/*************************************************************************/ /* test_vector2.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef TEST_VECTOR2_H #define TEST_VECTOR2_H #include "core/math/vector2.h" #include "core/math/vector2i.h" #include "tests/test_macros.h" namespace TestVector2 { TEST_CASE("[Vector2] Constructor methods") { const Vector2 vector_empty = Vector2(); const Vector2 vector_zero = Vector2(0.0, 0.0); CHECK_MESSAGE( vector_empty == vector_zero, "Vector2 Constructor with no inputs should return a zero Vector2."); } TEST_CASE("[Vector2] Angle methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); CHECK_MESSAGE( Math::is_equal_approx(vector_x.angle_to(vector_y), (real_t)Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_y.angle_to(vector_x), (real_t)-Math_TAU / 4), "Vector2 angle_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_x.angle_to_point(vector_y), (real_t)Math_TAU * 3 / 8), "Vector2 angle_to_point should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector_y.angle_to_point(vector_x), (real_t)-Math_TAU / 8), "Vector2 angle_to_point should work as expected."); } TEST_CASE("[Vector2] Axis methods") { Vector2 vector = Vector2(1.2, 3.4); CHECK_MESSAGE( vector.max_axis_index() == Vector2::Axis::AXIS_Y, "Vector2 max_axis_index should work as expected."); CHECK_MESSAGE( vector.min_axis_index() == Vector2::Axis::AXIS_X, "Vector2 min_axis_index should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)1.2, "Vector2 array operator should work as expected."); vector[Vector2::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector2::Axis::AXIS_Y] == (real_t)3.7, "Vector2 array operator setter should work as expected."); } TEST_CASE("[Vector2] Interpolation methods") { const Vector2 vector1 = Vector2(1, 2); const Vector2 vector2 = Vector2(4, 5); CHECK_MESSAGE( vector1.lerp(vector2, 0.5) == Vector2(2.5, 3.5), "Vector2 lerp should work as expected."); CHECK_MESSAGE( vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector2(2, 3)), "Vector2 lerp should work as expected."); CHECK_MESSAGE( vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector2(0.538953602313995361, 0.84233558177947998)), "Vector2 slerp should work as expected."); CHECK_MESSAGE( vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector2(0.508990883827209473, 0.860771894454956055)), "Vector2 slerp should work as expected."); CHECK_MESSAGE( Vector2(5, 0).slerp(Vector2(0, 5), 0.5).is_equal_approx(Vector2(5, 5) * Math_SQRT12), "Vector2 slerp with non-normalized values should work as expected."); CHECK_MESSAGE( Vector2(1, 1).slerp(Vector2(2, 2), 0.5).is_equal_approx(Vector2(1.5, 1.5)), "Vector2 slerp with colinear inputs should behave as expected."); CHECK_MESSAGE( Vector2().slerp(Vector2(), 0.5) == Vector2(), "Vector2 slerp with both inputs as zero vectors should return a zero vector."); CHECK_MESSAGE( Vector2().slerp(Vector2(1, 1), 0.5) == Vector2(0.5, 0.5), "Vector2 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( Vector2(1, 1).slerp(Vector2(), 0.5) == Vector2(0.5, 0.5), "Vector2 slerp with one input as zero should behave like a regular lerp."); CHECK_MESSAGE( Vector2(4, 6).slerp(Vector2(8, 10), 0.5).is_equal_approx(Vector2(5.9076470794008017626, 8.07918879020090480697)), "Vector2 slerp should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector1.slerp(vector2, 0.5).length(), (real_t)4.31959610746631919), "Vector2 slerp with different length input should return a vector with an interpolated length."); CHECK_MESSAGE( Math::is_equal_approx(vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2, vector1.angle_to(vector2)), "Vector2 slerp with different length input should return a vector with an interpolated angle."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 0.5) == Vector2(2.375, 3.5), "Vector2 cubic_interpolate should work as expected."