/*************************************************************************/ /* rasterizer_scene_forward_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_forward_rd.h" #include "core/project_settings.h" #include "servers/visual/rendering_device.h" #include "servers/visual/visual_server_raster.h" static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = 0; p_array[4] = p_mtx.basis.elements[0][1]; p_array[5] = p_mtx.basis.elements[1][1]; p_array[6] = p_mtx.basis.elements[2][1]; p_array[7] = 0; p_array[8] = p_mtx.basis.elements[0][2]; p_array[9] = p_mtx.basis.elements[1][2]; p_array[10] = p_mtx.basis.elements[2][2]; p_array[11] = 0; p_array[12] = p_mtx.origin.x; p_array[13] = p_mtx.origin.y; p_array[14] = p_mtx.origin.z; p_array[15] = 1; } static _FORCE_INLINE_ void store_transform_3x3(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = 0; p_array[4] = p_mtx.basis.elements[0][1]; p_array[5] = p_mtx.basis.elements[1][1]; p_array[6] = p_mtx.basis.elements[2][1]; p_array[7] = 0; p_array[8] = p_mtx.basis.elements[0][2]; p_array[9] = p_mtx.basis.elements[1][2]; p_array[10] = p_mtx.basis.elements[2][2]; p_array[11] = 0; } static _FORCE_INLINE_ void store_transform_3x3_430(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = p_mtx.basis.elements[0][1]; p_array[4] = p_mtx.basis.elements[1][1]; p_array[5] = p_mtx.basis.elements[2][1]; p_array[6] = p_mtx.basis.elements[0][2]; p_array[7] = p_mtx.basis.elements[1][2]; p_array[8] = p_mtx.basis.elements[2][2]; } static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { p_array[i * 4 + j] = p_mtx.matrix[i][j]; } } } void RasterizerSceneForwardRD::ShaderData::set_code(const String &p_code) { //compile code = p_code; valid = false; ubo_size = 0; uniforms.clear(); uses_screen_texture = false; if (code == String()) { return; //just invalid, but no error } ShaderCompilerRD::GeneratedCode gen_code; int blend_mode = BLEND_MODE_MIX; int depth_testi = DEPTH_TEST_ENABLED; int cull = CULL_BACK; uses_point_size = false; uses_alpha = false; uses_blend_alpha = false; uses_depth_pre_pass = false; uses_discard = false; uses_roughness = false; uses_normal = false; bool wireframe = false; unshaded = false; uses_vertex = false; uses_sss = false; uses_screen_texture = false; uses_depth_texture = false; uses_normal_texture = false; uses_time = false; writes_modelview_or_projection = false; uses_world_coordinates = false; int depth_drawi = DEPTH_DRAW_OPAQUE; ShaderCompilerRD::IdentifierActions actions; actions.render_mode_values["blend_add"] = Pair(&blend_mode, BLEND_MODE_ADD); actions.render_mode_values["blend_mix"] = Pair(&blend_mode, BLEND_MODE_MIX); actions.render_mode_values["blend_sub"] = Pair(&blend_mode, BLEND_MODE_SUB); actions.render_mode_values["blend_mul"] = Pair(&blend_mode, BLEND_MODE_MUL); actions.render_mode_values["depth_draw_never"] = Pair(&depth_drawi, DEPTH_DRAW_DISABLED); actions.render_mode_values["depth_draw_opaque"] = Pair(&depth_drawi, DEPTH_DRAW_OPAQUE); actions.render_mode_values["depth_draw_always"] = Pair(&depth_drawi, DEPTH_DRAW_ALWAYS); actions.render_mode_values["depth_test_disabled"] = Pair(&depth_testi, DEPTH_TEST_DISABLED); actions.render_mode_values["cull_disabled"] = Pair(&cull, CULL_DISABLED); actions.render_mode_values["cull_front"] = Pair(&cull, CULL_FRONT); actions.render_mode_values["cull_back"] = Pair(&cull, CULL_BACK); actions.render_mode_flags["unshaded"] = &unshaded; actions.render_mode_flags["wireframe"] = &wireframe; actions.usage_flag_pointers["ALPHA"] = &uses_alpha; actions.render_mode_flags["depth_prepass_alpha"] = &uses_depth_pre_pass; actions.usage_flag_pointers["SSS_STRENGTH"] = &uses_sss; actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture; actions.usage_flag_pointers["DEPTH_TEXTURE"] = &uses_depth_texture; actions.usage_flag_pointers["NORMAL_TEXTURE"] = &uses_normal_texture; actions.usage_flag_pointers["DISCARD"] = &uses_discard; actions.usage_flag_pointers["TIME"] = &uses_time; actions.usage_flag_pointers["ROUGHNESS"] = &uses_roughness; actions.usage_flag_pointers["NORMAL"] = &uses_normal; actions.usage_flag_pointers["NORMALMAP"] = &uses_normal; actions.usage_flag_pointers["POINT_SIZE"] = &uses_point_size; actions.usage_flag_pointers["POINT_COORD"] = &uses_point_size; actions.write_flag_pointers["MODELVIEW_MATRIX"] = &writes_modelview_or_projection; actions.write_flag_pointers["PROJECTION_MATRIX"] = &writes_modelview_or_projection; actions.write_flag_pointers["VERTEX"] = &uses_vertex; actions.uniforms = &uniforms; RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; Error err = scene_singleton->shader.compiler.compile(VS::SHADER_SPATIAL, code, &actions, path, gen_code); ERR_FAIL_COND(err != OK); if (version.is_null()) { version = scene_singleton->shader.scene_shader.version_create(); } depth_draw = DepthDraw(depth_drawi); depth_test = DepthTest(depth_testi); #if 0 print_line("**compiling shader:"); print_line("**defines:\n"); for (int i = 0; i < gen_code.defines.size(); i++) { print_line(gen_code.defines[i]); } print_line("\n**uniforms:\n" + gen_code.uniforms); print_line("\n**vertex_globals:\n" + gen_code.vertex_global); print_line("\n**vertex_code:\n" + gen_code.vertex); print_line("\n**fragment_globals:\n" + gen_code.fragment_global); print_line("\n**fragment_code:\n" + gen_code.fragment); print_line("\n**light_code:\n" + gen_code.light); #endif scene_singleton->shader.scene_shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines); ERR_FAIL_COND(!scene_singleton->shader.scene_shader.version_is_valid(version)); ubo_size = gen_code.uniform_total_size; ubo_offsets = gen_code.uniform_offsets; texture_uniforms = gen_code.texture_uniforms; //blend modes RD::PipelineColorBlendState::Attachment blend_attachment; switch (blend_mode) { case BLEND_MODE_MIX: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; } break; case BLEND_MODE_ADD: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; uses_blend_alpha = true; //force alpha used because of blend } break; case BLEND_MODE_SUB: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_SUBTRACT; blend_attachment.color_blend_op = RD::BLEND_OP_SUBTRACT; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; uses_blend_alpha = true; //force alpha used because of blend } break; case BLEND_MODE_MUL: { blend_attachment.enable_blend = true; blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD; blend_attachment.color_blend_op = RD::BLEND_OP_ADD; blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_DST_COLOR; blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ZERO; blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_DST_ALPHA; blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ZERO; uses_blend_alpha = true; //force alpha used because of blend } break; } RD::PipelineColorBlendState blend_state_blend; blend_state_blend.attachments.push_back(blend_attachment); RD::PipelineColorBlendState blend_state_opaque = RD::PipelineColorBlendState::create_disabled(1); RD::PipelineColorBlendState blend_state_opaque_specular = RD::PipelineColorBlendState::create_disabled(2); //update pipelines RD::PipelineDepthStencilState depth_stencil_state; if (depth_test != DEPTH_TEST_DISABLED) { depth_stencil_state.enable_depth_test = true; depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; depth_stencil_state.enable_depth_write = depth_draw != DEPTH_DRAW_DISABLED ? true : false; } for (int i = 0; i < CULL_VARIANT_MAX; i++) { RD::PolygonCullMode cull_mode_rd_table[CULL_VARIANT_MAX][3] = { { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_FRONT, RD::POLYGON_CULL_BACK }, { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_BACK, RD::POLYGON_CULL_FRONT }, { RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_DISABLED, RD::POLYGON_CULL_DISABLED } }; RD::PolygonCullMode cull_mode_rd = cull_mode_rd_table[i][cull]; for (int j = 0; j < VS::PRIMITIVE_MAX; j++) { RD::RenderPrimitive primitive_rd_table[VS::PRIMITIVE_MAX] = { RD::RENDER_PRIMITIVE_POINTS, RD::RENDER_PRIMITIVE_LINES, RD::RENDER_PRIMITIVE_LINESTRIPS, RD::RENDER_PRIMITIVE_TRIANGLES, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, }; RD::RenderPrimitive primitive_rd = uses_point_size ? RD::RENDER_PRIMITIVE_POINTS : primitive_rd_table[j]; for (int k = 0; k < SHADER_VERSION_MAX; k++) { RD::PipelineRasterizationState raster_state; raster_state.cull_mode = cull_mode_rd; raster_state.wireframe = wireframe; RD::PipelineColorBlendState blend_state; RD::PipelineDepthStencilState depth_stencil = depth_stencil_state; if (uses_alpha || uses_blend_alpha) { if (k == SHADER_VERSION_COLOR_PASS || k == SHADER_VERSION_VCT_COLOR_PASS || k == SHADER_VERSION_LIGHTMAP_COLOR_PASS) { blend_state = blend_state_blend; if (depth_draw == DEPTH_DRAW_OPAQUE) { depth_stencil.enable_depth_write = false; //alpha does not draw depth } } else if (uses_depth_pre_pass && (k == SHADER_VERSION_DEPTH_PASS || k == SHADER_VERSION_DEPTH_PASS_DP || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS || k == SHADER_VERSION_DEPTH_PASS_WITH_MATERIAL)) { if (k == SHADER_VERSION_DEPTH_PASS || k == SHADER_VERSION_DEPTH_PASS_DP) { //none, blend state contains nothing } else if (k == SHADER_VERSION_DEPTH_PASS_WITH_MATERIAL) { blend_state = RD::PipelineColorBlendState::create_disabled(5); //writes to normal and roughness in opaque way } else { blend_state = blend_state_opaque; //writes to normal and roughness in opaque way } } else { pipelines[i][j][k].clear(); continue; // do not use this version (will error if using it is attempted) } } else { if (k == SHADER_VERSION_COLOR_PASS || k == SHADER_VERSION_VCT_COLOR_PASS || k == SHADER_VERSION_LIGHTMAP_COLOR_PASS) { blend_state = blend_state_opaque; } else if (k == SHADER_VERSION_DEPTH_PASS || k == SHADER_VERSION_DEPTH_PASS_DP) { //none, leave empty } else if (k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL || k == SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS) { blend_state = blend_state_opaque; //writes to normal and roughness in opaque way } else if (k == SHADER_VERSION_DEPTH_PASS_WITH_MATERIAL) { blend_state = RD::PipelineColorBlendState::create_disabled(5); //writes to normal and roughness in opaque way } else { //specular write blend_state = blend_state_opaque_specular; } } RID shader_variant = scene_singleton->shader.scene_shader.version_get_shader(version, k); pipelines[i][j][k].setup(shader_variant, primitive_rd, raster_state, RD::PipelineMultisampleState(), depth_stencil, blend_state, 