// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "quad_intersector_moeller.h" /*! Modified Pluecker ray/triangle intersector. The test first shifts * the ray origin into the origin of the coordinate system and then * uses Pluecker coordinates for the intersection. Due to the shift, * the Pluecker coordinate calculation simplifies and the tests get * numerically stable. The edge equations are watertight along the * edge for neighboring triangles. */ namespace embree { namespace isa { template<int M> struct QuadHitPlueckerM { __forceinline QuadHitPlueckerM() {} __forceinline QuadHitPlueckerM(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& UVW, const vfloat<M>& t, const Vec3vf<M>& Ng, const vbool<M>& flags) : U(U), V(V), UVW(UVW), tri_Ng(Ng), valid(valid), vt(t), flags(flags) {} __forceinline void finalize() { const vbool<M> invalid = abs(UVW) < min_rcp_input; const vfloat<M> rcpUVW = select(invalid,vfloat<M>(0.0f),rcp(UVW)); const vfloat<M> u = min(U * rcpUVW,1.0f); const vfloat<M> v = min(V * rcpUVW,1.0f); const vfloat<M> u1 = vfloat<M>(1.0f) - u; const vfloat<M> v1 = vfloat<M>(1.0f) - v; #if !defined(__AVX__) || defined(EMBREE_BACKFACE_CULLING) vu = select(flags,u1,u); vv = select(flags,v1,v); vNg = Vec3vf<M>(tri_Ng.x,tri_Ng.y,tri_Ng.z); #else const vfloat<M> flip = select(flags,vfloat<M>(-1.0f),vfloat<M>(1.0f)); vv = select(flags,u1,v); vu = select(flags,v1,u); vNg = Vec3vf<M>(flip*tri_Ng.x,flip*tri_Ng.y,flip*tri_Ng.z); #endif } __forceinline Vec2f uv(const size_t i) { const float u = vu[i]; const float v = vv[i]; return Vec2f(u,v); } __forceinline float t(const size_t i) { return vt[i]; } __forceinline Vec3fa Ng(const size_t i) { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } private: vfloat<M> U; vfloat<M> V; vfloat<M> UVW; Vec3vf<M> tri_Ng; public: vbool<M> valid; vfloat<M> vu; vfloat<M> vv; vfloat<M> vt; Vec3vf<M> vNg; public: const vbool<M> flags; }; template<int K> struct QuadHitPlueckerK { __forceinline QuadHitPlueckerK(const vfloat<K>& U, const vfloat<K>& V, const vfloat<K>& UVW, const vfloat<K>& t, const Vec3vf<K>& Ng, const vbool<K>& flags) : U(U), V(V), UVW(UVW), t(t), flags(flags), tri_Ng(Ng) {} __forceinline std::tuple<vfloat<K>,vfloat<K>,vfloat<K>,Vec3vf<K>> operator() () const { const vbool<K> invalid = abs(UVW) < min_rcp_input; const vfloat<K> rcpUVW = select(invalid,vfloat<K>(0.0f),rcp(UVW)); const vfloat<K> u0 = min(U * rcpUVW,1.0f); const vfloat<K> v0 = min(V * rcpUVW,1.0f); const vfloat<K> u1 = vfloat<K>(1.0f) - u0; const vfloat<K> v1 = vfloat<K>(1.0f) - v0; const vfloat<K> u = select(flags,u1,u0); const vfloat<K> v = select(flags,v1,v0); const Vec3vf<K> Ng(tri_Ng.x,tri_Ng.y,tri_Ng.z); return std::make_tuple(u,v,t,Ng); } private: const vfloat<K> U; const vfloat<K> V; const vfloat<K> UVW; const vfloat<K> t; const vbool<K> flags; const Vec3vf<K> tri_Ng; }; struct PlueckerIntersectorTriangle1 { template<int M, typename Epilog> static __forceinline bool intersect(Ray& ray, const Vec3vf<M>& tri_v0, const Vec3vf<M>& tri_v1, const Vec3vf<M>& tri_v2, const vbool<M>& flags, const Epilog& epilog) { /* calculate vertices relative to ray origin */ const Vec3vf<M> O = Vec3vf<M>((Vec3fa)ray.org); const Vec3vf<M> D = Vec3vf<M>((Vec3fa)ray.dir); const Vec3vf<M> v0 = tri_v0-O; const Vec3vf<M> v1 = tri_v1-O; const Vec3vf<M> v2 = tri_v2-O; /* calculate triangle edges */ const Vec3vf<M> e0 = v2-v0; const Vec3vf<M> e1 = v0-v1; const Vec3vf<M> e2 = v1-v2; /* perform edge