(mbedtls_ecp_group *grp)
{
    mbedtls_mpi Ns;
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;

    mbedtls_mpi_init(&Ns);

    /* Actually ( A + 2 ) / 4 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));

    /* P = 2^448 - 2^224 - 1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
    grp->pbits = mbedtls_mpi_bitlen(&grp->P);

    /* Y intentionally not set, since we use x/z coordinates.
     * This is used as a marker to identify Montgomery curves! */
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
    mbedtls_mpi_free(&grp->G.Y);

    /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1));
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns,
                                            curve448_part_of_n, sizeof(curve448_part_of_n)));
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns));

    /* Actually, the required msb for private keys */
    grp->nbits = 447;

cleanup:
    mbedtls_mpi_free(&Ns);
    if (ret != 0) {
        mbedtls_ecp_group_free(grp);
    }

    return ret;
}
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */

/*
 * Set a group using well-known domain parameters
 */
int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
{
    ECP_VALIDATE_RET(grp != NULL);
    mbedtls_ecp_group_free(grp);

    mbedtls_ecp_group_init(grp);

    grp->id = id;

    switch (id) {
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
        case MBEDTLS_ECP_DP_SECP192R1:
            NIST_MODP(p192);
            return LOAD_GROUP(secp192r1);
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
        case MBEDTLS_ECP_DP_SECP224R1:
            NIST_MODP(p224);
            return LOAD_GROUP(secp224r1);
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
        case MBEDTLS_ECP_DP_SECP256R1:
            NIST_MODP(p256);
            return LOAD_GROUP(secp256r1);
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
        case MBEDTLS_ECP_DP_SECP384R1:
            NIST_MODP(p384);
            return LOAD_GROUP(secp384r1);
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
        case MBEDTLS_ECP_DP_SECP521R1:
            NIST_MODP(p521);
            return LOAD_GROUP(secp521r1);
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
        case MBEDTLS_ECP_DP_SECP192K1:
            grp->modp = ecp_mod_p192k1;
            return LOAD_GROUP_A(secp192k1);
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
        case MBEDTLS_ECP_DP_SECP224K1:
            grp->modp = ecp_mod_p224k1;
            return LOAD_GROUP_A(secp224k1);
#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
        case MBEDTLS_ECP_DP_SECP256K1:
            grp->modp = ecp_mod_p256k1;
            return LOAD_GROUP_A(secp256k1);
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
        case MBEDTLS_ECP_DP_BP256R1:
            return LOAD_GROUP_A(brainpoolP256r1);
#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
        case MBEDTLS_ECP_DP_BP384R1:
            return LOAD_GROUP_A(brainpoolP384r1);
#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
        case MBEDTLS_ECP_DP_BP512R1:
            return LOAD_GROUP_A(brainpoolP512r1);
#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
        case MBEDTLS_ECP_DP_CURVE25519:
            grp->modp = ecp_mod_p255;
            return ecp_use_curve25519(grp);
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */

#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
        case MBEDTLS_ECP_DP_CURVE448:
            grp->modp = ecp_mod_p448;
            return ecp_use_curve448(grp);
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */

        default:
            grp->id = MBEDTLS_ECP_DP_NONE;
            return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
    }
}

#if defined(MBEDTLS_ECP_NIST_OPTIM)
/*
 * Fast reduction modulo the primes used by the NIST curves.
 *
 * These functions are critical for speed, but not needed for correct
 * operations. So, we make the choice to heavily rely on the internals of our
 * bignum library, which creates a tight coupling between these functions and
 * our MPI implementation.  However, the coupling between the ECP module and
 * MPI remains loose, since these functions can be deactivated at will.
 */

#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
/*
 * Compared to the way things are presented in FIPS 186-3 D.2,
 * we proceed in columns, from right (least significant chunk) to left,
 * adding chunks to N in place, and keeping a carry for the next chunk.
 * This avoids moving things around in memory, and uselessly adding zeros,
 * compared to the more straightforward, line-oriented approach.
 *
 * For this prime we need to handle data in chunks of 64 bits.
 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
 */

