/* clang-format off */ #[modes] mode_color = #define BASE_PASS mode_additive = #define USE_ADDITIVE_LIGHTING mode_depth = #define MODE_RENDER_DEPTH #[specializations] USE_LIGHTMAP = false USE_LIGHT_DIRECTIONAL = false USE_LIGHT_POSITIONAL = false #[vertex] #define M_PI 3.14159265359 #define SHADER_IS_SRGB true #include "stdlib_inc.glsl" #if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED) #ifndef NORMAL_USED #define NORMAL_USED #endif #endif /* from RenderingServer: ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit) ARRAY_NORMAL = 1, // A2B10G10R10, A is ignored. ARRAY_TANGENT = 2, // A2B10G10R10, A flips sign of binormal. ARRAY_COLOR = 3, // RGBA8 ARRAY_TEX_UV = 4, // RG32F ARRAY_TEX_UV2 = 5, // RG32F ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat. ARRAY_CUSTOM1 = 7, ARRAY_CUSTOM2 = 8, ARRAY_CUSTOM3 = 9, ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights) ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights) ARRAY_INDEX = 12, // 16 or 32 bits depending on length > 0xFFFF. ARRAY_MAX = 13 */ /* INPUT ATTRIBS */ layout(location = 0) in highp vec3 vertex_attrib; /* clang-format on */ #ifdef NORMAL_USED layout(location = 1) in vec3 normal_attrib; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #ifdef UV_USED layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 5) in vec2 uv2_attrib; #endif #if defined(CUSTOM0_USED) layout(location = 6) in vec4 custom0_attrib; #endif #if defined(CUSTOM1_USED) layout(location = 7) in vec4 custom1_attrib; #endif #if defined(CUSTOM2_USED) layout(location = 8) in vec4 custom2_attrib; #endif #if defined(CUSTOM3_USED) layout(location = 9) in vec4 custom3_attrib; #endif #if defined(BONES_USED) layout(location = 10) in uvec4 bone_attrib; #endif #if defined(WEIGHTS_USED) layout(location = 11) in vec4 weight_attrib; #endif layout(std140) uniform GlobalVariableData { //ubo:1 vec4 global_variables[MAX_GLOBAL_VARIABLES]; }; layout(std140) uniform SceneData { // ubo:2 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 inv_view_matrix; highp mat4 view_matrix; vec2 viewport_size; vec2 screen_pixel_size; mediump vec4 ambient_light_color_energy; mediump float ambient_color_sky_mix; uint ambient_flags; bool material_uv2_mode; float opaque_prepass_threshold; //bool use_ambient_light; //bool use_ambient_cubemap; //bool use_reflection_cubemap; mat3 radiance_inverse_xform; uint directional_light_count; float z_far; float z_near; float pad; bool fog_enabled; float fog_density; float fog_height; float fog_height_density; vec3 fog_light_color; float fog_sun_scatter; float fog_aerial_perspective; float time; float reflection_multiplier; // one normally, zero when rendering reflections bool pancake_shadows; } scene_data; uniform highp mat4 world_transform; #ifdef USE_LIGHTMAP uniform highp vec4 lightmap_uv_rect; #endif /* Varyings */ out highp vec3 vertex_interp; #ifdef NORMAL_USED out vec3 normal_interp; #endif #if defined(COLOR_USED) out vec4 color_interp; #endif #if defined(UV_USED) out vec2 uv_interp; #endif #if defined(UV2_USED) out vec2 uv2_interp; #else #ifdef USE_LIGHTMAP out vec2 uv2_interp; #endif #endif #if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) out vec3 tangent_interp; out vec3 binormal_interp; #endif #if defined(MATERIAL_UNIFORMS_USED) /* clang-format off */ layout(std140) uniform MaterialUniforms { // ubo:3 #MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ #GLOBALS /* clang-format on */ out highp vec4 position_interp; invariant gl_Position; void main() { highp vec3 vertex = vertex_attrib; highp mat4 model_matrix = world_transform; #ifdef NORMAL_USED vec3 normal = normal_attrib * 2.0 - 1.0; #endif highp mat3 model_normal_matrix = mat3(model_matrix); #if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 tangent; float binormalf; tangent = normal_tangent_attrib.xyz; binormalf = normal_tangent_attrib.a; #endif #if defined(COLOR_USED) color_interp = color_attrib; #endif #if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #if defined(UV_USED) uv_interp = uv_attrib; #endif #ifdef USE_LIGHTMAP uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy; #else #if defined(UV2_USED) uv2_interp = uv2_attrib; #endif #endif #if defined(OVERRIDE_POSITION) highp vec4 position; #endif highp mat4 projection_matrix = scene_data.projection_matrix; highp mat4 inv_projection_matrix = scene_data.inv_projection_matrix; vec4 instance_custom = vec4(0.0); // Using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (model_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = model_normal_matrix * normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = model_normal_matrix * tangent; binormal = model_normal_matrix * binormal; #endif #endif float roughness = 1.0; highp mat4 