tests */ const vfloat<M> U = dot(cross(e0,v2+v0),D); const vfloat<M> V = dot(cross(e1,v0+v1),D); const vfloat<M> W = dot(cross(e2,v1+v2),D); const vfloat<M> UVW = U+V+W; const vfloat<M> eps = float(ulp)*abs(UVW); #if defined(EMBREE_BACKFACE_CULLING) vbool<M> valid = max(U,V,W) <= eps; #else vbool<M> valid = (min(U,V,W) >= -eps) | (max(U,V,W) <= eps); #endif if (unlikely(none(valid))) return false; /* calculate geometry normal and denominator */ const Vec3vf<M> Ng = stable_triangle_normal(e0,e1,e2); const vfloat<M> den = twice(dot(Ng,D)); /* perform depth test */ const vfloat<M> T = twice(dot(v0,Ng)); const vfloat<M> t = rcp(den)*T; valid &= vfloat<M>(ray.tnear()) <= t & t <= vfloat<M>(ray.tfar); valid &= den != vfloat<M>(zero); if (unlikely(none(valid))) return false; /* update hit information */ QuadHitPlueckerM<M> hit(valid,U,V,UVW,t,Ng,flags); return epilog(valid,hit); } }; /*! Intersects M quads with 1 ray */ template<int M, bool filter> struct QuadMIntersector1Pluecker { __forceinline QuadMIntersector1Pluecker() {} __forceinline QuadMIntersector1Pluecker(const Ray& ray, const void* ptr) {} __forceinline void intersect(RayHit& ray, IntersectContext* context, const Vec3vf<M>& v0, const Vec3vf<M>& v1, const Vec3vf<M>& v2, const Vec3vf<M>& v3, const vuint<M>& geomID, const vuint<M>& primID) const { Intersect1EpilogM<M,filter> epilog(ray,context,geomID,primID); PlueckerIntersectorTriangle1::intersect<M>(ray,v0,v1,v3,vbool<M>(false),epilog); PlueckerIntersectorTriangle1::intersect<M>(ray,v2,v3,v1,vbool<M>(true),epilog); } __forceinline bool occluded(Ray& ray, IntersectContext* context, const Vec3vf<M>& v0, const Vec3vf<M>& v1, const Vec3vf<M>& v2, const Vec3vf<M>& v3, const vuint<M>& geomID, const vuint<M>& primID) const { Occluded1EpilogM<M,filter> epilog(ray,context,geomID,primID); if (PlueckerIntersectorTriangle1::intersect<M>(ray,v0,v1,v3,vbool<M>(false),epilog)) return true; if (PlueckerIntersectorTriangle1::intersect<M>(ray,v2,v3,v1,vbool<M>(true ),epilog)) return true; return false; } }; #if defined(__AVX__) /*! Intersects 4 quads with 1 ray using AVX */ template<bool filter> struct QuadMIntersector1Pluecker<4,filter> { __forceinline QuadMIntersector1Pluecker() {} __forceinline QuadMIntersector1Pluecker(const Ray& ray, const void* ptr) {} template<typename Epilog> __forceinline bool intersect(Ray& ray, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const Epilog& epilog) const { const Vec3vf8 vtx0(vfloat8(v0.x,v2.x),vfloat8(v0.y,v2.y),vfloat8(v0.z,v2.z)); #if !defined(EMBREE_BACKFACE_CULLING) const Vec3vf8 vtx1(vfloat8(v1.x),vfloat8(v1.y),vfloat8(v1.z)); const Vec3vf8 vtx2(vfloat8(v3.x),vfloat8(v3.y),vfloat8(v3.z)); #else const Vec3vf8 vtx1(vfloat8(v1.x,v3.x),vfloat8(v1.y,v3.y),vfloat8(v1.z,v3.z)); const Vec3vf8 vtx2(vfloat8(v3.x,v1.x),vfloat8(v3.y,v1.y),vfloat8(v3.z,v1.z)); #endif const vbool8 flags(0,0,0,0,1,1,1,1); return PlueckerIntersectorTriangle1::intersect<8>(ray,vtx0,vtx1,vtx2,flags,epilog); } __forceinline bool intersect(RayHit& ray, IntersectContext* context, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const vuint4& geomID, const vuint4& primID) const { return intersect(ray,v0,v1,v2,v3,Intersect1EpilogM<8,filter>(ray,context,vuint8(geomID),vuint8(primID))); } __forceinline bool occluded(Ray& ray, IntersectContext* context, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const vuint4& geomID, const vuint4& primID) const { return