/* Add 64-bit chunks (dst += src) and update carry */
static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
{
    unsigned char i;
    mbedtls_mpi_uint c = 0;
    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
        *dst += c;      c  = (*dst < c);
        *dst += *src;   c += (*dst < *src);
    }
    *carry += c;
}

/* Add carry to a 64-bit chunk and update carry */
static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
{
    unsigned char i;
    for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
        *dst += *carry;
        *carry  = (*dst < *carry);
    }
}

#define WIDTH       8 / sizeof(mbedtls_mpi_uint)
#define A(i)      N->p + (i) * WIDTH
#define ADD(i)    add64(p, A(i), &c)
#define NEXT        p += WIDTH; carry64(p, &c)
#define LAST        p += WIDTH; *p = c; while (++p < end) *p = 0

/*
 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
 */
static int ecp_mod_p192(mbedtls_mpi *N)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    mbedtls_mpi_uint c = 0;
    mbedtls_mpi_uint *p, *end;

    /* Make sure we have enough blocks so that A(5) is legal */
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH));

    p = N->p;
    end = p + N->n;

    ADD(3); ADD(5);             NEXT;     // A0 += A3 + A5
    ADD(3); ADD(4); ADD(5);   NEXT;       // A1 += A3 + A4 + A5
    ADD(4); ADD(5);             LAST;     // A2 += A4 + A5

cleanup:
    return ret;
}

#undef WIDTH
#undef A
#undef ADD
#undef NEXT
#undef LAST
#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/*
 * The reader is advised to first understand ecp_mod_p192() since the same
 * general structure is used here, but with additional complications:
 * (1) chunks of 32 bits, and (2) subtractions.
 */

/*
 * For these primes, we need to handle data in chunks of 32 bits.
 * This makes it more complicated if we use 64 bits limbs in MPI,
 * which prevents us from using a uniform access method as for p192.
 *
 * So, we define a mini abstraction layer to access 32 bit chunks,
 * load them in 'cur' for work, and store them back from 'cur' when done.
 *
 * While at it, also define the size of N in terms of 32-bit chunks.
 */
#define LOAD32      cur = A(i);

#if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */

#define MAX32       N->n
#define A(j)      N->p[j]
#define STORE32     N->p[i] = cur;

#else                               /* 64-bit */

#define MAX32       N->n * 2
#define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
    (uint32_t) (N->p[(j)/2])
#define STORE32                                   \
    if (i % 2) {                                 \
        N->p[i/2] &= 0x00000000FFFFFFFF;          \
        N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
    } else {                                      \
        N->p[i/2] &= 0xFFFFFFFF00000000;          \
        N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
    }

#endif /* sizeof( mbedtls_mpi_uint ) */

/*
 * Helpers for addition and subtraction of chunks, with signed carry.
 */
static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
{
    *dst += src;
    *carry += (*dst < src);
}

static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
{
    *carry -= (*dst < src);
    *dst -= src;
}

#define ADD(j)    add32(&cur, A(j), &c);
#define SUB(j)    sub32(&cur, A(j), &c);

#define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
#define biL    (ciL << 3)                         /* bits  in limb  */

/*
 * Helpers for the main 'loop'
 */
#define INIT(b)                                                       \
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;                    \
    signed char c = 0, cc;                                              \
    uint32_t cur;                                                       \
    size_t i = 0, bits = (b);                                           \
    /* N is the size of the product of two b-bit numbers, plus one */   \
    /* limb for fix_negative */                                         \
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1));      \
    LOAD32;

#define NEXT                    \
    STORE32; i++; LOAD32;       \
    cc = c; c = 0;              \
    if (cc < 0)                \
    sub32(&cur, -cc, &c); \
    else                        \
    add32(&cur, cc, &c);  \