modelview = scene_data.view_matrix * model_matrix; highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix; float point_size = 1.0; { #CODE : VERTEX } gl_PointSize = point_size; // Using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = modelview_normal * normal; #endif #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif // Using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz; tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz; #endif #endif vertex_interp = vertex; #ifdef NORMAL_USED normal_interp = normal; #endif #if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent_interp = tangent; binormal_interp = binormal; #endif #if defined(OVERRIDE_POSITION) gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif #ifdef MODE_RENDER_DEPTH if (scene_data.pancake_shadows) { if (gl_Position.z <= 0.00001) { gl_Position.z = 0.00001; } } #endif position_interp = gl_Position; } /* clang-format off */ #[fragment] // Default to SPECULAR_SCHLICK_GGX. #if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON) #define SPECULAR_SCHLICK_GGX #endif #if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED) #ifndef NORMAL_USED #define NORMAL_USED #endif #endif #include "tonemap_inc.glsl" #include "stdlib_inc.glsl" /* texture unit usage, N is max_texture_unity-N 1-color correction // In tonemap_inc.glsl 2-radiance 3-directional_shadow 4-positional_shadow 5-screen 6-depth */ uniform highp mat4 world_transform; /* clang-format on */ #define M_PI 3.14159265359 #define SHADER_IS_SRGB true /* Varyings */ #if defined(COLOR_USED) in vec4 color_interp; #endif #if defined(UV_USED) in vec2 uv_interp; #endif #if defined(UV2_USED) in vec2 uv2_interp; #else #ifdef USE_LIGHTMAP in vec2 uv2_interp; #endif #endif #if defined(TANGENT_USED) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) in vec3 tangent_interp; in vec3 binormal_interp; #endif #ifdef NORMAL_USED in vec3 normal_interp; #endif in highp vec3 vertex_interp; /* PBR CHANNELS */ #ifdef USE_RADIANCE_MAP layout(std140) uniform Radiance { // ubo:4 mat4 radiance_inverse_xform; float radiance_ambient_contribution; }; #define RADIANCE_MAX_LOD 5.0 uniform sampler2D radiance_map; // texunit:-2 vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) { vec3 norm = normalize(p_vec); norm.xy /= 1.0 + abs(norm.z); norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); if (norm.z > 0.0) { norm.y = 0.5 - norm.y + 0.5; } return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; } #endif layout(std140) uniform GlobalVariableData { //ubo:1 vec4 global_variables[MAX_GLOBAL_VARIABLES]; }; /* Material Uniforms */ #if defined(MATERIAL_UNIFORMS_USED) /* clang-format off */ layout(std140) uniform MaterialUniforms { // ubo:3 #MATERIAL_UNIFORMS }; /* clang-format on */ #endif layout(std140) uniform SceneData { // ubo:2 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 inv_view_matrix; highp mat4 view_matrix; vec2 viewport_size; vec2 screen_pixel_size; mediump vec4 ambient_light_color_energy; mediump float ambient_color_sky_mix; uint ambient_flags; bool material_uv2_mode; float opaque_prepass_threshold; //bool use_ambient_light; //bool use_ambient_cubemap; //bool use_reflection_cubemap; mat3 radiance_inverse_xform; uint directional_light_count; float z_far; float z_near; float pad; bool fog_enabled; float fog_density; float fog_height; float fog_height_density; vec3 fog_light_color; float fog_sun_scatter; float fog_aerial_perspective; float time; float reflection_multiplier; // one normally, zero when rendering reflections bool pancake_shadows; } scene_data; /* clang-format off */ #GLOBALS /* clang-format on */ //directional light data #ifdef USE_LIGHT_DIRECTIONAL struct DirectionalLightData { mediump vec3 direction; mediump float energy; mediump vec3 color; mediump float size; mediump vec3 pad; mediump float specular; }; #endif // omni and spot #ifdef USE_LIGHT_POSITIONAL struct LightData { //this structure needs to be as packed as possible highp vec3 position; highp float inv_radius; mediump vec3 direction; highp float size; mediump vec3 color; mediump float attenuation; mediump float cone_attenuation; mediump float cone_angle; mediump float specular_amount; bool shadow_enabled; }; layout(std140) uniform OmniLightData { // ubo:5 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { // ubo:6 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; uniform highp samplerCubeShadow positional_shadow; // texunit:-6 uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; uniform int omni_light_count; uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; uniform int spot_light_count; uniform int reflection_indices[MAX_FORWARD_LIGHTS]; uniform int reflection_count; #endif uniform highp sampler2D