intersect(ray,v0,v1,v2,v3,Occluded1EpilogM<8,filter>(ray,context,vuint8(geomID),vuint8(primID))); } }; #endif /* ----------------------------- */ /* -- ray packet intersectors -- */ /* ----------------------------- */ struct PlueckerIntersector1KTriangleM { /*! Intersect k'th ray from ray packet of size K with M triangles. */ template<int M, int K, typename Epilog> static __forceinline bool intersect1(RayK<K>& ray, size_t k, const Vec3vf<M>& tri_v0, const Vec3vf<M>& tri_v1, const Vec3vf<M>& tri_v2, const vbool<M>& flags, const Epilog& epilog) { /* calculate vertices relative to ray origin */ const Vec3vf<M> O = broadcast<vfloat<M>>(ray.org,k); const Vec3vf<M> D = broadcast<vfloat<M>>(ray.dir,k); const Vec3vf<M> v0 = tri_v0-O; const Vec3vf<M> v1 = tri_v1-O; const Vec3vf<M> v2 = tri_v2-O; /* calculate triangle edges */ const Vec3vf<M> e0 = v2-v0; const Vec3vf<M> e1 = v0-v1; const Vec3vf<M> e2 = v1-v2; /* perform edge tests */ const vfloat<M> U = dot(cross(e0,v2+v0),D); const vfloat<M> V = dot(cross(e1,v0+v1),D); const vfloat<M> W = dot(cross(e2,v1+v2),D); const vfloat<M> UVW = U+V+W; const vfloat<M> eps = float(ulp)*abs(UVW); #if defined(EMBREE_BACKFACE_CULLING) vbool<M> valid = max(U,V,W) <= eps; #else vbool<M> valid = (min(U,V,W) >= -eps) | (max(U,V,W) <= eps); #endif if (unlikely(none(valid))) return false; /* calculate geometry normal and denominator */ const Vec3vf<M> Ng = stable_triangle_normal(e0,e1,e2); const vfloat<M> den = twice(dot(Ng,D)); /* perform depth test */ const vfloat<M> T = twice(dot(v0,Ng)); const vfloat<M> t = rcp(den)*T; valid &= vfloat<M>(ray.tnear()[k]) <= t & t <= vfloat<M>(ray.tfar[k]); if (unlikely(none(valid))) return false; /* avoid division by 0 */ valid &= den != vfloat<M>(zero); if (unlikely(none(valid))) return false; /* update hit information */ QuadHitPlueckerM<M> hit(valid,U,V,UVW,t,Ng,flags); return epilog(valid,hit); } }; template<int M, int K, bool filter> struct QuadMIntersectorKPlueckerBase { __forceinline QuadMIntersectorKPlueckerBase(const vbool<K>& valid, const RayK<K>& ray) {} /*! Intersects K rays with one of M triangles. */ template<typename Epilog> __forceinline vbool<K> intersectK(const vbool<K>& valid0, RayK<K>& ray, const Vec3vf<K>& tri_v0, const Vec3vf<K>& tri_v1, const Vec3vf<K>& tri_v2, const vbool<K>& flags, const Epilog& epilog) const { /* calculate vertices relative to ray origin */ vbool<K> valid = valid0; const Vec3vf<K> O = ray.org; const Vec3vf<K> D = ray.dir; const Vec3vf<K> v0 = tri_v0-O; const Vec3vf<K> v1 = tri_v1-O; const Vec3vf<K> v2 = tri_v2-O; /* calculate triangle edges */ const Vec3vf<K> e0 = v2-v0; const Vec3vf<K> e1 = v0-v1; const Vec3vf<K> e2 = v1-v2; /* perform edge tests */ const vfloat<K> U = dot(Vec3vf<K>(cross(e0,v2+v0)),D); const vfloat<K> V = dot(Vec3vf<K>(cross(e1,v0+v1)),D); const vfloat<K> W = dot(Vec3vf<K>(cross(e2,v1+v2)),D); const vfloat<K> UVW = U+V+W; const vfloat<K> eps = float(ulp)*abs(UVW); #if defined(EMBREE_BACKFACE_CULLING) valid &= max(U,V,W) <= eps; #else valid &= (min(U,V,W) >= -eps) | (max(U,V,W) <= eps); #endif if (unlikely(none(valid))) return false; /* calculate geometry normal and denominator */ const Vec3vf<K> Ng = stable_triangle_normal(e0,e1,e2); const vfloat<K> den = twice(dot(Vec3vf<K>(Ng),D)); /* perform depth test */ const vfloat<K> T = twice(dot(v0,Vec3vf<K>(Ng))); const vfloat<K> t = rcp(den)*T; valid &= ray.tnear() <= t & t <= ray.tfar; valid &= den != vfloat<K>(zero); if (unlikely(none(valid))) return