#define LAST                                    \
    STORE32; i++;                               \
    cur = c > 0 ? c : 0; STORE32;               \
    cur = 0; while (++i < MAX32) { STORE32; }  \
    if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);

/*
 * If the result is negative, we get it in the form
 * c * 2^bits + N, with c negative and N positive shorter than 'bits'
 */
MBEDTLS_STATIC_TESTABLE
void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
{
    size_t i;

    /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so
     * set the absolute value to 0xfff...fff - N. There is no carry
     * since we're subtracting from all-bits-one.  */
    for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) {
        N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i];
    }
    /* Add 1, taking care of the carry. */
    i = 0;
    do {
        ++N->p[i];
    } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint));
    /* Invert the sign.
     * Now N = N0 - 2^bits where N0 is the initial value of N. */
    N->s = -1;

    /* Add |c| * 2^bits to the absolute value. Since c and N are
     * negative, this adds c * 2^bits. */
    mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c;
#if defined(MBEDTLS_HAVE_INT64)
    if (bits == 224) {
        msw <<= 32;
    }
#endif
    N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
}

#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
/*
 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
 */
static int ecp_mod_p224(mbedtls_mpi *N)
{
    INIT(224);

    SUB(7); SUB(11);               NEXT;      // A0 += -A7 - A11
    SUB(8); SUB(12);               NEXT;      // A1 += -A8 - A12
    SUB(9); SUB(13);               NEXT;      // A2 += -A9 - A13
    SUB(10); ADD(7); ADD(11);    NEXT;        // A3 += -A10 + A7 + A11
    SUB(11); ADD(8); ADD(12);    NEXT;        // A4 += -A11 + A8 + A12
    SUB(12); ADD(9); ADD(13);    NEXT;        // A5 += -A12 + A9 + A13
    SUB(13); ADD(10);               LAST;     // A6 += -A13 + A10

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
/*
 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
 */
static int ecp_mod_p256(mbedtls_mpi *N)
{
    INIT(256);

    ADD(8); ADD(9);
    SUB(11); SUB(12); SUB(13); SUB(14);             NEXT;         // A0

    ADD(9); ADD(10);
    SUB(12); SUB(13); SUB(14); SUB(15);             NEXT;         // A1

    ADD(10); ADD(11);
    SUB(13); SUB(14); SUB(15);                        NEXT;       // A2

    ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
    SUB(15); SUB(8); SUB(9);                        NEXT;         // A3

    ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
    SUB(9); SUB(10);                                   NEXT;      // A4

    ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
    SUB(10); SUB(11);                                   NEXT;     // A5

    ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
    SUB(8); SUB(9);                                   NEXT;       // A6

    ADD(15); ADD(15); ADD(15); ADD(8);
    SUB(10); SUB(11); SUB(12); SUB(13);             LAST;         // A7

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
/*
 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
 */
static int ecp_mod_p384(mbedtls_mpi *N)
{
    INIT(384);

    ADD(12); ADD(21); ADD(20);
    SUB(23);                                              NEXT;   // A0

    ADD(13); ADD(22); ADD(23);
    SUB(12); SUB(20);                                   NEXT;     // A2

    ADD(14); ADD(23);
    SUB(13); SUB(21);                                   NEXT;     // A2

    ADD(15); ADD(12); ADD(20); ADD(21);
    SUB(14); SUB(22); SUB(23);                        NEXT;       // A3

    ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
    SUB(15); SUB(23); SUB(23);                        NEXT;       // A4

    ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
    SUB(16);                                              NEXT;   // A5

    ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
    SUB(17);                                              NEXT;   // A6

    ADD(19); ADD(16); ADD(15); ADD(23);
    SUB(18);                                              NEXT;   // A7

    ADD(20); ADD(17); ADD(16);
    SUB(19);                                              NEXT;   // A8

    ADD(21); ADD(18); ADD(17);
    SUB(20);                                              NEXT;   // A9

    ADD(22); ADD(19); ADD(18);
    SUB(21);                                              NEXT;   // A10

    ADD(23); ADD(20); ADD(19);
    SUB(22);                                              LAST;   // A11

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */

#undef A
#undef LOAD32
#undef STORE32
#undef MAX32
#undef INIT
#undef NEXT
#undef LAST