0); } } } valid = true; } void RasterizerSceneForwardRD::ShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) { if (!p_texture.is_valid()) { default_texture_params.erase(p_name); } else { default_texture_params[p_name] = p_texture; } } void RasterizerSceneForwardRD::ShaderData::get_param_list(List *p_param_list) const { Map order; for (Map::Element *E = uniforms.front(); E; E = E->next()) { if (E->get().texture_order >= 0) { order[E->get().texture_order + 100000] = E->key(); } else { order[E->get().order] = E->key(); } } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]); pi.name = E->get(); p_param_list->push_back(pi); } } bool RasterizerSceneForwardRD::ShaderData::is_param_texture(const StringName &p_param) const { if (!uniforms.has(p_param)) { return false; } return uniforms[p_param].texture_order >= 0; } bool RasterizerSceneForwardRD::ShaderData::is_animated() const { return false; } bool RasterizerSceneForwardRD::ShaderData::casts_shadows() const { return false; } Variant RasterizerSceneForwardRD::ShaderData::get_default_parameter(const StringName &p_parameter) const { if (uniforms.has(p_parameter)) { ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter]; Vector default_value = uniform.default_value; return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); } return Variant(); } RasterizerSceneForwardRD::ShaderData::ShaderData() { valid = false; uses_screen_texture = false; } RasterizerSceneForwardRD::ShaderData::~ShaderData() { RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; ERR_FAIL_COND(!scene_singleton); //pipeline variants will clear themselves if shader is gone if (version.is_valid()) { scene_singleton->shader.scene_shader.version_free(version); } } RasterizerStorageRD::ShaderData *RasterizerSceneForwardRD::_create_shader_func() { ShaderData *shader_data = memnew(ShaderData); return shader_data; } void RasterizerSceneForwardRD::MaterialData::set_render_priority(int p_priority) { priority = p_priority - VS::MATERIAL_RENDER_PRIORITY_MIN; //8 bits } void RasterizerSceneForwardRD::MaterialData::set_next_pass(RID p_pass) { next_pass = p_pass; } void RasterizerSceneForwardRD::MaterialData::update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { RasterizerSceneForwardRD *scene_singleton = (RasterizerSceneForwardRD *)RasterizerSceneForwardRD::singleton; if ((uint32_t)ubo_data.size() != shader_data->ubo_size) { p_uniform_dirty = true; if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); uniform_buffer = RID(); } ubo_data.resize(shader_data->ubo_size); if (ubo_data.size()) { uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear } //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } //check whether buffer changed if (p_uniform_dirty && ubo_data.size()) { update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false); RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw()); } uint32_t tex_uniform_count = shader_data->texture_uniforms.size(); if ((uint32_t)texture_cache.size() != tex_uniform_count) { texture_cache.resize(tex_uniform_count); p_textures_dirty = true; //clear previous uniform set if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); uniform_set = RID(); } } if (p_textures_dirty && tex_uniform_count) { update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true); } if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) { // This material does not require an uniform set, so don't create it. return; } if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { //no reason to update uniform set, only UBO (or nothing) was needed to update return; } Vector uniforms; { if (shader_data->ubo_size) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.ids.push_back(uniform_buffer); uniforms.push_back(u); } const RID *textures = texture_cache.ptrw(); for (uint32_t i = 0; i < tex_uniform_count; i++) { RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1 + i; u.ids.push_back(textures[i]); uniforms.push_back(u); } } uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->shader.scene_shader.version_get_shader(shader_data->version, 0), 3); } RasterizerSceneForwardRD::MaterialData::~MaterialData() { if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { RD::get_singleton()->free(uniform_set); } if (uniform_buffer.is_valid()) { RD::get_singleton()->free(uniform_buffer); } } RasterizerStorageRD::MaterialData *RasterizerSceneForwardRD::_create_material_func(ShaderData *p_shader) { MaterialData *material_data = memnew(MaterialData); material_data->shader_data = p_shader; material_data->last_frame = false; //update will happen later anyway so do nothing. return material_data; } RasterizerSceneForwardRD::RenderBufferDataForward::~RenderBufferDataForward() { clear(); } void RasterizerSceneForwardRD::RenderBufferDataForward::clear() { if (color_fb.is_valid()) { RD::get_singleton()->free(color_fb); color_fb = RID(); } if (color.is_valid()) { RD::get_singleton()->free(color); color = RID(); } if (depth.is_valid()) { RD::get_singleton()->free(depth); depth = RID(); } } void RasterizerSceneForwardRD::RenderBufferDataForward::configure(RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa) { clear(); width = p_width; height = p_height; render_target = p_render_target; { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; color = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { RD::TextureFormat tf; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; tf.width = p_width; tf.height = p_height; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); } { Vector fb; fb.push_back(color); fb.push_back(depth); color_fb = RD::get_singleton()->framebuffer_create(fb); } { Vector fb; fb.push_back(depth); depth_fb = RD::get_singleton()->framebuffer_create(fb); } { Vector fb; fb.push_back(color); color_only_fb = RD::get_singleton()->framebuffer_create(fb); } } RasterizerSceneRD::RenderBufferData *RasterizerSceneForwardRD::_create_render_buffer_data() { return memnew(RenderBufferDataForward); } bool RasterizerSceneForwardRD::free(RID p_rid) { if (RasterizerSceneRD::free(p_rid)) { return true; } return false; } void RasterizerSceneForwardRD::_fill_instances(RenderList::Element **p_elements, int p_element_count, bool p_for_depth) { for (int i = 0; i < p_element_count; i++) { const RenderList::Element *e = p_elements[i]; InstanceData &id = scene_state.instances[i]; store_transform(e->instance->transform, id.transform); store_transform(Transform(e->instance->transform.basis.inverse().transposed()), id.normal_transform); id.flags = 0; id.mask = e->instance->layer_mask; if (e->instance->base_type == VS::INSTANCE_MULTIMESH) { id.flags |= INSTANCE_DATA_FLAG_MULTIMESH; uint32_t stride; if (storage->multimesh_get_transform_format(e->instance->base) == VS::MULTIMESH_TRANSFORM_2D) { id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; stride = 2; } else { stride = 3; } if (storage->multimesh_uses_colors(e->instance->base)) { id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; stride += 1; } if (storage->multimesh_uses_custom_data(e->instance->base)) { id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; stride += 1; } id.flags |= (stride << INSTANCE_DATA_FLAGS_MULTIMESH_STRIDE_SHIFT); } else if (e->instance->base_type == VS::INSTANCE_MESH) { if (e->instance->skeleton.is_valid()) { id.flags |= INSTANCE_DATA_FLAG_SKELETON; } } if (p_for_depth) { id.gi_offset = 0xFFFFFFFF; continue; } //forward uint32_t reflection_count = 0; uint32_t omni_count = 0; uint32_t spot_count = 0; uint32_t decal_count = 0; if (!e->instance->reflection_probe_instances.empty()) { uint32_t rpi_count = e->instance->reflection_probe_instances.size(); const RID *rpi_ptrs = e->instance->reflection_probe_instances.ptr(); for (uint32_t j = 0; j < rpi_count; j++) { if (render_pass != reflection_probe_instance_get_render_pass(rpi_ptrs[j])) { continue; //not rendered this frame } RID base = reflection_probe_instance_get_probe(rpi_ptrs[j]); uint32_t mask = storage->reflection_probe_get_cull_mask(base); if (!(mask & id.mask)) { continue; //masked } if (reflection_count < 8) { id.reflection_probe_indices[reflection_count] = reflection_probe_instance_get_render_index(rpi_ptrs[j]); reflection_count++; } } } if (!e->instance->light_instances.empty()) { uint32_t light_count = e->instance->light_instances.size(); const RID *light_ptrs = e->instance->light_instances.ptr(); for (uint32_t j = 0; j < light_count; j++) { if (render_pass != light_instance_get_render_pass(light_ptrs[j])) { continue; //not rendered this frame } RID base = light_instance_get_base_light(light_ptrs[j]); uint32_t mask = storage->light_get_cull_mask(base); if (!(mask & id.mask)) { continue; //masked } if (storage->light_get_type(base) == VS::LIGHT_OMNI) { if (omni_count < 8) { id.omni_light_indices[omni_count] = light_instance_get_index(light_ptrs[j]); omni_count++; } } else { if (spot_count < 8) { id.spot_light_indices[spot_count] = light_instance_get_index(light_ptrs[j]); spot_count++; } } } } id.flags |= reflection_count; id.flags |= omni_count << 3; id.flags |= spot_count << 6; id.flags |= decal_count << 9; if (!e->instance->gi_probe_instances.empty()) { uint32_t written = 0; for (int j = 0; j < e->instance->gi_probe_instances.size(); j++) { RID probe = e->instance->gi_probe_instances[j]; int slot = gi_probe_instance_get_slot(probe); if (slot < 0) { continue; //unallocated, dont render } if (render_pass != gi_probe_instance_get_render_pass(probe)) { continue; //not rendered in this frame } uint32_t index = gi_probe_instance_get_render_index(probe); if (written == 0) { id.gi_offset = index; written = 1; } else { id.gi_offset = index << 16; written = 2; break; } } if (written == 0) { id.gi_offset = 0xFFFFFFFF; } else if (written == 1) { id.gi_offset |= 0xFFFF0000; } } else { id.gi_offset = 0xFFFFFFFF; } } RD::get_singleton()->buffer_update(scene_state.instance_buffer, 0, sizeof(InstanceData) * p_element_count, scene_state.instances, true); } /// RENDERING /// void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_framebuffer_Format, RenderList::Element **p_elements, int p_element_count, bool p_reverse_cull, PassMode p_pass_mode, bool p_no_gi) { RD::DrawListID draw_list = p_draw_list; RD::FramebufferFormatID framebuffer_format = p_framebuffer_Format; //global scope bindings RD::get_singleton()->draw_list_bind_uniform_set(draw_list, render_base_uniform_set, 0); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, render_pass_uniform_set, 1); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, default_vec4_xform_uniform_set, 2); MaterialData *prev_material = nullptr; // ShaderData *prev_shader = nullptr; RID prev_vertex_array_rd; RID prev_index_array_rd; RID prev_pipeline_rd; RID prev_xforms_uniform_set; PushConstant push_constant; zeromem(&push_constant, sizeof(PushConstant)); for (int i = 0; i < p_element_count; i++) { const RenderList::Element *e = p_elements[i]; MaterialData *material = e->material; ShaderData *shader = material->shader_data; RID xforms_uniform_set; //find cull variant ShaderData::CullVariant cull_variant; if ((p_pass_mode == PASS_MODE_SHADOW || p_pass_mode == PASS_MODE_SHADOW_DP) && e->instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { cull_variant = ShaderData::CULL_VARIANT_DOUBLE_SIDED; } else { bool mirror = e->instance->mirror; if (p_reverse_cull) { mirror = !mirror; } cull_variant = mirror ? ShaderData::CULL_VARIANT_REVERSED : ShaderData::CULL_VARIANT_NORMAL; } //find primitive and vertex format VS::PrimitiveType primitive; switch (e->instance->base_type) { case VS::INSTANCE_MESH: { primitive = storage->mesh_surface_get_primitive(e->instance->base, e->surface_index); if (e->instance->skeleton.is_valid()) { xforms_uniform_set = storage->skeleton_get_3d_uniform_set(e->instance->skeleton, default_shader_rd, 2); } } break; case VS::INSTANCE_MULTIMESH: { RID mesh = storage->multimesh_get_mesh(e->instance->base); ERR_CONTINUE(!mesh.is_valid()); //should be a bug primitive = storage->mesh_surface_get_primitive(mesh, e->surface_index); xforms_uniform_set = storage->multimesh_get_3d_uniform_set(e->instance->base, default_shader_rd, 2); } break; case VS::INSTANCE_IMMEDIATE: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_PARTICLES: { ERR_CONTINUE(true); //should be a bug } break; default: { ERR_CONTINUE(true); //should be a bug } } ShaderVersion shader_version; switch (p_pass_mode) { case PASS_MODE_COLOR: case PASS_MODE_COLOR_TRANSPARENT: { if (e->uses_lightmap) { shader_version = SHADER_VERSION_LIGHTMAP_COLOR_PASS; } else if (e->uses_vct) { shader_version = SHADER_VERSION_VCT_COLOR_PASS; } else { shader_version = SHADER_VERSION_COLOR_PASS; } } break; case PASS_MODE_COLOR_SPECULAR: { if (e->uses_lightmap) { shader_version = SHADER_VERSION_LIGHTMAP_COLOR_PASS_WITH_SEPARATE_SPECULAR; } else if (e->uses_vct) { shader_version = SHADER_VERSION_VCT_COLOR_PASS_WITH_SEPARATE_SPECULAR; } else { shader_version = SHADER_VERSION_COLOR_PASS_WITH_SEPARATE_SPECULAR; } } break; case PASS_MODE_SHADOW: case PASS_MODE_DEPTH: { shader_version = SHADER_VERSION_DEPTH_PASS; } break; case PASS_MODE_SHADOW_DP: { shader_version = SHADER_VERSION_DEPTH_PASS_DP; } break; case PASS_MODE_DEPTH_NORMAL: { shader_version = SHADER_VERSION_DEPTH_PASS_WITH_NORMAL; } break; case PASS_MODE_DEPTH_NORMAL_ROUGHNESS: { shader_version = SHADER_VERSION_DEPTH_PASS_WITH_NORMAL_AND_ROUGHNESS; } break; case PASS_MODE_DEPTH_MATERIAL: { shader_version = SHADER_VERSION_DEPTH_PASS_WITH_MATERIAL; } break; } RenderPipelineVertexFormatCacheRD *pipeline = nullptr; pipeline = &shader->pipelines[cull_variant][primitive][shader_version]; RD::VertexFormatID vertex_format; RID vertex_array_rd; RID index_array_rd; switch (e->instance->base_type) { case VS::INSTANCE_MESH: { storage->mesh_surface_get_arrays_and_format(e->instance->base, e->surface_index, pipeline->get_vertex_input_mask(), vertex_array_rd, index_array_rd, vertex_format); } break; case VS::INSTANCE_MULTIMESH: { RID mesh = storage->multimesh_get_mesh(e->instance->base); ERR_CONTINUE(!mesh.is_valid()); //should be a bug storage->mesh_surface_get_arrays_and_format(mesh, e->surface_index, pipeline->get_vertex_input_mask(), vertex_array_rd, index_array_rd, vertex_format); } break; case VS::INSTANCE_IMMEDIATE: { ERR_CONTINUE(true); //should be a bug } break; case VS::INSTANCE_PARTICLES: { ERR_CONTINUE(true); //should be a bug } break; default: { ERR_CONTINUE(true); //should be a bug } } if (prev_vertex_array_rd != vertex_array_rd) { RD::get_singleton()->draw_list_bind_vertex_array(draw_list, vertex_array_rd); prev_vertex_array_rd = vertex_array_rd; } if (prev_index_array_rd != index_array_rd) { if (index_array_rd.is_valid()) { RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array_rd); } prev_index_array_rd = index_array_rd; } RID pipeline_rd = pipeline->get_render_pipeline(vertex_format, framebuffer_format); if (pipeline_rd != prev_pipeline_rd) { // checking with prev shader does not make so much sense, as // the pipeline may still be different. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline_rd); prev_pipeline_rd = pipeline_rd; } if (xforms_uniform_set.is_valid() && prev_xforms_uniform_set != xforms_uniform_set) { RD::get_singleton()->draw_list_bind_uniform_set(draw_list, xforms_uniform_set, 2); prev_xforms_uniform_set = xforms_uniform_set; } if (material != prev_material) { //update uniform set if (material->uniform_set.is_valid()) { RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material->uniform_set, 3); } prev_material = material; } push_constant.index = i; RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(PushConstant)); switch (e->instance->base_type) { case VS::INSTANCE_MESH: { RD::get_singleton()->draw_list_draw(draw_list, index_array_rd.is_valid()); } break; case VS::INSTANCE_MULTIMESH: { uint32_t instances = storage->multimesh_get_instances_to_draw(e->instance->base); RD::get_singleton()->draw_list_draw(draw_list, index_array_rd.is_valid(), instances); } break; case VS::INSTANCE_IMMEDIATE: { } break; case VS::INSTANCE_PARTICLES: { } break; default: { ERR_CONTINUE(true); //should be a bug } } } } void RasterizerSceneForwardRD::_setup_environment(RID p_render_target, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_reflection_probe, bool p_no_fog, const Size2 &p_screen_pixel_size, RID p_shadow_atlas, bool p_flip_y) { //CameraMatrix projection = p_cam_projection; //projection.flip_y(); // Vulkan and modern APIs use Y-Down CameraMatrix correction; correction.set_depth_correction(p_flip_y); CameraMatrix projection = correction * p_cam_projection; //store camera into ubo store_camera(projection, scene_state.ubo.projection_matrix); store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); store_transform(p_cam_transform, scene_state.ubo.camera_matrix); store_transform(p_cam_transform.affine_inverse(), scene_state.ubo.inv_camera_matrix); scene_state.ubo.screen_pixel_size[0] = p_screen_pixel_size.x; scene_state.ubo.screen_pixel_size[1] = p_screen_pixel_size.y; if (p_shadow_atlas.is_valid()) { Vector2 sas = shadow_atlas_get_size(p_shadow_atlas); scene_state.ubo.shadow_atlas_pixel_size[0] = 1.0 / sas.x; scene_state.ubo.shadow_atlas_pixel_size[1] = 1.0 / sas.y; } { Vector2 dss = directional_shadow_get_size(); scene_state.ubo.directional_shadow_pixel_size[0] = 1.0 / dss.x; scene_state.ubo.directional_shadow_pixel_size[1] = 1.0 / dss.y; } //time global variables scene_state.ubo.time = time; if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_UNSHADED) { scene_state.ubo.use_ambient_light = true; scene_state.ubo.ambient_light_color_energy[0] = 1; scene_state.ubo.ambient_light_color_energy[1] = 1; scene_state.ubo.ambient_light_color_energy[2] = 1; scene_state.ubo.ambient_light_color_energy[3] = 1.0; scene_state.ubo.use_ambient_cubemap = false; scene_state.ubo.use_reflection_cubemap = false; } else if (is_environment(p_environment)) { VS::EnvironmentBG env_bg = environment_get_background(p_environment); VS::EnvironmentAmbientSource ambient_src = environment_get_ambient_light_ambient_source(p_environment); float bg_energy = environment_get_bg_energy(p_environment); scene_state.ubo.ambient_light_color_energy[3] = bg_energy; scene_state.ubo.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_environment); //ambient if (ambient_src == VS::ENV_AMBIENT_SOURCE_BG && (env_bg == VS::ENV_BG_CLEAR_COLOR || env_bg == VS::ENV_BG_COLOR)) { Color color = (p_render_target.is_valid() && env_bg == VS::ENV_BG_CLEAR_COLOR) ? (p_render_target.is_valid() ? storage->render_target_get_clear_request_color(p_render_target) : Color(0, 0, 0)) : environment_get_bg_color(p_environment); color = color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy; scene_state.ubo.use_ambient_light = true; scene_state.ubo.use_ambient_cubemap = false; } else { float energy = environment_get_ambient_light_ambient_energy(p_environment); Color color = environment_get_ambient_light_color(p_environment); color = color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * energy; Basis sky_transform = environment_get_sky_orientation(p_environment); sky_transform = sky_transform.inverse() * p_cam_transform.basis; store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform); scene_state.ubo.use_ambient_cubemap = (ambient_src == VS::ENV_AMBIENT_SOURCE_BG && env_bg == VS::ENV_BG_SKY) || ambient_src == VS::ENV_AMBIENT_SOURCE_SKY; scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == VS::ENV_AMBIENT_SOURCE_COLOR; } //specular VS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_environment); if ((ref_src == VS::ENV_REFLECTION_SOURCE_BG && env_bg == VS::ENV_BG_SKY) || ref_src == VS::ENV_REFLECTION_SOURCE_SKY) { scene_state.ubo.use_reflection_cubemap = true; } else { scene_state.ubo.use_reflection_cubemap = false; } } else { if (p_reflection_probe.is_valid() && !storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_reflection_probe))) { scene_state.ubo.use_ambient_light = true; Color clear_color = storage->get_default_clear_color(); clear_color = clear_color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = clear_color.r; scene_state.ubo.ambient_light_color_energy[1] = clear_color.g; scene_state.ubo.ambient_light_color_energy[2] = clear_color.b; scene_state.ubo.ambient_light_color_energy[3] = 1.0; } else if (p_render_target.is_valid()) { scene_state.ubo.use_ambient_light = true; Color clear_color = storage->render_target_get_clear_request_color(p_render_target); clear_color = clear_color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = clear_color.r; scene_state.ubo.ambient_light_color_energy[1] = clear_color.g; scene_state.ubo.ambient_light_color_energy[2] = clear_color.b; scene_state.ubo.ambient_light_color_energy[3] = 1.0; } else { scene_state.ubo.use_ambient_light = false; } scene_state.ubo.use_ambient_cubemap = false; scene_state.ubo.use_reflection_cubemap = false; } #if 0 //bg and ambient if (p_environment.is_valid()) { state.ubo_data.bg_energy = env->bg_energy; state.ubo_data.ambient_energy = env->ambient_energy; Color linear_ambient_color = env->ambient_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; Color bg_color; switch (env->bg_mode) { case VS::ENV_BG_CLEAR_COLOR: { bg_color = storage->frame.clear_request_color.to_linear(); } break; case VS::ENV_BG_COLOR: { bg_color = env->bg_color.to_linear(); } break; default: { bg_color = Color(0, 0, 0, 1); } break; } state.ubo_data.bg_color[0] = bg_color.r; state.ubo_data.bg_color[1] = bg_color.g; state.ubo_data.bg_color[2] = bg_color.b; state.ubo_data.bg_color[3] = bg_color.a; //use the inverse of our sky_orientation, we may need to skip this if we're using a reflection probe? sky_orientation = Transform(env->sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse(); state.env_radiance_data.ambient_contribution = env->ambient_sky_contribution; state.ubo_data.ambient_occlusion_affect_light = env->ssao_light_affect; state.ubo_data.ambient_occlusion_affect_ssao = env->ssao_ao_channel_affect; //fog Color linear_fog = env->fog_color.to_linear(); state.ubo_data.fog_color_enabled[0] = linear_fog.r; state.ubo_data.fog_color_enabled[1] = linear_fog.g; state.ubo_data.fog_color_enabled[2] = linear_fog.b; state.ubo_data.fog_color_enabled[3] = (!p_no_fog && env->fog_enabled) ? 