screen_texture; // texunit:-5 uniform highp sampler2D depth_buffer; // texunit:-6 layout(location = 0) out vec4 frag_color; in highp vec4 position_interp; vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } #if defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL) float D_GGX(float cos_theta_m, float alpha) { float a = cos_theta_m * alpha; float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a); return k * k * (1.0 / M_PI); } // From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX float V_GGX(float NdotL, float NdotV, float alpha) { return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float alpha2 = alpha_x * alpha_y; highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m); highp float v2 = dot(v, v); float w2 = alpha2 / v2; float D = alpha2 * w2 * w2 * (1.0 / M_PI); return D; } float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) { float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV)); float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL)); return 0.5 / (Lambda_V + Lambda_L); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec4 orms_unpacked = unpackUnorm4x8(orms); float roughness = orms_unpacked.y; float metallic = orms_unpacked.z; #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 light = L; vec3 view = V; /* clang-format off */ #CODE : LIGHT /* clang-format on */ #else float NdotL = min(A + dot(N, L), 1.0); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_SCHLICK_GGX) float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); #endif if (metallic < 1.0) { float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_BACKLIGHT_USED) diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; #endif #if defined(LIGHT_RIM_USED) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color; #endif } if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default float alpha_ggx = roughness * roughness; #if defined(LIGHT_ANISOTROPY_USED) float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha_ggx / aspect; float ay = alpha_ggx * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL); #else // LIGHT_ANISOTROPY_USED float D = D_GGX(cNdotH, alpha_ggx); float G = V_GGX(cNdotL, cNdotV, alpha_ggx); #endif // LIGHT_ANISOTROPY_USED // F float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); vec3 specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; #endif #if defined(LIGHT_CLEARCOAT_USED) // Clearcoat ignores normal_map, use vertex normal instead float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0); float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0); float ccNdotV = max(dot(vertex_normal, V), 1e-4); #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness)); float Gr = 0.25 / (cLdotH * cLdotH); float Fr = mix(.04, 1.0, cLdotH5); float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR) // but to do so we need to rearrange this entire function #endif // LIGHT_CLEARCOAT_USED } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0)); #endif #endif //defined(LIGHT_CODE_USED) } float get_omni_attenuation(float distance, float inv_range, float decay) { float nd = distance * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(distance, 0.0001), -decay); } void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_boost, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights[idx].position - vertex; float light_length = length(light_rel_vec); float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation); vec3 light_attenuation = vec3(omni_attenuation); vec3 color = omni_lights[idx].color; float size_A = 0.0; if (omni_lights.data[idx].size > 0.0) { float t = omni_lights[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, omni_lights[idx].specular_amount, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim * omni_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_roughness, vec3 vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = spot_lights[idx].position - vertex; float light_length = length(light_rel_vec); float spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation); vec3 spot_dir = spot_lights[idx].direction; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle)); spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation); float light_attenuation = spot_attenuation; vec3 color = spot_lights[idx].color; float size_A = 0.0; if (spot_lights.data[idx].size > 0.0) { float t = spot_lights.data[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, light_attenuation, f0, orms, spot_lights[idx].specular_amount, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim * spot_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, vertex_normal, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); } #endif // defined(USE_LIGHT_DIRECTIONAL) || defined(USE_LIGHT_POSITIONAL) void