/*************************************************************************/ /* worker_thread_pool.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "worker_thread_pool.h" #include "core/os/os.h" void WorkerThreadPool::Task::free_template_userdata() { ERR_FAIL_COND(!template_userdata); ERR_FAIL_COND(native_func_userdata == nullptr); BaseTemplateUserdata *btu = (BaseTemplateUserdata *)native_func_userdata; memdelete(btu); } WorkerThreadPool *WorkerThreadPool::singleton = nullptr; void WorkerThreadPool::_process_task_queue() { task_mutex.lock(); Task *task = task_queue.first()->self(); task_queue.remove(task_queue.first()); task_mutex.unlock(); _process_task(task); } void WorkerThreadPool::_process_task(Task *p_task) { bool low_priority = p_task->low_priority; if (p_task->group) { // Handling a group bool do_post = false; Callable::CallError ce; Variant ret; Variant arg; Variant *argptr = &arg; while (true) { uint32_t work_index = p_task->group->index.postincrement(); if (work_index >= p_task->group->max) { break; } if (p_task->native_group_func) { p_task->native_group_func(p_task->native_func_userdata, work_index); } else if (p_task->template_userdata) { p_task->template_userdata->callback_indexed(work_index); } else { arg = work_index; p_task->callable.callp((const Variant **)&argptr, 1, ret, ce); } // This is the only way to ensure posting is done when all tasks are really complete. uint32_t completed_amount = p_task->group->completed_index.increment(); if (completed_amount == p_task->group->max) { do_post = true; } } if (do_post && p_task->template_userdata) { memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it. } if (low_priority && use_native_low_priority_threads) { p_task->completed = true; p_task->done_semaphore.post(); if (do_post) { p_task->group->completed.set_to(true); } } else { if (do_post) { p_task->group->done_semaphore.post(); p_task->group->completed.set_to(true); } uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment. uint32_t finished_users = p_task->group->finished.increment(); if (finished_users == max_users) { // Get rid of the group, because nobody else is using it. task_mutex.lock(); group_allocator.free(p_task->group); task_mutex.unlock(); } // For groups, tasks get rid of themselves. task_mutex.lock(); task_allocator.free(p_task); task_mutex.unlock(); } } else { if (p_task->native_func) { p_task->native_func(p_task->native_func_userdata); } else if (p_task->template_userdata) { p_task->template_userdata->callback(); memdelete(p_task->template_userdata); } else { Callable::CallError ce; Variant ret; p_task->callable.callp(nullptr, 0, ret, ce); } p_task->completed = true; p_task->done_semaphore.post(); } if (!use_native_low_priority_threads && low_priority) { // A low prioriry task was freed, so see if we can move a pending one to the high priority queue. bool post = false; task_mutex.lock(); if (low_priority_task_queue.first()) { Task *low_prio_task = low_priority_task_queue.first()->self(); low_priority_task_queue.remove(low_priority_task_queue.first()); task_queue.add_last(&low_prio_task->task_elem); post = true; } else { low_priority_threads_used.decrement(); } task_mutex.lock(); if (post) { task_available_semaphore.post(); } } } void WorkerThreadPool::_thread_function(void *p_user) { while (true) { singleton->task_available_semaphore.wait(); if (singleton->exit_threads.is_set()) { break; } singleton->_process_task_queue(); } } void WorkerThreadPool::_native_low_priority_thread_function(void *p_user) { Task *task = (Task *)p_user; singleton->_process_task(task); } void WorkerThreadPool::_post_task(Task *p_task, bool p_high_priority) { task_mutex.lock(); p_task->low_priority = !p_high_priority; if (!p_high_priority && use_native_low_priority_threads) { task_mutex.unlock(); p_task->low_priority_thread = native_thread_allocator.alloc(); p_task->low_priority_thread->start(_native_low_priority_thread_function, p_task); // Pask task directly to thread. } else if (p_high_priority || low_priority_threads_used.get() < max_low_priority_threads) { task_queue.add_last(&p_task->task_elem); if (!p_high_priority) { low_priority_threads_used.increment(); } task_mutex.unlock(); task_available_semaphore.post(); } else { // Too many threads using low priority, must go to