/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef B3_OBJECT_ARRAY__ #define B3_OBJECT_ARRAY__ #include "b3Scalar.h" // has definitions like B3_FORCE_INLINE #include "b3AlignedAllocator.h" ///If the platform doesn't support placement new, you can disable B3_USE_PLACEMENT_NEW ///then the b3AlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors ///You can enable B3_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 #define B3_USE_PLACEMENT_NEW 1 //#define B3_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... #define B3_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful #ifdef B3_USE_MEMCPY #include <memory.h> #include <string.h> #endif //B3_USE_MEMCPY #ifdef B3_USE_PLACEMENT_NEW #include <new> //for placement new #endif //B3_USE_PLACEMENT_NEW ///The b3AlignedObjectArray template class uses a subset of the stl::vector interface for its methods ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data template <typename T> //template <class T> class b3AlignedObjectArray { b3AlignedAllocator<T , 16> m_allocator; int m_size; int m_capacity; T* m_data; //PCK: added this line bool m_ownsMemory; #ifdef B3_ALLOW_ARRAY_COPY_OPERATOR public: B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T> &other) { copyFromArray(other); return *this; } #else//B3_ALLOW_ARRAY_COPY_OPERATOR private: B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T> &other); #endif//B3_ALLOW_ARRAY_COPY_OPERATOR protected: B3_FORCE_INLINE int allocSize(int size) { return (size ? size*2 : 1); } B3_FORCE_INLINE void copy(int start,int end, T* dest) const { int i; for (i=start;i<end;++i) #ifdef B3_USE_PLACEMENT_NEW new (&dest[i]) T(m_data[i]); #else dest[i] = m_data[i]; #endif //B3_USE_PLACEMENT_NEW } B3_FORCE_INLINE void init() { //PCK: added this line m_ownsMemory = true; m_data = 0; m_size = 0; m_capacity = 0; } B3_FORCE_INLINE void destroy(int first,int last) { int i; for (i=first; i<last;i++) { m_data[i].~T(); } } B3_FORCE_INLINE void* allocate(int size) { if (size) return m_allocator.allocate(size); return 0; } B3_FORCE_INLINE void deallocate() { if(m_data) { //PCK: enclosed the deallocation in this block if (m_ownsMemory) { m_allocator.deallocate(m_data); } m_data = 0; } } public: b3AlignedObjectArray() { init(); } ~b3AlignedObjectArray() { clear(); } ///Generally it is best to avoid using the copy constructor of an b3AlignedObjectArray, and use a (const) reference to the array instead. b3AlignedObjectArray(const b3AlignedObjectArray& otherArray) { init(); int otherSize = otherArray.size(); resize (otherSize); otherArray.copy(0, otherSize, m_data); } /// return the number of elements in the array B3_FORCE_INLINE int size() const { return m_size; } B3_FORCE_INLINE const T& at(int n) const { b3Assert(n>=0); b3Assert(n<size()); return m_data[n]; } B3_FORCE_INLINE T& at(int n) { b3Assert(n>=0); b3Assert(n<size()); return m_data[n]; } B3_FORCE_INLINE const T& operator[](int n) const { b3Assert(n>=0); b3Assert(n<size()); return m_data[n]; } B3_FORCE_INLINE T& operator[](int n) { b3Assert(n>=0); b3Assert(n<size()); return m_data[n]; } ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. B3_FORCE_INLINE void clear() { destroy(0,size()); deallocate(); init(); } B3_FORCE_INLINE void pop_back() { b3Assert(m_size>0); m_size--; m_data[m_size].~T(); } ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. B3_FORCE_INLINE void resizeNoInitialize(int newsize) { int curSize = size(); if (newsize < curSize) { } else { if (newsize > size()) { reserve(newsize); } //leave this uninitialized } m_size = newsize; } B3_FORCE_INLINE void resize(int newsize, const T& fillData=T()) { int curSize = size(); if (newsize < curSize) { for(int i = newsize; i < curSize; i++) { m_data[i].