main() { //lay out everything, whatever is unused is optimized away anyway vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 backlight = vec3(0.0); vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0); float transmittance_depth = 0.0; float transmittance_boost = 0.0; float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_roughness = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); vec4 fog = vec4(0.0); #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif #if defined(CUSTOM_IRRADIANCE_USED) vec4 custom_irradiance = vec4(0.0); #endif float ao = 1.0; float ao_light_affect = 0.0; float alpha = 1.0; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif #ifdef NORMAL_USED vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #endif //NORMAL_USED #ifdef UV_USED vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.5); #endif float normal_map_depth = 1.0; vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size; float sss_strength = 0.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor_threshold = 1.0; #endif // ALPHA_SCISSOR_USED #ifdef ALPHA_HASH_USED float alpha_hash_scale = 1.0; #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float alpha_antialiasing_edge = 0.0; vec2 alpha_texture_coordinate = vec2(0.0, 0.0); #endif // ALPHA_ANTIALIASING_EDGE_USED { #CODE : FRAGMENT } #ifndef USE_SHADOW_TO_OPACITY #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor_threshold) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS #if !defined(ALPHA_SCISSOR_USED) if (alpha < scene_data.opaque_prepass_threshold) { discard; } #endif // not ALPHA_SCISSOR_USED #endif // USE_OPAQUE_PREPASS #endif // !USE_SHADOW_TO_OPACITY #ifdef NORMAL_MAP_USED normal_map.xy = normal_map.xy * 2.0 - 1.0; normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); #endif #ifdef LIGHT_ANISOTROPY_USED if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifndef MODE_RENDER_DEPTH vec3 f0 = F0(metallic, specular, albedo); // Convert albedo to linear. Approximation from: http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html albedo = albedo * (albedo * (albedo * 0.305306011 + 0.682171111) + 0.012522878); vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); #ifdef BASE_PASS /////////////////////// LIGHTING ////////////////////////////// // IBL precalculations float ndotv = clamp(dot(normal, view), 0.0, 1.0); vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0); // Calculate IBL // Calculate Reflection probes // Caclculate Lightmaps float specular_blob_intensity = 1.0; #if defined(SPECULAR_TOON) specular_blob_intensity *= specular * 2.0; #endif { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; specular_light *= env.x * f0 + env.y; #endif } #endif // BASE_PASS //this saves some VGPRs uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); #ifdef USE_LIGHT_DIRECTIONAL float size_A = directional_lights[i].size; light_compute(normal, directional_lights[i].direction, normalize(view), size_A, directional_lights[i].color * directional_lights[i].energy, shadow, f0, orms, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif diffuse_light, specular_light); #endif //#USE_LIGHT_DIRECTIONAL #ifdef USE_LIGHT_POSITIONAL float shadow = 0.0; for (int i = 0; i < omni_light_count; i++) { light_process_omni(omni_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); } for (int i = 0; i < spot_light_count; i++) { light_process_spot(spot_light_indices[i], vertex, view, normal, f0, orms, shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); } #endif // USE_LIGHT_POSITIONAL #endif //!MODE_RENDER_DEPTH #if defined(USE_SHADOW_TO_OPACITY) alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS #if !defined(ALPHA_SCISSOR_USED) if (alpha < opaque_prepass_threshold) { discard; } #endif // not ALPHA_SCISSOR_USED #endif // USE_OPAQUE_PREPASS #endif // USE_SHADOW_TO_OPACITY #ifdef MODE_RENDER_DEPTH //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else // !MODE_RENDER_DEPTH specular_light *= scene_data.reflection_multiplier; ambient_light *= albedo; //ambient must be multiplied by albedo at the end // base color remapping diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else frag_color = vec4(ambient_light + diffuse_light + specular_light, alpha); #ifdef BASE_PASS frag_color.rgb += emission; #endif #endif //MODE_UNSHADED // Tonemap before writing as we are writing to an sRGB framebuffer frag_color.rgb *= exposure; frag_color.rgb = apply_tonemapping(frag_color.rgb, white); frag_color.rgb = linear_to_srgb(frag_color.rgb); #ifdef USE_BCS frag_color.rgb = apply_bcs(frag_color.rgb, bcs); #endif #ifdef USE_COLOR_CORRECTION frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction); #endif #endif //!MODE_RENDER_DEPTH }