1.0 : 0.0; state.ubo_data.fog_density = linear_fog.a; Color linear_sun = env->fog_sun_color.to_linear(); state.ubo_data.fog_sun_color_amount[0] = linear_sun.r; state.ubo_data.fog_sun_color_amount[1] = linear_sun.g; state.ubo_data.fog_sun_color_amount[2] = linear_sun.b; state.ubo_data.fog_sun_color_amount[3] = env->fog_sun_amount; state.ubo_data.fog_depth_enabled = env->fog_depth_enabled; state.ubo_data.fog_depth_begin = env->fog_depth_begin; state.ubo_data.fog_depth_end = env->fog_depth_end; state.ubo_data.fog_depth_curve = env->fog_depth_curve; state.ubo_data.fog_transmit_enabled = env->fog_transmit_enabled; state.ubo_data.fog_transmit_curve = env->fog_transmit_curve; state.ubo_data.fog_height_enabled = env->fog_height_enabled; state.ubo_data.fog_height_min = env->fog_height_min; state.ubo_data.fog_height_max = env->fog_height_max; state.ubo_data.fog_height_curve = env->fog_height_curve; } else { state.ubo_data.bg_energy = 1.0; state.ubo_data.ambient_energy = 1.0; //use from clear color instead, since there is no ambient Color linear_ambient_color = storage->frame.clear_request_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; state.ubo_data.bg_color[0] = linear_ambient_color.r; state.ubo_data.bg_color[1] = linear_ambient_color.g; state.ubo_data.bg_color[2] = linear_ambient_color.b; state.ubo_data.bg_color[3] = linear_ambient_color.a; state.env_radiance_data.ambient_contribution = 0; state.ubo_data.ambient_occlusion_affect_light = 0; state.ubo_data.fog_color_enabled[3] = 0.0; } { //directional shadow state.ubo_data.shadow_directional_pixel_size[0] = 1.0 / directional_shadow.size; state.ubo_data.shadow_directional_pixel_size[1] = 1.0 / directional_shadow.size; glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); } glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::SceneDataUBO), &state.ubo_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); //fill up environment store_transform(sky_orientation * p_cam_transform, state.env_radiance_data.transform); glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); #endif RD::get_singleton()->buffer_update(scene_state.uniform_buffer, 0, sizeof(SceneState::UBO), &scene_state.ubo, true); } void RasterizerSceneForwardRD::_add_geometry(InstanceBase *p_instance, uint32_t p_surface, RID p_material, PassMode p_pass_mode, uint32_t p_geometry_index) { RID m_src; m_src = p_instance->material_override.is_valid() ? p_instance->material_override : p_material; if (unlikely(debug_draw != VS::VIEWPORT_DEBUG_DRAW_DISABLED)) { if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { m_src = overdraw_material; } else if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME) { m_src = wireframe_material; } else if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_LIGHTING) { m_src = default_material; } } MaterialData *material = NULL; if (m_src.is_valid()) { material = (MaterialData *)storage->material_get_data(m_src, RasterizerStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) { material = NULL; } } if (!material) { material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); m_src = default_material; } ERR_FAIL_COND(!material); _add_geometry_with_material(p_instance, p_surface, material, m_src, p_pass_mode, p_geometry_index); while (material->next_pass.is_valid()) { material = (MaterialData *)storage->material_get_data(material->next_pass, RasterizerStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) break; _add_geometry_with_material(p_instance, p_surface, material, material->next_pass, p_pass_mode, p_geometry_index); } } void RasterizerSceneForwardRD::_add_geometry_with_material(InstanceBase *p_instance, uint32_t p_surface, MaterialData *p_material, RID p_material_rid, PassMode p_pass_mode, uint32_t p_geometry_index) { bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; bool has_base_alpha = (p_material->shader_data->uses_alpha || has_read_screen_alpha); bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; bool has_alpha = has_base_alpha || has_blend_alpha; if (p_material->shader_data->uses_sss) { scene_state.used_sss = true; } if (p_material->shader_data->uses_screen_texture) { scene_state.used_screen_texture = true; } if (p_material->shader_data->uses_depth_texture) { scene_state.used_depth_texture = true; } if (p_material->shader_data->uses_normal_texture) { scene_state.used_normal_texture = true; } if (p_pass_mode != PASS_MODE_COLOR && p_pass_mode != PASS_MODE_COLOR_SPECULAR) { if (has_blend_alpha || has_read_screen_alpha || (has_base_alpha && !p_material->shader_data->uses_depth_pre_pass) || p_material->shader_data->depth_draw == ShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == ShaderData::DEPTH_TEST_DISABLED || p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) { //conditions in which no depth pass should be processed return; } if (p_pass_mode != PASS_MODE_DEPTH_MATERIAL && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_pre_pass) { //shader does not use discard and does not write a vertex position, use generic material if (p_pass_mode == PASS_MODE_SHADOW || p_pass_mode == PASS_MODE_DEPTH) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } else if (p_pass_mode == PASS_MODE_DEPTH_NORMAL && !p_material->shader_data->uses_normal) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } else if (p_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS && !p_material->shader_data->uses_normal && !p_material->shader_data->uses_roughness) { p_material = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); } } has_alpha = false; } RenderList::Element *e = (has_alpha || p_material->shader_data->depth_test == ShaderData::DEPTH_TEST_DISABLED) ? render_list.add_alpha_element() : render_list.add_element(); if (!e) return; e->instance = p_instance; e->material = p_material; e->surface_index = p_surface; e->sort_key = 0; if (e->material->last_pass != render_pass) { if (!RD::get_singleton()->uniform_set_is_valid(e->material->uniform_set)) { //uniform set no longer valid, probably a texture changed storage->material_force_update_textures(p_material_rid, RasterizerStorageRD::SHADER_TYPE_3D); } e->material->last_pass = render_pass; e->material->index = scene_state.current_material_index++; if (e->material->shader_data->last_pass != render_pass) { e->material->shader_data->last_pass = scene_state.current_material_index++; e->material->shader_data->index = scene_state.current_shader_index++; } } e->geometry_index = p_geometry_index; e->material_index = e->material->index; e->uses_instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH; e->uses_lightmap = e->instance->lightmap.is_valid(); e->uses_vct = e->instance->gi_probe_instances.size(); e->shader_index = e->shader_index; e->depth_layer = e->instance->depth_layer; e->priority = p_material->priority; if (p_material->shader_data->uses_time) { VisualServerRaster::redraw_request(); } } void RasterizerSceneForwardRD::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, PassMode p_pass_mode, bool p_no_gi) { scene_state.current_shader_index = 0; scene_state.current_material_index = 0; scene_state.used_sss = false; scene_state.used_screen_texture = false; scene_state.used_normal_texture = false; scene_state.used_depth_texture = false; uint32_t geometry_index = 0; //fill list for (int i = 0; i < p_cull_count; i++) { InstanceBase *inst = p_cull_result[i]; //add geometry for drawing switch (inst->base_type) { case VS::INSTANCE_MESH: { const RID *materials = NULL; uint32_t surface_count; materials = storage->mesh_get_surface_count_and_materials(inst->base, surface_count); if (!materials) { continue; //nothing to do } const RID *inst_materials = inst->materials.ptr(); for (uint32_t j = 0; j < surface_count; j++) { RID material = inst_materials[j].is_valid() ? inst_materials[j] : materials[j]; uint32_t surface_index = storage->mesh_surface_get_render_pass_index(inst->base, j, render_pass, &geometry_index); _add_geometry(inst, j, material, p_pass_mode, surface_index); } //mesh->last_pass=frame; } break; case VS::INSTANCE_MULTIMESH: { if (storage->multimesh_get_instances_to_draw(inst->base) == 0) { //not visible, 0 instances continue; } RID mesh = storage->multimesh_get_mesh(inst->base); if (!mesh.is_valid()) { continue; } const RID *materials = NULL; uint32_t surface_count; materials = storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (!materials) { continue; //nothing to do } for (uint32_t j = 0; j < surface_count; j++) { uint32_t surface_index = storage->mesh_surface_get_multimesh_render_pass_index(mesh, j, render_pass, &geometry_index); _add_geometry(inst, j, materials[j], p_pass_mode, surface_index); } } break; #if 0 case VS::INSTANCE_IMMEDIATE: { RasterizerStorageGLES3::Immediate *immediate = storage->immediate_owner.getornull(inst->base); ERR_CONTINUE(!immediate); _add_geometry(immediate, inst, NULL, -1, p_depth_pass, p_shadow_pass); } break; case VS::INSTANCE_PARTICLES: { RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getornull(inst->base); ERR_CONTINUE(!particles); for (int j = 0; j < particles->draw_passes.size(); j++) { RID