~T(); } } else { if (newsize > size()) { reserve(newsize); } #ifdef B3_USE_PLACEMENT_NEW for (int i=curSize;i<newsize;i++) { new ( &m_data[i]) T(fillData); } #endif //B3_USE_PLACEMENT_NEW } m_size = newsize; } B3_FORCE_INLINE T& expandNonInitializing( ) { int sz = size(); if( sz == capacity() ) { reserve( allocSize(size()) ); } m_size++; return m_data[sz]; } B3_FORCE_INLINE T& expand( const T& fillValue=T()) { int sz = size(); if( sz == capacity() ) { reserve( allocSize(size()) ); } m_size++; #ifdef B3_USE_PLACEMENT_NEW new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) #endif return m_data[sz]; } B3_FORCE_INLINE void push_back(const T& _Val) { int sz = size(); if( sz == capacity() ) { reserve( allocSize(size()) ); } #ifdef B3_USE_PLACEMENT_NEW new ( &m_data[m_size] ) T(_Val); #else m_data[size()] = _Val; #endif //B3_USE_PLACEMENT_NEW m_size++; } /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() B3_FORCE_INLINE int capacity() const { return m_capacity; } B3_FORCE_INLINE void reserve(int _Count) { // determine new minimum length of allocated storage if (capacity() < _Count) { // not enough room, reallocate T* s = (T*)allocate(_Count); b3Assert(s); if (s==0) { b3Error("b3AlignedObjectArray reserve out-of-memory\n"); _Count=0; m_size=0; } copy(0, size(), s); destroy(0,size()); deallocate(); //PCK: added this line m_ownsMemory = true; m_data = s; m_capacity = _Count; } } class less { public: bool operator() ( const T& a, const T& b ) { return ( a < b ); } }; template <typename L> void quickSortInternal(const L& CompareFunc,int lo, int hi) { // lo is the lower index, hi is the upper index // of the region of array a that is to be sorted int i=lo, j=hi; T x=m_data[(lo+hi)/2]; // partition do { while (CompareFunc(m_data[i],x)) i++; while (CompareFunc(x,m_data[j])) j--; if (i<=j) { swap(i,j); i++; j--; } } while (i<=j); // recursion if (lo<j) quickSortInternal( CompareFunc, lo, j); if (i<hi) quickSortInternal( CompareFunc, i, hi); } template <typename L> void quickSort(const L& CompareFunc) { //don't sort 0 or 1 elements if (size()>1) { quickSortInternal(CompareFunc,0,size()-1); } } ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ template <typename L> void downHeap(T *pArr, int k, int n, const L& CompareFunc) { /* PRE: a[k+1..N] is a heap */ /* POST: a[k..N] is a heap */ T temp = pArr[k - 1]; /* k has child(s) */ while (k <= n/2) { int child = 2*k; if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child])) { child++; } /* pick larger child */ if (CompareFunc(temp , pArr[child - 1])) { /* move child up */ pArr[k - 1] = pArr[child - 1]; k = child; } else { break; } } pArr[k - 1] = temp; } /*downHeap*/ void swap(int index0,int index1) { #ifdef B3_USE_MEMCPY char temp[sizeof(T)]; memcpy(temp,&m_data[index0],sizeof(T)); memcpy(&m_data[index0],&m_data[index1],sizeof(T)); memcpy(&m_data[index1],temp,sizeof(T)); #else T temp = m_data[index0]; m_data[index0] = m_data[index1]; m_data[index1] = temp; #endif //B3_USE_PLACEMENT_NEW } template <typename L> void heapSort(const L& CompareFunc) { /* sort a[0..N-1], N.B. 0 to N-1 */ int k; int n = m_size; for (k = n/2; k > 0; k--) { downHeap(m_data, k, n, CompareFunc); } /* a[1..N] is now a heap */ while ( n>=1 ) { swap(0,n-1); /* largest of a[0..n-1] */ n = n - 1; /* restore a[1..i-1] heap */ downHeap(m_data, 1, n, CompareFunc); } } ///non-recursive binary search, assumes sorted array int findBinarySearch(const T& key) const { int first = 0; int last = size()-1; //assume sorted array while (first <= last) { int mid = (first + last) / 2; // compute mid point. if (key > m_data[mid]) first = mid + 1; // repeat search in top half. else if (key < m_data[mid]) last = mid - 1; // repeat search in bottom half. else return mid; // found it. return position ///// } return size(); // failed to find key } int findLinearSearch(const T& key) const { int index=size(); int i; for (i=0;i<size();i++) { if (m_data[i] == key) { index = i; break; } } return index; } int findLinearSearch2(const T& key) const { int index=-1; int i; for (i=0;i<size();i++) { if (m_data[i] == key) { index = i; break; } } return index; } void remove(const T& key) { int findIndex = findLinearSearch(key); if (findIndex<size()) { swap( findIndex,size()-1); pop_back(); } } //PCK: whole function void initializeFromBuffer(void *buffer, int size, int capacity) { clear(); m_ownsMemory = false; m_data = (T*)buffer; m_size = size; m_capacity = capacity; } void copyFromArray(const b3AlignedObjectArray& otherArray) { int otherSize = otherArray.size(); resize (otherSize); otherArray.copy(0, otherSize, m_data); } }; #endif //B3_OBJECT_ARRAY__