#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
          MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
          MBEDTLS_ECP_DP_SECP384R1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
/*
 * Here we have an actual Mersenne prime, so things are more straightforward.
 * However, chunks are aligned on a 'weird' boundary (521 bits).
 */

/* Size of p521 in terms of mbedtls_mpi_uint */
#define P521_WIDTH      (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)

/* Bits to keep in the most significant mbedtls_mpi_uint */
#define P521_MASK       0x01FF

/*
 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
 * Write N as A1 + 2^521 A0, return A0 + A1
 */
static int ecp_mod_p521(mbedtls_mpi *N)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    size_t i;
    mbedtls_mpi M;
    mbedtls_mpi_uint Mp[P521_WIDTH + 1];
    /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
     * we need to hold bits 513 to 1056, which is 34 limbs, that is
     * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */

    if (N->n < P521_WIDTH) {
        return 0;
    }

    /* M = A1 */
    M.s = 1;
    M.n = N->n - (P521_WIDTH - 1);
    if (M.n > P521_WIDTH + 1) {
        M.n = P521_WIDTH + 1;
    }
    M.p = Mp;
    memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint))));

    /* N = A0 */
    N->p[P521_WIDTH - 1] &= P521_MASK;
    for (i = P521_WIDTH; i < N->n; i++) {
        N->p[i] = 0;
    }

    /* N = A0 + A1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));

cleanup:
    return ret;
}

#undef P521_WIDTH
#undef P521_MASK
#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */

#endif /* MBEDTLS_ECP_NIST_OPTIM */

#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)

/* Size of p255 in terms of mbedtls_mpi_uint */
#define P255_WIDTH      (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)

/*
 * Fast quasi-reduction modulo p255 = 2^255 - 19
 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
 */
static int ecp_mod_p255(mbedtls_mpi *N)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    size_t i;
    mbedtls_mpi M;
    mbedtls_mpi_uint Mp[P255_WIDTH + 2];

    if (N->n < P255_WIDTH) {
        return 0;
    }

    /* M = A1 */
    M.s = 1;
    M.n = N->n - (P255_WIDTH - 1);
    if (M.n > P255_WIDTH + 1) {
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    }
    M.p = Mp;
    memset(Mp, 0, sizeof(Mp));
    memcpy(Mp, N->p + P255_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 255 % (8 * sizeof(mbedtls_mpi_uint))));
    M.n++; /* Make room for multiplication by 19 */

    /* N = A0 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(N, 255, 0));
    for (i = P255_WIDTH; i < N->n; i++) {
        N->p[i] = 0;
    }

    /* N = A0 + 19 * A1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &M, 19));
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */

#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)

/* Size of p448 in terms of mbedtls_mpi_uint */
#define P448_WIDTH      (448 / 8 / sizeof(mbedtls_mpi_uint))

/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
#define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
#define P224_WIDTH_MIN   (28 / sizeof(mbedtls_mpi_uint))
#define P224_WIDTH_MAX   DIV_ROUND_UP(28, sizeof(mbedtls_mpi_uint))
#define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)

/*
 * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
 * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
 * implementation of Curve448, which uses its own special 56-bit limbs rather
 * than a generic bignum library.  We could squeeze some extra speed out on
 * 32-bit machines by splitting N up into 32-bit limbs and doing the
 * arithmetic using the limbs directly as we do for the NIST primes above,
 * but for 64-bit targets it should use half the number of operations if we do
 * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
 */
static int ecp_mod_p448(mbedtls_mpi *N)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    size_t i;
    mbedtls_mpi M, Q;
    mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];

    if (N->n <= P448_WIDTH) {
        return 0;
    }

    /* M = A1 */
    M.s = 1;
    M.n = N->n - (P448_WIDTH);
    if (M.n > P448_WIDTH) {
        /* Shouldn't be called with N larger than 2^896! */
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
    }
    M.p = Mp;
    memset(Mp, 0, sizeof(Mp));
    memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint));