false; /* calculate hit information */ QuadHitPlueckerK<K> hit(U,V,UVW,t,Ng,flags); return epilog(valid,hit); } /*! Intersects K rays with one of M quads. */ template<typename Epilog> __forceinline bool intersectK(const vbool<K>& valid0, RayK<K>& ray, const Vec3vf<K>& v0, const Vec3vf<K>& v1, const Vec3vf<K>& v2, const Vec3vf<K>& v3, const Epilog& epilog) const { intersectK(valid0,ray,v0,v1,v3,vbool<K>(false),epilog); if (none(valid0)) return true; intersectK(valid0,ray,v2,v3,v1,vbool<K>(true ),epilog); return none(valid0); } }; template<int M, int K, bool filter> struct QuadMIntersectorKPluecker : public QuadMIntersectorKPlueckerBase<M,K,filter> { __forceinline QuadMIntersectorKPluecker(const vbool<K>& valid, const RayK<K>& ray) : QuadMIntersectorKPlueckerBase<M,K,filter>(valid,ray) {} __forceinline void intersect1(RayHitK<K>& ray, size_t k, IntersectContext* context, const Vec3vf<M>& v0, const Vec3vf<M>& v1, const Vec3vf<M>& v2, const Vec3vf<M>& v3, const vuint<M>& geomID, const vuint<M>& primID) const { Intersect1KEpilogM<M,K,filter> epilog(ray,k,context,geomID,primID); PlueckerIntersector1KTriangleM::intersect1<M,K>(ray,k,v0,v1,v3,vbool<M>(false),epilog); PlueckerIntersector1KTriangleM::intersect1<M,K>(ray,k,v2,v3,v1,vbool<M>(true ),epilog); } __forceinline bool occluded1(RayK<K>& ray, size_t k, IntersectContext* context, const Vec3vf<M>& v0, const Vec3vf<M>& v1, const Vec3vf<M>& v2, const Vec3vf<M>& v3, const vuint<M>& geomID, const vuint<M>& primID) const { Occluded1KEpilogM<M,K,filter> epilog(ray,k,context,geomID,primID); if (PlueckerIntersector1KTriangleM::intersect1<M,K>(ray,k,v0,v1,v3,vbool<M>(false),epilog)) return true; if (PlueckerIntersector1KTriangleM::intersect1<M,K>(ray,k,v2,v3,v1,vbool<M>(true ),epilog)) return true; return false; } }; #if defined(__AVX__) /*! Intersects 4 quads with 1 ray using AVX */ template<int K, bool filter> struct QuadMIntersectorKPluecker<4,K,filter> : public QuadMIntersectorKPlueckerBase<4,K,filter> { __forceinline QuadMIntersectorKPluecker(const vbool<K>& valid, const RayK<K>& ray) : QuadMIntersectorKPlueckerBase<4,K,filter>(valid,ray) {} template<typename Epilog> __forceinline bool intersect1(RayK<K>& ray, size_t k, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const Epilog& epilog) const { const Vec3vf8 vtx0(vfloat8(v0.x,v2.x),vfloat8(v0.y,v2.y),vfloat8(v0.z,v2.z)); const vbool8 flags(0,0,0,0,1,1,1,1); #if !defined(EMBREE_BACKFACE_CULLING) const Vec3vf8 vtx1(vfloat8(v1.x),vfloat8(v1.y),vfloat8(v1.z)); const Vec3vf8 vtx2(vfloat8(v3.x),vfloat8(v3.y),vfloat8(v3.z)); #else const Vec3vf8 vtx1(vfloat8(v1.x,v3.x),vfloat8(v1.y,v3.y),vfloat8(v1.z,v3.z)); const Vec3vf8 vtx2(vfloat8(v3.x,v1.x),vfloat8(v3.y,v1.y),vfloat8(v3.z,v1.z)); #endif return PlueckerIntersector1KTriangleM::intersect1<8,K>(ray,k,vtx0,vtx1,vtx2,flags,epilog); } __forceinline bool intersect1(RayHitK<K>& ray, size_t k, IntersectContext* context, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const vuint4& geomID, const vuint4& primID) const { return intersect1(ray,k,v0,v1,v2,v3,Intersect1KEpilogM<8,K,filter>(ray,k,context,vuint8(geomID),vuint8(primID))); } __forceinline bool occluded1(RayK<K>& ray, size_t k, IntersectContext* context, const Vec3vf4& v0, const Vec3vf4& v1, const Vec3vf4& v2, const Vec3vf4& v3, const vuint4& geomID, const vuint4& primID) const { return intersect1(ray,k,v0,v1,v2,v3,Occluded1KEpilogM<8,K,filter>(ray,k,context,vuint8(geomID),vuint8(primID))); } }; #endif } }