pmesh = particles->draw_passes[j]; if (!pmesh.is_valid()) continue; RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getornull(pmesh); if (!mesh) continue; //mesh not assigned int ssize = mesh->surfaces.size(); for (int k = 0; k < ssize; k++) { RasterizerStorageGLES3::Surface *s = mesh->surfaces[k]; _add_geometry(s, inst, particles, -1, p_depth_pass, p_shadow_pass); } } } break; #endif default: { } } } } void RasterizerSceneForwardRD::_draw_sky(RD::DrawListID p_draw_list, RD::FramebufferFormatID p_fb_format, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, float p_alpha) { ERR_FAIL_COND(!is_environment(p_environment)); RID sky = environment_get_sky(p_environment); ERR_FAIL_COND(!sky.is_valid()); RID panorama = sky_get_panorama_texture_rd(sky); ERR_FAIL_COND(!panorama.is_valid()); Basis sky_transform = environment_get_sky_orientation(p_environment); sky_transform.invert(); float multiplier = environment_get_bg_energy(p_environment); float custom_fov = environment_get_sky_custom_fov(p_environment); // Camera CameraMatrix camera; if (custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } sky_transform = p_transform.basis * sky_transform; storage->get_effects()->render_panorama(p_draw_list, p_fb_format, panorama, camera, sky_transform, 1.0, multiplier); } void RasterizerSceneForwardRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) { for (int i = 0; i < p_reflection_probe_cull_count; i++) { RID rpi = p_reflection_probe_cull_result[i]; if (i >= (int)scene_state.max_reflections) { reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set continue; } reflection_probe_instance_set_render_index(rpi, i); RID base_probe = reflection_probe_instance_get_probe(rpi); ReflectionData &reflection_ubo = scene_state.reflections[i]; Vector3 extents = storage->reflection_probe_get_extents(base_probe); reflection_ubo.box_extents[0] = extents.x; reflection_ubo.box_extents[1] = extents.y; reflection_ubo.box_extents[2] = extents.z; reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi); Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe); reflection_ubo.box_offset[0] = origin_offset.x; reflection_ubo.box_offset[1] = origin_offset.y; reflection_ubo.box_offset[2] = origin_offset.z; reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe); float intensity = storage->reflection_probe_get_intensity(base_probe); bool interior = storage->reflection_probe_is_interior(base_probe); bool box_projection = storage->reflection_probe_is_box_projection(base_probe); reflection_ubo.params[0] = intensity; reflection_ubo.params[1] = 0; reflection_ubo.params[2] = interior ? 1.0 : 0.0; reflection_ubo.params[3] = box_projection ? 1.0 : 0.0; if (interior) { Color ambient_linear = storage->reflection_probe_get_interior_ambient(base_probe).to_linear(); float interior_ambient_energy = storage->reflection_probe_get_interior_ambient_energy(base_probe); float interior_ambient_probe_contrib = storage->reflection_probe_get_interior_ambient_probe_contribution(base_probe); reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; reflection_ubo.ambient[3] = interior_ambient_probe_contrib; } else { Color ambient_linear = storage->reflection_probe_get_interior_ambient(base_probe).to_linear(); if (is_environment(p_environment)) { Color env_ambient_color = environment_get_ambient_light_color(p_environment).to_linear(); float env_ambient_energy = environment_get_ambient_light_ambient_energy(p_environment); ambient_linear = env_ambient_color; ambient_linear.r *= env_ambient_energy; ambient_linear.g *= env_ambient_energy; ambient_linear.b *= env_ambient_energy; } reflection_ubo.ambient[0] = ambient_linear.r; reflection_ubo.ambient[1] = ambient_linear.g; reflection_ubo.ambient[2] = ambient_linear.b; reflection_ubo.ambient[3] = 0; //not used in exterior mode, since it just blends with regular ambient light } Transform transform = reflection_probe_instance_get_transform(rpi); Transform proj = (p_camera_inverse_transform * transform).inverse(); store_transform(proj, reflection_ubo.local_matrix); reflection_probe_instance_set_render_pass(rpi, render_pass); } if (p_reflection_probe_cull_count) { RD::get_singleton()->buffer_update(scene_state.reflection_buffer, 0, MIN(scene_state.max_reflections, p_reflection_probe_cull_count) * sizeof(ReflectionData), scene_state.reflections, true); } } void RasterizerSceneForwardRD::_setup_gi_probes(RID *p_gi_probe_probe_cull_result, int p_gi_probe_probe_cull_count, const Transform &p_camera_transform) { int index = 0; for (int i = 0; i < p_gi_probe_probe_cull_count; i++) { RID rpi = p_gi_probe_probe_cull_result[i]; if (index >= (int)scene_state.max_gi_probes) { continue; } int slot = gi_probe_instance_get_slot(rpi); if (slot < 0) { continue; //not usable } RID base_probe = gi_probe_instance_get_base_probe(rpi); GIProbeData &gi_probe_ubo = scene_state.gi_probes[index]; Transform to_cell = gi_probe_instance_get_transform_to_cell(rpi) * p_camera_transform; store_transform(to_cell, gi_probe_ubo.xform); Vector3 bounds = storage->gi_probe_get_octree_size(base_probe); gi_probe_ubo.bounds[0] = bounds.x; gi_probe_ubo.bounds[1] = bounds.y; gi_probe_ubo.bounds[2] = bounds.z; gi_probe_ubo.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe); gi_probe_ubo.bias = storage->gi_probe_get_bias(base_probe); gi_probe_ubo.normal_bias = storage->gi_probe_get_normal_bias(base_probe); gi_probe_ubo.blend_ambient = !storage->gi_probe_is_interior(base_probe); gi_probe_ubo.texture_slot = gi_probe_instance_get_slot(rpi); gi_probe_ubo.anisotropy_strength = storage->gi_probe_get_anisotropy_strength(base_probe); gi_probe_ubo.ao = storage->gi_probe_get_ao(base_probe); gi_probe_ubo.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f); if (gi_probe_is_anisotropic()) { gi_probe_ubo.texture_slot *= 3; } gi_probe_instance_set_render_index(rpi, index); gi_probe_instance_set_render_pass(rpi, render_pass); index++; } if (index) { RD::get_singleton()->buffer_update(scene_state.gi_probe_buffer, 0, index * sizeof(GIProbeData), scene_state.gi_probes, true); } } void RasterizerSceneForwardRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows) { uint32_t light_count = 0; scene_state.ubo.directional_light_count = 0; for (int i = 0; i < p_light_cull_count; i++) { RID li = p_light_cull_result[i]; RID base = light_instance_get_base_light(li); ERR_CONTINUE(base.is_null()); VS::LightType type = storage->light_get_type(base); switch (type) { case VS::LIGHT_DIRECTIONAL: { if (scene_state.ubo.directional_light_count >= scene_state.max_directional_lights) { continue; } DirectionalLightData &light_data = scene_state.directional_lights[scene_state.ubo.directional_light_count]; Transform light_transform = light_instance_get_base_transform(li); Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float sign = storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * storage->light_get_param(base, VS::LIGHT_PARAM_ENERGY) * Math_PI; Color linear_col = storage->light_get_color(base).to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; light_data.specular = storage->light_get_param(base, VS::LIGHT_PARAM_SPECULAR); light_data.mask = storage->light_get_cull_mask(base); Color shadow_col = storage->light_get_shadow_color(base).to_linear(); light_data.shadow_color[0] = shadow_col.r; light_data.shadow_color[1] = shadow_col.g; light_data.shadow_color[2] = shadow_col.b; light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base); if (light_data.shadow_enabled) { VS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base); int limit = smode == VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); light_data.blend_splits = storage->light_directional_get_blend_splits(base); for (int j = 0; j < 4; j++) { Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j); CameraMatrix matrix = light_instance_get_shadow_camera(li, j); float split = light_instance_get_directional_shadow_split(li, MIN(limit, j)); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(atlas_rect); Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse(); CameraMatrix shadow_mtx = rectm * bias * matrix * modelview; light_data.shadow_split_offsets[j] = split; store_camera(shadow_mtx, light_data.shadow_matrices[j]); } float fade_start = storage->light_get_param(base, VS::LIGHT_PARAM_SHADOW_FADE_START); light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep light_data.fade_to = -light_data.shadow_split_offsets[3]; } scene_state.ubo.directional_light_count++; } break; case VS::LIGHT_SPOT: case VS::LIGHT_OMNI: { if (light_count >= scene_state.max_lights) { continue; } Transform light_transform = light_instance_get_base_transform(li); LightData &light_data = scene_state.lights[light_count]; float sign = storage->light_is_negative(base) ? -1 : 1; Color linear_col = storage->light_get_color(base).to_linear(); light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, VS::LIGHT_PARAM_ATTENUATION)); light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, VS::LIGHT_PARAM_ENERGY) * Math_PI); light_data.color_specular[0] = CLAMP(uint32_t(linear_col.r * 255), 0, 255); light_data.color_specular[1] = CLAMP(uint32_t(linear_col.g * 255), 0, 255); light_data.color_specular[2] = CLAMP(uint32_t(linear_col.b * 255), 0, 255); light_data.color_specular[3] = CLAMP(uint32_t(storage->light_get_param(base, VS::LIGHT_PARAM_SPECULAR) * 255), 0, 255); light_data.inv_radius = 1.0 / MAX(0.001, storage->light_get_param(base, VS::LIGHT_PARAM_RANGE)); Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, VS::LIGHT_PARAM_SPOT_ATTENUATION)); light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(storage->light_get_param(base, VS::LIGHT_PARAM_SPOT_ANGLE)))); light_data.mask = storage->light_get_cull_mask(base); Color shadow_color = storage->light_get_shadow_color(base); bool has_shadow = p_using_shadows && storage->light_has_shadow(base); light_data.shadow_color_enabled[0] = CLAMP(uint32_t(shadow_color.r * 255), 0, 255); light_data.shadow_color_enabled[1] = CLAMP(uint32_t(shadow_color.g * 255), 0, 255); light_data.shadow_color_enabled[2] = CLAMP(uint32_t(shadow_color.b * 255), 0, 255); light_data.shadow_color_enabled[3] = has_shadow ? 