    /* N = A0 */
    for (i = P448_WIDTH; i < N->n; i++) {
        N->p[i] = 0;
    }

    /* N += A1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));

    /* Q = B1, N += B1 */
    Q = M;
    Q.p = Qp;
    memcpy(Qp, Mp, sizeof(Qp));
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224));
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q));

    /* M = (B0 + B1) * 2^224, N += M */
    if (sizeof(mbedtls_mpi_uint) > 4) {
        Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
    }
    for (i = P224_WIDTH_MAX; i < M.n; ++i) {
        Mp[i] = 0;
    }
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q));
    M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224));
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
/*
 * Fast quasi-reduction modulo P = 2^s - R,
 * with R about 33 bits, used by the Koblitz curves.
 *
 * Write N as A0 + 2^224 A1, return A0 + R * A1.
 * Actually do two passes, since R is big.
 */
#define P_KOBLITZ_MAX   (256 / 8 / sizeof(mbedtls_mpi_uint))      // Max limbs in P
#define P_KOBLITZ_R     (8 / sizeof(mbedtls_mpi_uint))            // Limbs in R
static inline int ecp_mod_koblitz(mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
                                  size_t adjust, size_t shift, mbedtls_mpi_uint mask)
{
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
    size_t i;
    mbedtls_mpi M, R;
    mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];

    if (N->n < p_limbs) {
        return 0;
    }

    /* Init R */
    R.s = 1;
    R.p = Rp;
    R.n = P_KOBLITZ_R;

    /* Common setup for M */
    M.s = 1;
    M.p = Mp;

    /* M = A1 */
    M.n = N->n - (p_limbs - adjust);
    if (M.n > p_limbs + adjust) {
        M.n = p_limbs + adjust;
    }
    memset(Mp, 0, sizeof(Mp));
    memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
    if (shift != 0) {
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
    }
    M.n += R.n; /* Make room for multiplication by R */

    /* N = A0 */
    if (mask != 0) {
        N->p[p_limbs - 1] &= mask;
    }
    for (i = p_limbs; i < N->n; i++) {
        N->p[i] = 0;
    }

    /* N = A0 + R * A1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));

    /* Second pass */

    /* M = A1 */
    M.n = N->n - (p_limbs - adjust);
    if (M.n > p_limbs + adjust) {
        M.n = p_limbs + adjust;
    }
    memset(Mp, 0, sizeof(Mp));
    memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
    if (shift != 0) {
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
    }
    M.n += R.n; /* Make room for multiplication by R */

    /* N = A0 */
    if (mask != 0) {
        N->p[p_limbs - 1] &= mask;
    }
    for (i = p_limbs; i < N->n; i++) {
        N->p[i] = 0;
    }

    /* N = A0 + R * A1 */
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));

cleanup:
    return ret;
}
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
          MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
          MBEDTLS_ECP_DP_SECP256K1_ENABLED) */

#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
/*
 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
 */
static int ecp_mod_p192k1(mbedtls_mpi *N)
{
    static mbedtls_mpi_uint Rp[] = {
        MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
                                  0x00)
    };

    return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
                           0);
}
#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
/*
 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
 */
static int ecp_mod_p224k1(mbedtls_mpi *N)
{
    static mbedtls_mpi_uint Rp[] = {
        MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
                                  0x00)
    };

#if defined(MBEDTLS_HAVE_INT64)
    return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF);
#else
    return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
                           0);
#endif
}

#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */

#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
/*
 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
 */
static int ecp_mod_p256k1(mbedtls_mpi *N)
{
    static mbedtls_mpi_uint Rp[] = {
        MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
                                  0x00)
    };
    return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
                           0);
}
#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */

#endif /* !MBEDTLS_ECP_ALT */

#endif /* MBEDTLS_ECP_C */