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector2(), Vector2(7, 7), 1.0 / 3.0).is_equal_approx(Vector2(1.851851940155029297, 2.962963104248046875)), "Vector2 cubic_interpolate should work as expected."); CHECK_MESSAGE( Vector2(1, 0).move_toward(Vector2(10, 0), 3) == Vector2(4, 0), "Vector2 move_toward should work as expected."); } TEST_CASE("[Vector2] Length methods") { const Vector2 vector1 = Vector2(10, 10); const Vector2 vector2 = Vector2(20, 30); CHECK_MESSAGE( vector1.length_squared() == 200, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector1.length(), 10 * (real_t)Math_SQRT2), "Vector2 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 1300, "Vector2 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector2.length(), (real_t)36.05551275463989293119), "Vector2 length should work as expected."); CHECK_MESSAGE( vector1.distance_squared_to(vector2) == 500, "Vector2 distance_squared_to should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector1.distance_to(vector2), (real_t)22.36067977499789696409), "Vector2 distance_to should work as expected."); } TEST_CASE("[Vector2] Limiting methods") { const Vector2 vector = Vector2(10, 10); CHECK_MESSAGE( vector.limit_length().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 limit_length should work as expected."); CHECK_MESSAGE( vector.limit_length(5).is_equal_approx(5 * Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 limit_length should work as expected."); CHECK_MESSAGE( Vector2(-5, 15).clamp(Vector2(), vector).is_equal_approx(Vector2(0, 10)), "Vector2 clamp should work as expected."); CHECK_MESSAGE( vector.clamp(Vector2(0, 15), Vector2(5, 20)).is_equal_approx(Vector2(5, 15)), "Vector2 clamp should work as expected."); } TEST_CASE("[Vector2] Normalization methods") { CHECK_MESSAGE( Vector2(1, 0).is_normalized() == true, "Vector2 is_normalized should return true for a normalized vector."); CHECK_MESSAGE( Vector2(1, 1).is_normalized() == false, "Vector2 is_normalized should return false for a non-normalized vector."); CHECK_MESSAGE( Vector2(1, 0).normalized() == Vector2(1, 0), "Vector2 normalized should return the same vector for a normalized vector."); CHECK_MESSAGE( Vector2(1, 1).normalized().is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 normalized should work as expected."); Vector2 vector = Vector2(3.2, -5.4); vector.normalize(); CHECK_MESSAGE( vector == Vector2(3.2, -5.4).normalized(), "Vector2 normalize should convert same way as Vector2 normalized."); CHECK_MESSAGE( vector.is_equal_approx(Vector2(0.509802390301732898898, -0.860291533634174266891)), "Vector2 normalize should work as expected."); } TEST_CASE("[Vector2] Operators") { const Vector2 decimal1 = Vector2(2.3, 4.9); const Vector2 decimal2 = Vector2(1.2, 3.4); const Vector2 power1 = Vector2(0.75, 1.5); const Vector2 power2 = Vector2(0.5, 0.125); const Vector2 int1 = Vector2(4, 5); const Vector2 int2 = Vector2(1, 2); CHECK_MESSAGE( (decimal1 + decimal2).is_equal_approx(Vector2(3.5, 8.3)), "Vector2 addition should behave as expected."); CHECK_MESSAGE( (power1 + power2) == Vector2(1.25, 1.625), "Vector2 addition with powers of two should give exact results."); CHECK_MESSAGE( (int1 + int2) == Vector2(5, 7), "Vector2 addition with integers should give exact results."); CHECK_MESSAGE( (decimal1 - decimal2).is_equal_approx(Vector2(1.1, 1.5)), "Vector2 subtraction should behave as expected."); CHECK_MESSAGE( (power1 - power2) == Vector2(0.25, 1.375), "Vector2 subtraction with powers of two should give exact results."); CHECK_MESSAGE( (int1 - int2) == Vector2(3, 3), "Vector2 subtraction with integers should give exact results."); CHECK_MESSAGE( (decimal1 * decimal2).is_equal_approx(Vector2(2.76, 16.66)), "Vector2 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * power2) == Vector2(0.375, 0.1875), "Vector2 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * int2) == Vector2(4, 10), "Vector2 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / decimal2).is_equal_approx(Vector2(1.91666666666666666, 1.44117647058823529)), "Vector2 division should behave as expected."); CHECK_MESSAGE( (power1 / power2) == Vector2(1.5, 12.0), "Vector2 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / int2) == Vector2(4, 2.5), "Vector2 division with integers should give exact results."); CHECK_MESSAGE( (decimal1 * 2).is_equal_approx(Vector2(4.6, 9.8)), "Vector2 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * 2) == Vector2(1.5, 3), "Vector2 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * 2) == Vector2(8, 10), "Vector2 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / 2).is_equal_approx(Vector2(1.15, 2.45)), "Vector2 division should behave as expected."); CHECK_MESSAGE( (power1 / 2) == Vector2(0.375, 0.75), "Vector2 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / 2) == Vector2(2, 2.5), "Vector2 division with integers should give exact results."); CHECK_MESSAGE( ((Vector2i)decimal1) == Vector2i(2, 4), "Vector2 cast to Vector2i should work as expected."); CHECK_MESSAGE( ((Vector2i)decimal2) == Vector2i(1, 3), "Vector2 cast to Vector2i should work as expected."); CHECK_MESSAGE( Vector2(Vector2i(1, 2)) == Vector2(1, 2), "Vector2 constructed from Vector2i should work as expected."); CHECK_MESSAGE( ((String)decimal1) == "(2.3, 4.9)", "Vector2 cast to String should work as expected."); CHECK_MESSAGE( ((String)decimal2) == "(1.2, 3.4)", "Vector2 cast to String should work as expected."); CHECK_MESSAGE( ((String)Vector2(9.8, 9.9)) == "(9.8, 9.9)", "Vector2 cast to String should work as expected."); #ifdef REAL_T_IS_DOUBLE CHECK_MESSAGE( ((String)Vector2(Math_PI, Math_TAU)) == "(3.14159265358979, 6.28318530717959)", "Vector2 cast to String should print the correct amount of digits for real_t = double."); #else CHECK_MESSAGE( ((String)Vector2(Math_PI, Math_TAU)) == "(3.141593, 6.283185)", "Vector2 cast to String should print the correct amount of digits for real_t = float."); #endif // REAL_T_IS_DOUBLE } TEST_CASE("[Vector2] Other methods") { const Vector2 vector = Vector2(1.2, 3.4); CHECK_MESSAGE( Math::is_equal_approx(vector.aspect(), (real_t)1.2 / (real_t)3.4), "Vector2 aspect should work as expected."); CHECK_MESSAGE( vector.direction_to(Vector2()).is_equal_approx(-vector.normalized()), "Vector2 direction_to should work as expected."); CHECK_MESSAGE( Vector2(1, 1).direction_to(Vector2(2, 2)).is_equal_approx(Vector2(Math_SQRT12, Math_SQRT12)), "Vector2 direction_to should work as expected."); CHECK_MESSAGE( vector.posmod(2).is_equal_approx(Vector2(1.2, 1.4)), "Vector2 posmod should work as expected."); CHECK_MESSAGE( (-vector).posmod(2).is_equal_approx(Vector2(0.8, 0.6)), "Vector2 posmod should work as expected."); CHECK_MESSAGE( vector.posmodv(Vector2(1, 2)).is_equal_approx(Vector2(0.2, 1.4)), "Vector2 posmodv should work as expected."); CHECK_MESSAGE( (-vector).posmodv(Vector2(2, 3)).is_equal_approx(Vector2(0.8, 2.6)), "Vector2 posmodv should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU).is_equal_approx(Vector2(1.2, 3.4)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU / 4).is_equal_approx(Vector2(-3.4, 1.2)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU / 3).is_equal_approx(Vector2(-3.544486372867091398996, -0.660769515458673623883)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.rotated(Math_TAU / 2).is_equal_approx(vector.rotated(Math_TAU / -2)), "Vector2 rotated should work as expected."); CHECK_MESSAGE( vector.snapped(Vector2(1, 1)) == Vector2(1, 3), "Vector2 snapped to integers should be the same as rounding."); CHECK_MESSAGE( Vector2(3.4, 5.6).snapped(Vector2(1, 1)) == Vector2(3, 6), "Vector2 snapped to integers should be the same as rounding."); CHECK_MESSAGE( vector.snapped(Vector2(0.25, 0.25)) == Vector2(1.25, 3.5), "Vector2 snapped to 0.25 should give exact results."); CHECK_MESSAGE( Vector2(1.2, 2.5).is_equal_approx(vector.min(Vector2(3.0, 2.5))), "Vector2 min should return expected value."); CHECK_MESSAGE( Vector2(5.3, 3.4).is_equal_approx(vector.max(Vector2(5.3, 2.0))), "Vector2 max should return expected value."); } TEST_CASE("[Vector2] Plane methods") { const Vector2 vector = Vector2(1.2, 3.4); const Vector2 vector_y = Vector2(0, 1); const Vector2 vector_normal = Vector2(0.95879811270838721622267, 0.2840883296913739899919); const Vector2 vector_non_normal = Vector2(5.4, 1.6); CHECK_MESSAGE( vector.bounce(vector_y) == Vector2(1.2, -3.4), "Vector2 bounce on a plane with normal of the Y axis should."); CHECK_MESSAGE( vector.bounce(vector_normal).is_equal_approx(Vector2(-2.85851197982345523329, 2.197477931904161412358)), "Vector2 bounce with normal should return expected value."); CHECK_MESSAGE( vector.reflect(vector_y) == Vector2(-1.2, 3.4), "Vector2 reflect on a plane with normal of the Y axis