255 : 0; light_data.atlas_rect[0] = 0; light_data.atlas_rect[1] = 0; light_data.atlas_rect[2] = 0; light_data.atlas_rect[3] = 0; if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) { // fill in the shadow information Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas); if (type == VS::LIGHT_OMNI) { light_data.atlas_rect[0] = rect.position.x; light_data.atlas_rect[1] = rect.position.y; light_data.atlas_rect[2] = rect.size.width; light_data.atlas_rect[3] = rect.size.height * 0.5; Transform proj = (p_camera_inverse_transform * light_transform).inverse(); store_transform(proj, light_data.shadow_matrix); } else if (type == VS::LIGHT_SPOT) { Transform modelview = (p_camera_inverse_transform * light_transform).inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(rect); CameraMatrix shadow_mtx = rectm * bias * light_instance_get_shadow_camera(li, 0) * modelview; store_camera(shadow_mtx, light_data.shadow_matrix); } } light_instance_set_index(li, light_count); light_count++; } break; } light_instance_set_render_pass(li, render_pass); //update UBO for forward rendering, blit to texture for clustered } if (light_count) { RD::get_singleton()->buffer_update(scene_state.light_buffer, 0, sizeof(LightData) * light_count, scene_state.lights, true); } if (scene_state.ubo.directional_light_count) { RD::get_singleton()->buffer_update(scene_state.directional_light_buffer, 0, sizeof(DirectionalLightData) * scene_state.ubo.directional_light_count, scene_state.directional_lights, true); } } void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { RenderBufferDataForward *render_buffer = (RenderBufferDataForward *)p_buffer_data; //first of all, make a new render pass render_pass++; //fill up ubo #if 0 storage->info.render.object_count += p_cull_count; Environment *env = environment_owner.getornull(p_environment); ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas); if (shadow_atlas && shadow_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); scene_state.ubo.shadow_atlas_pixel_size[0] = 1.0 / shadow_atlas->size; scene_state.ubo.shadow_atlas_pixel_size[1] = 1.0 / shadow_atlas->size; } if (reflection_atlas && reflection_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); } #endif RENDER_TIMESTAMP("Setup 3D Scene"); if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_UNSHADED) { p_light_cull_count = 0; p_reflection_probe_cull_count = 0; p_gi_probe_cull_count = 0; } _update_render_base_uniform_set(); bool using_shadows = true; if (p_reflection_probe.is_valid()) { scene_state.ubo.reflection_multiplier = 0.0; if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) { using_shadows = false; } } else { scene_state.ubo.reflection_multiplier = 1.0; } //scene_state.ubo.subsurface_scatter_width = subsurface_scatter_size; scene_state.ubo.shadow_z_offset = 0; scene_state.ubo.shadow_z_slope_scale = 0; Vector2 vp_he = p_cam_projection.get_viewport_half_extents(); scene_state.ubo.viewport_size[0] = vp_he.x; scene_state.ubo.viewport_size[1] = vp_he.y; RID render_target; Size2 screen_pixel_size; RID opaque_framebuffer; RID depth_framebuffer; RID alpha_framebuffer; if (render_buffer) { screen_pixel_size.width = 1.0 / render_buffer->width; screen_pixel_size.height = 1.0 / render_buffer->height; render_target = render_buffer->render_target; opaque_framebuffer = render_buffer->color_fb; depth_framebuffer = render_buffer->depth_fb; alpha_framebuffer = opaque_framebuffer; } else if (p_reflection_probe.is_valid()) { uint32_t resolution = reflection_probe_instance_get_resolution(p_reflection_probe); screen_pixel_size.width = 1.0 / resolution; screen_pixel_size.height = 1.0 / resolution; opaque_framebuffer = reflection_probe_instance_get_framebuffer(p_reflection_probe, p_reflection_probe_pass); depth_framebuffer = reflection_probe_instance_get_depth_framebuffer(p_reflection_probe, p_reflection_probe_pass); alpha_framebuffer = opaque_framebuffer; if (storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_reflection_probe))) { p_environment = RID(); //no environment on interiors } } else { ERR_FAIL(); //bug? } _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows); _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment); _setup_gi_probes(p_gi_probe_cull_result, p_gi_probe_cull_count, p_cam_transform); _setup_environment(render_target, p_environment, p_cam_projection, p_cam_transform, p_reflection_probe, p_reflection_probe.is_valid(), screen_pixel_size, p_shadow_atlas, !p_reflection_probe.is_valid()); render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, PASS_MODE_COLOR, render_buffer == nullptr); RID radiance_cubemap; bool draw_sky = false; Color clear_color; bool keep_color = false; if (debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black } else if (is_environment(p_environment)) { VS::EnvironmentBG bg_mode = environment_get_background(p_environment); float bg_energy = environment_get_bg_energy(p_environment); switch (bg_mode) { case VS::ENV_BG_CLEAR_COLOR: { clear_color = render_target.is_valid() ? storage->render_target_get_clear_request_color(render_target) : environment_get_bg_color(p_environment); clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; } break; case VS::ENV_BG_COLOR: { clear_color = environment_get_bg_color(p_environment); clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; } break; case VS::ENV_BG_SKY: { RID sky = environment_get_sky(p_environment); if (sky.is_valid()) { radiance_cubemap = sky_get_radiance_texture_rd(sky); draw_sky = true; } } break; case VS::ENV_BG_CANVAS: { keep_color = true; } break; case VS::ENV_BG_KEEP: { keep_color = true; } break; case VS::ENV_BG_CAMERA_FEED: { } break; } } else { if (p_reflection_probe.is_valid() && !storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_reflection_probe))) { clear_color = storage->get_default_clear_color(); } else if (render_target.is_valid()) { clear_color = storage->render_target_get_clear_request_color(render_target); } } _setup_render_pass_uniform_set(RID(), RID(), RID(), RID(), radiance_cubemap, p_shadow_atlas, p_reflection_atlas); render_list.sort_by_key(false); _fill_instances(render_list.elements, render_list.element_count, false); bool can_continue = true; //unless the middle buffers are needed bool debug_giprobes = debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_ALBEDO || debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_LIGHTING || debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_EMISSION; bool using_separate_specular = false; bool depth_pre_pass = depth_framebuffer.is_valid(); if (depth_pre_pass) { //depth pre pass RENDER_TIMESTAMP("Render Depth Pre-Pass"); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(depth_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(depth_framebuffer), render_list.elements, render_list.element_count, false, PASS_MODE_DEPTH, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } RENDER_TIMESTAMP("Render Opaque Pass"); { bool will_continue = (can_continue || draw_sky || debug_giprobes); //regular forward for now Vector c; c.push_back(clear_color.to_linear()); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, keep_color ? RD::INITIAL_ACTION_KEEP : RD::INITIAL_ACTION_CLEAR, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, depth_pre_pass ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_CLEAR, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, c, 1.0, 0); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(opaque_framebuffer), render_list.elements, render_list.element_count, false, PASS_MODE_COLOR, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } if (debug_giprobes) { //debug giprobes bool will_continue = (can_continue || draw_sky); CameraMatrix dc; dc.set_depth_correction(true); CameraMatrix cm = (dc * p_cam_projection) * CameraMatrix(p_cam_transform.affine_inverse()); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, RD::INITIAL_ACTION_CONTINUE, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); for (int i = 0; i < p_gi_probe_cull_count; i++) { _debug_giprobe(p_gi_probe_cull_result[i], draw_list, opaque_framebuffer, cm, debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_LIGHTING, debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_EMISSION, 1.0); } RD::get_singleton()->draw_list_end(); } if (draw_sky) { RENDER_TIMESTAMP("Render Sky"); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, RD::INITIAL_ACTION_CONTINUE, can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); _draw_sky(draw_list, RD::get_singleton()->framebuffer_get_format(opaque_framebuffer), p_environment, p_cam_projection, p_cam_transform, 1.0); RD::get_singleton()->draw_list_end(); if (using_separate_specular && !can_continue) { //can't continue, so close the buffers //RD::get_singleton()->draw_list_begin(render_buffer->color_specular_fb, RD::INITIAL_ACTION_CONTINUE, RD::FINAL_ACTION_READ_COLOR_AND_DEPTH, c); //RD::get_singleton()->draw_list_end(); } } RENDER_TIMESTAMP("Render Transparent Pass"); render_list.sort_by_reverse_depth_and_priority(true); _fill_instances(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, false); { RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(alpha_framebuffer, can_continue ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, can_continue ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(alpha_framebuffer), &render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, false, PASS_MODE_COLOR, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } //_render_list #if 0 if (state.directional_light_count == 0) { directional_light = NULL; _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, false, shadow_atlas != NULL); } else { for (int i = 0; i < state.directional_light_count; i++) { directional_light = directional_lights[i]; _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, i > 0, shadow_atlas != NULL); } } #endif if (p_reflection_probe.is_valid()) { //was rendering a probe, so do no more return; } RasterizerEffectsRD *effects = storage->get_effects(); { RENDER_TIMESTAMP("Tonemap"); //tonemap RasterizerEffectsRD::TonemapSettings tonemap; tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); if (is_environment(p_environment)) { tonemap.tonemap_mode = environment_get_tonemapper(p_environment); tonemap.white = environment_get_white(p_environment); tonemap.exposure = environment_get_exposure(p_environment); } effects->tonemapper(render_buffer->color, storage->render_target_get_rd_framebuffer(render_buffer->render_target), tonemap); } storage->render_target_disable_clear_request(render_buffer->render_target); if (render_buffer && debug_draw == VS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); Size2 rtsize = storage->render_target_get_size(render_buffer->render_target); effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(render_buffer->render_target), Rect2(Vector2(), rtsize / 2)); } } if (render_buffer && debug_draw == VS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = storage->render_target_get_size(render_buffer->render_target); effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(render_buffer->render_target), Rect2(Vector2(), rtsize / 2)); } } #if 0 _post_process(env, p_cam_projection); // Needed only for debugging /* if (shadow_atlas && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, exposure_shrink[4].color); //glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 16, storage->frame.current_rt->height / 16), Rect2(0, 0, 1, 1)); } if (reflection_atlas && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (directional_shadow.fbo) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if ( env_radiance_tex) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, env_radiance_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); }*/ //disable all stuff #endif } void RasterizerSceneForwardRD::_render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip) { RENDER_TIMESTAMP("Setup Rendering Shadow"); _update_render_base_uniform_set(); render_pass++; scene_state.ubo.shadow_z_offset = p_bias; scene_state.ubo.shadow_z_slope_scale = p_normal_bias; scene_state.ubo.z_far = p_zfar; scene_state.ubo.dual_paraboloid_side = p_use_dp_flip ? -1 : 1; _setup_environment(RID(), RID(), p_projection, p_transform, RID(), true, Vector2(1, 1), RID(), true); render_list.clear(); PassMode pass_mode = p_use_dp ? PASS_MODE_SHADOW_DP : PASS_MODE_SHADOW; _fill_render_list(p_cull_result, p_cull_count, pass_mode, true); _setup_render_pass_uniform_set(RID(), RID(), RID(), RID(), RID(), RID(), RID()); RENDER_TIMESTAMP("Render Shadow"); render_list.sort_by_key(false); _fill_instances(render_list.elements, render_list.element_count, true); { //regular forward for now RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), render_list.elements, render_list.element_count, p_use_dp_flip, pass_mode, true); RD::get_singleton()->draw_list_end(); } } void RasterizerSceneForwardRD::_render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) { RENDER_TIMESTAMP("Setup Rendering Shadow"); _update_render_base_uniform_set(); render_pass++; scene_state.ubo.shadow_z_offset = 0; scene_state.ubo.shadow_z_slope_scale = 0; scene_state.ubo.z_far = 0; scene_state.ubo.dual_paraboloid_side = 0; _setup_environment(RID(), RID(), p_cam_projection, p_cam_transform, RID(), true, Vector2(1, 1), RID(), false); render_list.clear(); PassMode pass_mode = PASS_MODE_DEPTH_MATERIAL; _fill_render_list(p_cull_result, p_cull_count, pass_mode, true); _setup_render_pass_uniform_set(RID(), RID(), RID(), RID(), RID(), RID(), RID()); RENDER_TIMESTAMP("Render Material"); render_list.sort_by_key(false); _fill_instances(render_list.elements, render_list.element_count, true); { //regular forward for now Vector clear; clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, clear, 1.0, 0, p_region); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), render_list.elements, render_list.element_count, true, pass_mode, true); RD::get_singleton()->draw_list_end(); } } void RasterizerSceneForwardRD::_update_render_base_uniform_set() { if (render_base_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set) || gi_probe_slots_are_dirty()) { if (render_base_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { RD::get_singleton()->free(render_base_uniform_set); } Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.ids.resize(12); RID *ids_ptr = u.ids.ptrw(); ids_ptr[0] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[1] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[2] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[3] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[4] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[5] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[6] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[7] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[8] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[9] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[10] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[11] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_SAMPLER; u.ids.push_back(shadow_sampler); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.uniform_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(scene_state.instance_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.light_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 6; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.reflection_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 7; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.directional_light_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.gi_probe_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.type = RD::UNIFORM_TYPE_TEXTURE; int slot_count = gi_probe_get_slots().size(); if (gi_probe_is_anisotropic()) { u.ids.resize(slot_count * 3); } else { u.ids.resize(slot_count); } for (int i = 0; i < slot_count; i++) { RID probe = gi_probe_get_slots()[i]; if (gi_probe_is_anisotropic()) { if (probe.is_null()) { RID empty_tex = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); u.ids.write[i * 3 + 0] = empty_tex; u.ids.write[i * 3 + 1] = empty_tex; u.ids.write[i * 3 + 2] = empty_tex; } else { u.ids.write[i * 3 + 0] = gi_probe_instance_get_texture(probe); u.ids.write[i * 3 + 1] = gi_probe_instance_get_aniso_texture(probe, 0); u.ids.write[i * 3 + 2] = gi_probe_instance_get_aniso_texture(probe, 1); } } else { if (probe.is_null()) { u.ids.write[i] = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); } else { u.ids.write[i] = gi_probe_instance_get_texture(probe); } } } uniforms.push_back(u); } render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 0); gi_probe_slots_make_not_dirty(); } } void RasterizerSceneForwardRD::_setup_render_pass_uniform_set(RID p_depth_buffer, RID p_color_buffer, RID p_normal_buffer, RID p_roughness_limit_buffer, RID p_radiance_cubemap, RID p_shadow_atlas, RID p_reflection_atlas) { if (render_pass_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_set)) { RD::get_singleton()->free(render_pass_uniform_set); } //default render buffer and scene state uniform set Vector uniforms; { RD::Uniform u; u.binding = 0; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_depth_buffer.is_valid() ? p_depth_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_color_buffer.is_valid() ? p_color_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_normal_buffer.is_valid() ? p_normal_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_NORMAL); u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_roughness_limit_buffer.is_valid() ? p_roughness_limit_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_radiance_cubemap.is_valid() ? p_radiance_cubemap : storage->texture_rd_get_default(is_using_radiance_cubemap_array() ? RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK : RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK); u.ids.push_back(texture); uniforms.push_back(u); } { RID ref_texture = p_reflection_atlas.is_valid() ? reflection_atlas_get_texture(p_reflection_atlas) : RID(); RD::Uniform u; u.binding = 5; u.type = RD::UNIFORM_TYPE_TEXTURE; if (ref_texture.is_valid()) { u.ids.push_back(ref_texture); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK)); } uniforms.push_back(u); } { RD::Uniform u; u.binding = 6; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture; if (p_shadow_atlas.is_valid()) { texture = shadow_atlas_get_texture(p_shadow_atlas); } if (!texture.is_valid()) { texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); } u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 7; u.type = RD::UNIFORM_TYPE_TEXTURE; if (directional_shadow_get_texture().is_valid()) { u.ids.push_back(directional_shadow_get_texture()); } else { u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } uniforms.push_back(u); } render_pass_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 1); } RasterizerSceneForwardRD *RasterizerSceneForwardRD::singleton = NULL; void RasterizerSceneForwardRD::set_time(double p_time) { time = p_time; } void RasterizerSceneForwardRD::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storage) : RasterizerSceneRD(p_storage) { singleton = this; storage = p_storage; /* SHADER */ { String defines; defines += "\n#define MAX_ROUGHNESS_LOD " + itos(get_roughness_layers() - 1) + ".0\n"; if (is_using_radiance_cubemap_array()) { defines += "\n#define USE_RADIANCE_CUBEMAP_ARRAY \n"; } uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE); { //reflections uint32_t reflection_buffer_size; if (uniform_max_size < 65536) { //Yes, you guessed right, ARM again reflection_buffer_size = uniform_max_size; } else { reflection_buffer_size = 65536; } scene_state.max_reflections = reflection_buffer_size / sizeof(ReflectionData); scene_state.reflections = memnew_arr(ReflectionData, scene_state.max_reflections); scene_state.reflection_buffer = RD::get_singleton()->uniform_buffer_create(reflection_buffer_size); defines += "\n#define MAX_REFLECTION_DATA_STRUCTS " + itos(scene_state.max_reflections) + "\n"; } { //lights scene_state.max_lights = MIN(65536, uniform_max_size) / sizeof(LightData); uint32_t light_buffer_size = scene_state.max_lights * sizeof(LightData); scene_state.lights = memnew_arr(LightData, scene_state.max_lights); scene_state.light_buffer = RD::get_singleton()->uniform_buffer_create(light_buffer_size); defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(scene_state.max_lights) + "\n"; scene_state.max_directional_lights = 8; uint32_t directional_light_buffer_size = scene_state.max_directional_lights * sizeof(DirectionalLightData); scene_state.directional_lights = memnew_arr(DirectionalLightData, scene_state.max_directional_lights); scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(scene_state.max_directional_lights) + "\n"; } { //giprobes int slot_count = gi_probe_get_slots().size(); if (gi_probe_is_anisotropic()) { slot_count *= 3; defines += "\n#define GI_PROBE_USE_ANISOTROPY\n"; } if (gi_probe_get_quality() == GIPROBE_QUALITY_ULTRA_LOW) { defines += "\n#define GI_PROBE_LOW_QUALITY\n"; } else if (gi_probe_get_quality() == GIPROBE_QUALITY_HIGH) { defines += "\n#define GI_PROBE_HIGH_QUALITY\n"; } defines += "\n#define