layout(std140) uniform TonemapData { //ubo:0 float exposure; float white; int tonemapper; int pad; int pad2; float brightness; float contrast; float saturation; }; // This expects 0-1 range input. vec3 linear_to_srgb(vec3 color) { //color = clamp(color, vec3(0.0), vec3(1.0)); //const vec3 a = vec3(0.055f); //return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0)); } // This expects 0-1 range input, outside that range it behaves poorly. vec3 srgb_to_linear(vec3 color) { // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878); } #ifdef APPLY_TONEMAPPING vec3 tonemap_filmic(vec3 color, float p_white) { // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) // has no effect on the curve's general shape or visual properties const float exposure_bias = 2.0f; const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance const float B = 0.30f * exposure_bias; const float C = 0.10f; const float D = 0.20f; const float E = 0.01f; const float F = 0.30f; vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F; return color_tonemapped / p_white_tonemapped; } // Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl // (MIT License). vec3 tonemap_aces(vec3 color, float p_white) { const float exposure_bias = 1.8f; const float A = 0.0245786f; const float B = 0.000090537f; const float C = 0.983729f; const float D = 0.432951f; const float E = 0.238081f; // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias` const mat3 rgb_to_rrt = mat3( vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias), vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias), vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias)); const mat3 odt_to_rgb = mat3( vec3(1.60475f, -0.53108f, -0.07367f), vec3(-0.10208f, 1.10813f, -0.00605f), vec3(-0.00327f, -0.07276f, 1.07602f)); color *= rgb_to_rrt; vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E); color_tonemapped *= odt_to_rgb; p_white *= exposure_bias; float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E); return color_tonemapped / p_white_tonemapped; } vec3 tonemap_reinhard(vec3 color, float p_white) { return (p_white * color + color) / (color * p_white + p_white); } #define TONEMAPPER_LINEAR 0 #define TONEMAPPER_REINHARD 1 #define TONEMAPPER_FILMIC 2 #define TONEMAPPER_ACES 3 vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR, always outputs clamped [0;1] color // Ensure color values passed to tonemappers are positive. // They can be negative in the case of negative lights, which leads to undesired behavior. if (tonemapper == TONEMAPPER_LINEAR) { return color; } else if (tonemapper == TONEMAPPER_REINHARD) { return tonemap_reinhard(max(vec3(0.0f), color), p_white); } else if (tonemapper == TONEMAPPER_FILMIC) { return tonemap_filmic(max(vec3(0.0f), color), p_white); } else { // TONEMAPPER_ACES return tonemap_aces(max(vec3(0.0f), color), p_white); } } #endif // APPLY_TONEMAPPING