should."); CHECK_MESSAGE( vector.reflect(vector_normal).is_equal_approx(Vector2(2.85851197982345523329, -2.197477931904161412358)), "Vector2 reflect with normal should return expected value."); CHECK_MESSAGE( vector.project(vector_y) == Vector2(0, 3.4), "Vector2 projected on the Y axis should only give the Y component."); CHECK_MESSAGE( vector.project(vector_normal).is_equal_approx(Vector2(2.0292559899117276166, 0.60126103404791929382)), "Vector2 projected on a normal should return expected value."); CHECK_MESSAGE( vector.slide(vector_y) == Vector2(1.2, 0), "Vector2 slide on a plane with normal of the Y axis should set the Y to zero."); CHECK_MESSAGE( vector.slide(vector_normal).is_equal_approx(Vector2(-0.8292559899117276166456, 2.798738965952080706179)), "Vector2 slide with normal should return expected value."); // There's probably a better way to test these ones? ERR_PRINT_OFF; CHECK_MESSAGE( vector.bounce(vector_non_normal).is_equal_approx(Vector2()), "Vector2 bounce should return empty Vector2 with non-normalised input."); CHECK_MESSAGE( vector.reflect(vector_non_normal).is_equal_approx(Vector2()), "Vector2 reflect should return empty Vector2 with non-normalised input."); CHECK_MESSAGE( vector.slide(vector_non_normal).is_equal_approx(Vector2()), "Vector2 slide should return empty Vector2 with non-normalised input."); ERR_PRINT_ON; } TEST_CASE("[Vector2] Rounding methods") { const Vector2 vector1 = Vector2(1.2, 5.6); const Vector2 vector2 = Vector2(1.2, -5.6); CHECK_MESSAGE( vector1.abs() == vector1, "Vector2 abs should work as expected."); CHECK_MESSAGE( vector2.abs() == vector1, "Vector2 abs should work as expected."); CHECK_MESSAGE( vector1.ceil() == Vector2(2, 6), "Vector2 ceil should work as expected."); CHECK_MESSAGE( vector2.ceil() == Vector2(2, -5), "Vector2 ceil should work as expected."); CHECK_MESSAGE( vector1.floor() == Vector2(1, 5), "Vector2 floor should work as expected."); CHECK_MESSAGE( vector2.floor() == Vector2(1, -6), "Vector2 floor should work as expected."); CHECK_MESSAGE( vector1.round() == Vector2(1, 6), "Vector2 round should work as expected."); CHECK_MESSAGE( vector2.round() == Vector2(1, -6), "Vector2 round should work as expected."); CHECK_MESSAGE( vector1.sign() == Vector2(1, 1), "Vector2 sign should work as expected."); CHECK_MESSAGE( vector2.sign() == Vector2(1, -1), "Vector2 sign should work as expected."); } TEST_CASE("[Vector2] Linear algebra methods") { const Vector2 vector_x = Vector2(1, 0); const Vector2 vector_y = Vector2(0, 1); const Vector2 a = Vector2(3.5, 8.5); const Vector2 b = Vector2(5.2, 4.6); CHECK_MESSAGE( vector_x.cross(vector_y) == 1, "Vector2 cross product of X and Y should give 1."); CHECK_MESSAGE( vector_y.cross(vector_x) == -1, "Vector2 cross product of Y and X should give negative 1."); CHECK_MESSAGE( Math::is_equal_approx(a.cross(b), (real_t)-28.1), "Vector2 cross should return expected value."); CHECK_MESSAGE( Math::is_equal_approx(Vector2(-a.x, a.y).cross(Vector2(b.x, -b.y)), (real_t)-28.1), "Vector2 cross should return expected value."); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, "Vector2 dot product of perpendicular vectors should be zero."); CHECK_MESSAGE( vector_x.dot(vector_x) == 1.0, "Vector2 dot product of identical unit vectors should be one."); CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector2 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( Math::is_equal_approx(a.dot(b), (real_t)57.3), "Vector2 dot should return expected value."); CHECK_MESSAGE( Math::is_equal_approx(Vector2(-a.x, a.y).dot(Vector2(b.x, -b.y)), (real_t)-57.3), "Vector2 dot should return expected value."); } TEST_CASE("[Vector2] Finite number checks") { const double infinite[] = { NAN, INFINITY, -INFINITY }; CHECK_MESSAGE( Vector2(0, 1).is_finite(), "Vector2(0, 1) should be finite"); for (double x : infinite) { CHECK_FALSE_MESSAGE( Vector2(x, 1).is_finite(), "Vector2 with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Vector2(0, x).is_finite(), "Vector2 with one component infinite should not be finite."); } for (double x : infinite) { for (double y : infinite) { CHECK_FALSE_MESSAGE( Vector2(x, y).is_finite(), "Vector2 with two components infinite should not be finite."); } } } } // namespace TestVector2 #endif // TEST_VECTOR2_H