MAX_GI_PROBE_TEXTURES " + itos(slot_count) + "\n"; uint32_t giprobe_buffer_size; if (uniform_max_size < 65536) { //Yes, you guessed right, ARM again giprobe_buffer_size = uniform_max_size; } else { giprobe_buffer_size = 65536; } giprobe_buffer_size = MIN(sizeof(GIProbeData) * gi_probe_get_slots().size(), giprobe_buffer_size); scene_state.max_gi_probes = giprobe_buffer_size / sizeof(GIProbeData); scene_state.gi_probes = memnew_arr(GIProbeData, scene_state.max_gi_probes); scene_state.gi_probe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GIProbeData) * scene_state.max_gi_probes); defines += "\n#define MAX_GI_PROBES " + itos(scene_state.max_gi_probes) + "\n"; } Vector shader_versions; shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define MODE_DUAL_PARABOLOID\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define ENABLE_WRITE_NORMAL_BUFFER\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define ENABLE_WRITE_NORMAL_ROUGHNESS_BUFFER\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define MODE_RENDER_MATERIAL\n"); shader_versions.push_back(""); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n"); shader_versions.push_back("\n#define USE_VOXEL_CONE_TRACING\n"); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n#define USE_VOXEL_CONE_TRACING\n"); shader_versions.push_back("\n#define USE_LIGHTMAP\n"); shader_versions.push_back("\n#define MODE_MULTIPLE_RENDER_TARGETS\n#define USE_LIGHTMAP\n"); shader.scene_shader.initialize(shader_versions, defines); } storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_3D, _create_shader_funcs); storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_3D, _create_material_funcs); { //shader compiler ShaderCompilerRD::DefaultIdentifierActions actions; actions.renames["WORLD_MATRIX"] = "world_matrix"; actions.renames["WORLD_NORMAL_MATRIX"] = "world_normal_matrix"; actions.renames["INV_CAMERA_MATRIX"] = "scene_data.inv_camera_matrix"; actions.renames["CAMERA_MATRIX"] = "scene_data.camera_matrix"; actions.renames["PROJECTION_MATRIX"] = "projection_matrix"; actions.renames["INV_PROJECTION_MATRIX"] = "scene_data.inv_projection_matrix"; actions.renames["MODELVIEW_MATRIX"] = "modelview"; actions.renames["MODELVIEW_NORMAL_MATRIX"] = "modelview_normal"; actions.renames["VERTEX"] = "vertex"; actions.renames["NORMAL"] = "normal"; actions.renames["TANGENT"] = "tangent"; actions.renames["BINORMAL"] = "binormal"; actions.renames["POSITION"] = "position"; actions.renames["UV"] = "uv_interp"; actions.renames["UV2"] = "uv2_interp"; actions.renames["COLOR"] = "color_interp"; actions.renames["POINT_SIZE"] = "gl_PointSize"; actions.renames["INSTANCE_ID"] = "gl_InstanceIndex"; //builtins actions.renames["TIME"] = "scene_data.time"; actions.renames["VIEWPORT_SIZE"] = "scene_data.viewport_size"; actions.renames["FRAGCOORD"] = "gl_FragCoord"; actions.renames["FRONT_FACING"] = "gl_FrontFacing"; actions.renames["NORMALMAP"] = "normalmap"; actions.renames["NORMALMAP_DEPTH"] = "normaldepth"; actions.renames["ALBEDO"] = "albedo"; actions.renames["ALPHA"] = "alpha"; actions.renames["METALLIC"] = "metallic"; actions.renames["SPECULAR"] = "specular"; actions.renames["ROUGHNESS"] = "roughness"; actions.renames["RIM"] = "rim"; actions.renames["RIM_TINT"] = "rim_tint"; actions.renames["CLEARCOAT"] = "clearcoat"; actions.renames["CLEARCOAT_GLOSS"] = "clearcoat_gloss"; actions.renames["ANISOTROPY"] = "anisotropy"; actions.renames["ANISOTROPY_FLOW"] = "anisotropy_flow"; actions.renames["SSS_STRENGTH"] = "sss_strength"; actions.renames["TRANSMISSION"] = "transmission"; actions.renames["AO"] = "ao"; actions.renames["AO_LIGHT_AFFECT"] = "ao_light_affect"; actions.renames["EMISSION"] = "emission"; actions.renames["POINT_COORD"] = "gl_PointCoord"; actions.renames["INSTANCE_CUSTOM"] = "instance_custom"; actions.renames["SCREEN_UV"] = "screen_uv"; actions.renames["SCREEN_TEXTURE"] = "color_buffer"; actions.renames["DEPTH_TEXTURE"] = "depth_buffer"; actions.renames["NORMAL_TEXTURE"] = "normal_buffer"; actions.renames["DEPTH"] = "gl_FragDepth"; actions.renames["OUTPUT_IS_SRGB"] = "true"; //for light actions.renames["VIEW"] = "view"; actions.renames["LIGHT_COLOR"] = "light_color"; actions.renames["LIGHT"] = "light"; actions.renames["ATTENUATION"] = "attenuation"; actions.renames["DIFFUSE_LIGHT"] = "diffuse_light"; actions.renames["SPECULAR_LIGHT"] = "specular_light"; actions.usage_defines["TANGENT"] = "#define TANGENT_USED\n"; actions.usage_defines["BINORMAL"] = "@TANGENT"; actions.usage_defines["RIM"] = "#define LIGHT_RIM_USED\n"; actions.usage_defines["RIM_TINT"] = "@RIM"; actions.usage_defines["CLEARCOAT"] = "#define LIGHT_CLEARCOAT_USED\n"; actions.usage_defines["CLEARCOAT_GLOSS"] = "@CLEARCOAT"; actions.usage_defines["ANISOTROPY"] = "#define LIGHT_ANISOTROPY_USED\n"; actions.usage_defines["ANISOTROPY_FLOW"] = "@ANISOTROPY"; actions.usage_defines["AO"] = "#define AO_USED\n"; actions.usage_defines["AO_LIGHT_AFFECT"] = "#define AO_USED\n"; actions.usage_defines["UV"] = "#define UV_USED\n"; actions.usage_defines["UV2"] = "#define UV2_USED\n"; actions.usage_defines["NORMALMAP"] = "#define NORMALMAP_USED\n"; actions.usage_defines["NORMALMAP_DEPTH"] = "@NORMALMAP"; actions.usage_defines["COLOR"] = "#define COLOR_USED\n"; actions.usage_defines["INSTANCE_CUSTOM"] = "#define ENABLE_INSTANCE_CUSTOM\n"; actions.usage_defines["POSITION"] = "#define OVERRIDE_POSITION\n"; actions.usage_defines["SSS_STRENGTH"] = "#define ENABLE_SSS\n"; actions.usage_defines["TRANSMISSION"] = "#define LIGHT_TRANSMISSION_USED\n"; actions.usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n"; actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n"; actions.usage_defines["DIFFUSE_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n"; actions.usage_defines["SPECULAR_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n"; actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n"; actions.render_mode_defines["world_vertex_coords"] = "#define VERTEX_WORLD_COORDS_USED\n"; actions.render_mode_defines["ensure_correct_normals"] = "#define ENSURE_CORRECT_NORMALS\n"; actions.render_mode_defines["cull_front"] = "#define DO_SIDE_CHECK\n"; actions.render_mode_defines["cull_disabled"] = "#define DO_SIDE_CHECK\n"; bool force_lambert = GLOBAL_GET("rendering/quality/shading/force_lambert_over_burley"); if (!force_lambert) { actions.render_mode_defines["diffuse_burley"] = "#define DIFFUSE_BURLEY\n"; } actions.render_mode_defines["diffuse_oren_nayar"] = "#define DIFFUSE_OREN_NAYAR\n"; actions.render_mode_defines["diffuse_lambert_wrap"] = "#define DIFFUSE_LAMBERT_WRAP\n"; actions.render_mode_defines["diffuse_toon"] = "#define DIFFUSE_TOON\n"; bool force_blinn = GLOBAL_GET("rendering/quality/shading/force_blinn_over_ggx"); if (!force_blinn) { actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n"; } else { actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_BLINN\n"; } actions.render_mode_defines["specular_blinn"] = "#define SPECULAR_BLINN\n"; actions.render_mode_defines["specular_phong"] = "#define SPECULAR_PHONG\n"; actions.render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n"; actions.render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n"; actions.render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n"; actions.render_mode_defines["ambient_light_disabled"] = "#define AMBIENT_LIGHT_DISABLED\n"; actions.render_mode_defines["shadow_to_opacity"] = "#define USE_SHADOW_TO_OPACITY\n"; actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n"; actions.sampler_array_name = "material_samplers"; actions.base_texture_binding_index = 1; actions.texture_layout_set = 3; actions.base_uniform_string = "material."; actions.base_varying_index = 10; actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP; actions.default_repeat = ShaderLanguage::REPEAT_ENABLE; shader.compiler.initialize(actions); } //render list render_list.max_elements = GLOBAL_DEF_RST("rendering/limits/rendering/max_renderable_elements", (int)128000); render_list.init(); render_pass = 0; { scene_state.max_instances = render_list.max_elements; scene_state.instances = memnew_arr(InstanceData, scene_state.max_instances); scene_state.instance_buffer = RD::get_singleton()->storage_buffer_create(sizeof(InstanceData) * scene_state.max_instances); } scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SceneState::UBO)); { //default material and shader default_shader = storage->shader_create(); storage->shader_set_code(default_shader, "shader_type spatial; void vertex() { ROUGHNESS = 0.8; } void fragment() { ALBEDO=vec3(0.6); ROUGHNESS=0.8; METALLIC=0.2; } \n"); default_material = storage->material_create(); storage->material_set_shader(default_material, default_shader); MaterialData *md = (MaterialData *)storage->material_get_data(default_material, RasterizerStorageRD::SHADER_TYPE_3D); default_shader_rd = shader.scene_shader.version_get_shader(md->shader_data->version, SHADER_VERSION_COLOR_PASS); } { overdraw_material_shader = storage->shader_create(); storage->shader_set_code(overdraw_material_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }"); overdraw_material = storage->material_create(); storage->material_set_shader(overdraw_material, overdraw_material_shader); wireframe_material_shader = storage->shader_create(); storage->shader_set_code(wireframe_material_shader, "shader_type spatial;\nrender_mode wireframe,unshaded;\n void fragment() { ALBEDO=vec3(0.0,0.0,0.0); }"); wireframe_material = storage->material_create(); storage->material_set_shader(wireframe_material, wireframe_material_shader); } { default_vec4_xform_buffer = RD::get_singleton()->storage_buffer_create(256); Vector uniforms; RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(default_vec4_xform_buffer); u.binding = 0; uniforms.push_back(u); default_vec4_xform_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 2); } { RD::SamplerState sampler; sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler.enable_compare = true; sampler.compare_op = RD::COMPARE_OP_LESS; shadow_sampler = RD::get_singleton()->sampler_create(sampler); } } RasterizerSceneForwardRD::~RasterizerSceneForwardRD() { //clear base uniform set if still valid if (render_pass_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_set)) { RD::get_singleton()->free(render_pass_uniform_set); } { RD::get_singleton()->free(scene_state.reflection_buffer); memdelete_arr(scene_state.reflections); } }