queue. low_priority_task_queue.add_last(&p_task->task_elem); task_mutex.unlock(); } } WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) { return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description); } WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable, void (*p_func)(void *), void *p_userdata, BaseTemplateUserdata *p_template_userdata, bool p_high_priority, const String &p_description) { task_mutex.lock(); // Get a free task Task *task = task_allocator.alloc(); TaskID id = last_task++; task->callable = p_callable; task->native_func = p_func; task->native_func_userdata = p_userdata; task->description = p_description; task->template_userdata = p_template_userdata; tasks.insert(id, task); task_mutex.unlock(); _post_task(task, p_high_priority); return id; } WorkerThreadPool::TaskID WorkerThreadPool::add_task(const Callable &p_action, bool p_high_priority, const String &p_description) { return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description); } bool WorkerThreadPool::is_task_completed(TaskID p_task_id) const { task_mutex.lock(); const Task *const *taskp = tasks.getptr(p_task_id); if (!taskp) { task_mutex.unlock(); ERR_FAIL_V_MSG(false, "Invalid Task ID"); // Invalid task } bool completed = (*taskp)->completed; task_mutex.unlock(); return completed; } void WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) { task_mutex.lock(); Task **taskp = tasks.getptr(p_task_id); if (!taskp) { task_mutex.unlock(); ERR_FAIL_MSG("Invalid Task ID"); // Invalid task } Task *task = *taskp; if (task->waiting) { String description = task->description; task_mutex.unlock(); if (description.is_empty()) { ERR_FAIL_MSG("Another thread is waiting on this task: " + itos(p_task_id)); // Invalid task } else { ERR_FAIL_MSG("Another thread is waiting on this task: " + description + " (" + itos(p_task_id) + ")"); // Invalid task } } task->waiting = true; task_mutex.unlock(); if (use_native_low_priority_threads && task->low_priority) { task->low_priority_thread->wait_to_finish(); native_thread_allocator.free(task->low_priority_thread); } else { int *index = thread_ids.getptr(Thread::get_caller_id()); if (index) { // We are an actual process thread, we must not be blocked so continue processing stuff if available. while (true) { if (task->done_semaphore.try_wait()) { // If done, exit break; } if (task_available_semaphore.try_wait()) { // Solve tasks while they are around. _process_task_queue(); continue; } OS::get_singleton()->delay_usec(1); // Microsleep, this could be converted to waiting for multiple objects in supported platforms for a bit more performance. } } else { task->done_semaphore.wait(); } } task_mutex.lock(); tasks.erase(p_task_id); task_allocator.free(task); task_mutex.unlock(); } WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_callable, void (*p_func)(void *, uint32_t), void *p_userdata, BaseTemplateUserdata *p_template_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { ERR_FAIL_COND_V(p_elements < 0, INVALID_TASK_ID); if (p_tasks < 0) { p_tasks = threads.size(); } task_mutex.lock(); Group *group = group_allocator.alloc(); GroupID id = last_task++; group->max = p_elements; group->self = id; Task **tasks_posted = nullptr; if (p_elements == 0) { // Should really not call it with zero Elements, but at least it should work. group->completed.set_to(true); group->done_semaphore.post(); group->tasks_used = 0; p_tasks = 0; if (p_template_userdata) { memdelete(p_template_userdata); } } else { group->tasks_used = p_tasks; tasks_posted = (Task **)alloca(sizeof(Task *) * p_tasks); for (int i = 0; i < p_tasks; i++) { Task *task = task_allocator.alloc(); task->native_group_func = p_func; task->native_func_userdata = p_userdata; task->description = p_description; task->group = group; task->callable = p_callable; task->template_userdata = p_template_userdata; tasks_posted[i] = task; // No task ID is used. } } groups[id] = group; task_mutex.unlock(); if (!p_high_priority && use_native_low_priority_threads) { group->low_priority_native_tasks.resize(p_tasks); } for (int i = 0; i < p_tasks; i++) { _post_task(tasks_posted[i], p_high_priority); if (!p_high_priority && use_native_low_priority_threads) { group->low_priority_native_tasks[i] = tasks_posted[i]; } } return id; } WorkerThreadPool::GroupID WorkerThreadPool::add_native_group_task(void (*p_func)(void *, uint32_t), void *p_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { return _add_group_task(Callable(), p_func, p_userdata, nullptr, p_elements, p_tasks, p_high_priority, p_description); } WorkerThreadPool::GroupID WorkerThreadPool::add_group_task(const Callable &p_action, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) { return _add_group_task(p_action, nullptr, nullptr, nullptr, p_elements, p_tasks, p_high_priority, p_description); } uint32_t WorkerThreadPool::get_group_processed_element_count(GroupID p_group) const { task_mutex.lock(); const Group *const *groupp = groups.getptr(p_group); if (!groupp) { task_mutex.unlock(); ERR_FAIL_V_MSG(0, "Invalid Group ID"); } uint32_t elements = (*groupp)->completed_index.get(); task_mutex.unlock(); return elements; } bool WorkerThreadPool::is_group_task_completed(GroupID p_group) const { task_mutex.lock(); const Group *const *groupp = groups.getptr(p_group); if (!groupp) { task_mutex.unlock(); ERR_FAIL_V_MSG(false, "Invalid Group ID"); } bool completed = (*groupp)->completed.is_set(); task_mutex.unlock(); return completed; } void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) { task_mutex.lock(); Group **groupp = groups.getptr(p_group); task_mutex.unlock(); if (!groupp) { ERR_FAIL_MSG("Invalid Group ID"); } Group *group = *groupp; if (group->low_priority_native_tasks.size() > 0) { for (uint32_t i = 0; i < group->low_priority_native_tasks.size(); i++) { group->low_priority_native_tasks[i]->low_priority_thread->wait_to_finish(); native_thread_allocator.free(group->low_priority_native_tasks[i]->low_priority_thread); task_mutex.lock(); task_allocator.free(group->low_priority_native_tasks[i]); task_mutex.unlock(); } task_mutex.lock(); group_allocator.free(group); task_mutex.unlock(); } else { group->done_semaphore.wait(); uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment. uint32_t finished_users = group->finished.increment(); // fetch happens before inc, so increment later. if (finished_users == max_users) { // All tasks using this group are gone (finished before the group), so clear the group too. task_mutex.lock(); group_allocator.free(group); task_mutex.unlock(); } } groups.erase(p_group); // Threads do not access this, so safe to erase here. } void WorkerThreadPool::init(int p_thread_count, bool p_use_native_threads_low_priority, float p_low_priority_task_ratio) { ERR_FAIL_COND(threads.size() > 0); if (p_thread_count < 0) { p_thread_count = OS::get_singleton()->get_default_thread_pool_size(); } if (p_use_native_threads_low_priority) { max_low_priority_threads = 0; } else { max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count); } use_native_low_priority_threads = p_use_native_threads_low_priority; threads.resize(p_thread_count); for (uint32_t i = 0; i < threads.size(); i++) { threads[i].index = i; threads[i].thread.start(&WorkerThreadPool::_thread_function, &threads[i]); thread_ids.insert(threads[i].thread.get_id(), i); } } void WorkerThreadPool::finish() { if (threads.size() == 0) { return; } task_mutex.lock(); SelfList *E = low_priority_task_queue.first(); while (E) { print_error("Task waiting was never re-claimed: " + E->self()->description); E = E->next(); } task_mutex.unlock(); exit_threads.set_to(true); for (uint32_t i = 0; i < threads.size(); i++) { task_available_semaphore.post(); } for (uint32_t i = 0; i < threads.size(); i++) { threads[i].thread.wait_to_finish(); } threads.clear(); } void WorkerThreadPool::_bind_methods() { ClassDB::bind_method(D_METHOD("add_task", "action", "high_priority", "description"), &WorkerThreadPool::add_task, DEFVAL(false), DEFVAL(String())); ClassDB::bind_method(D_METHOD("is_task_completed", "task_id"), &WorkerThreadPool::is_task_completed); ClassDB::bind_method(D_METHOD("wait_for_task_completion", "task_id"), &WorkerThreadPool::wait_for_task_completion); ClassDB::bind_method(D_METHOD("add_group_task", "action", "elements", "tasks_needed", "high_priority", "description"), &WorkerThreadPool::add_group_task, DEFVAL(-1), DEFVAL(false), DEFVAL(String())); ClassDB::bind_method(D_METHOD("is_group_task_completed", "group_id"), &WorkerThreadPool::is_group_task_completed); ClassDB::bind_method(D_METHOD("get_group_processed_element_count", "group_id"), &WorkerThreadPool::get_group_processed_element_count); ClassDB::bind_method(D_METHOD("wait_for_group_task_completion", "group_id"), &WorkerThreadPool::wait_for_group_task_completion); } WorkerThreadPool::WorkerThreadPool() { singleton = this; } WorkerThreadPool::~WorkerThreadPool() { finish(); }