/*************************************************************************/ /* rasterizer_scene_gles2.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZERSCENEGLES2_H #define RASTERIZERSCENEGLES2_H /* Must come before shaders or the Windows build fails... */ #include "rasterizer_storage_gles2.h" #include "shaders/cube_to_dp.glsl.gen.h" #include "shaders/scene.glsl.gen.h" /* #include "drivers/gles3/shaders/effect_blur.glsl.gen.h" #include "drivers/gles3/shaders/exposure.glsl.gen.h" #include "drivers/gles3/shaders/resolve.glsl.gen.h" #include "drivers/gles3/shaders/scene.glsl.gen.h" #include "drivers/gles3/shaders/screen_space_reflection.glsl.gen.h" #include "drivers/gles3/shaders/ssao.glsl.gen.h" #include "drivers/gles3/shaders/ssao_blur.glsl.gen.h" #include "drivers/gles3/shaders/ssao_minify.glsl.gen.h" #include "drivers/gles3/shaders/subsurf_scattering.glsl.gen.h" #include "drivers/gles3/shaders/tonemap.glsl.gen.h" */ class RasterizerSceneGLES2 : public RasterizerScene { public: enum ShadowFilterMode { SHADOW_FILTER_NEAREST, SHADOW_FILTER_PCF5, SHADOW_FILTER_PCF13, }; enum { INSTANCE_ATTRIB_BASE = 8, INSTANCE_BONE_BASE = 13, }; ShadowFilterMode shadow_filter_mode; RID default_material; RID default_material_twosided; RID default_shader; RID default_shader_twosided; RID default_worldcoord_material; RID default_worldcoord_material_twosided; RID default_worldcoord_shader; RID default_worldcoord_shader_twosided; RID default_overdraw_material; RID default_overdraw_shader; uint64_t render_pass; uint64_t scene_pass; uint32_t current_material_index; uint32_t current_geometry_index; uint32_t current_light_index; uint32_t current_refprobe_index; uint32_t current_shader_index; RasterizerStorageGLES2 *storage; struct State { bool texscreen_copied; int current_blend_mode; float current_line_width; int current_depth_draw; bool current_depth_test; GLuint current_main_tex; SceneShaderGLES2 scene_shader; CubeToDpShaderGLES2 cube_to_dp_shader; GLuint sky_verts; GLuint immediate_buffer; Color default_ambient; Color default_bg; // ResolveShaderGLES3 resolve_shader; // ScreenSpaceReflectionShaderGLES3 ssr_shader; // EffectBlurShaderGLES3 effect_blur_shader; // SubsurfScatteringShaderGLES3 sss_shader; // SsaoMinifyShaderGLES3 ssao_minify_shader; // SsaoShaderGLES3 ssao_shader; // SsaoBlurShaderGLES3 ssao_blur_shader; // ExposureShaderGLES3 exposure_shader; // TonemapShaderGLES3 tonemap_shader; /* struct SceneDataUBO { //this is a std140 compatible struct. Please read the OpenGL 3.3 Specificaiton spec before doing any changes float projection_matrix[16]; float inv_projection_matrix[16]; float camera_inverse_matrix[16]; float camera_matrix[16]; float ambient_light_color[4]; float bg_color[4]; float fog_color_enabled[4]; float fog_sun_color_amount[4]; float ambient_energy; float bg_energy; float z_offset; float z_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; float viewport_size[2]; float screen_pixel_size[2]; float shadow_atlas_pixel_size[2]; float shadow_directional_pixel_size[2]; float time; float z_far; float reflection_multiplier; float subsurface_scatter_width; float ambient_occlusion_affect_light; uint32_t fog_depth_enabled; float fog_depth_begin; float fog_depth_curve; uint32_t fog_transmit_enabled; float fog_transmit_curve; uint32_t fog_height_enabled; float fog_height_min; float fog_height_max; float fog_height_curve; // make sure this struct is padded to be a multiple of 16 bytes for webgl } ubo_data; GLuint scene_ubo; struct EnvironmentRadianceUBO { float transform[16]; float ambient_contribution; uint8_t padding[12]; } env_radiance_data; GLuint env_radiance_ubo; GLuint sky_array; GLuint directional_ubo; GLuint spot_array_ubo; GLuint omni_array_ubo; GLuint reflection_array_ubo; GLuint immediate_buffer; GLuint immediate_array; uint32_t ubo_light_size; uint8_t *spot_array_tmp; uint8_t *omni_array_tmp; uint8_t *reflection_array_tmp; int max_ubo_lights; int max_forward_lights_per_object; int max_ubo_reflections; int max_skeleton_bones; bool used_contact_shadows; int spot_light_count; int omni_light_count; int directional_light_count; int reflection_probe_count; bool cull_front; bool cull_disabled; bool used_sss; bool using_contact_shadows; VS::ViewportDebugDraw debug_draw; */ bool used_screen_texture; bool shadow_is_dual_parabolloid; float dual_parbolloid_direction; float dual_parbolloid_zfar; bool render_no_shadows; Vector2 viewport_size; Vector2 screen_pixel_size; } state; /* SHADOW ATLAS API */ uint64_t shadow_atlas_realloc_tolerance_msec; struct ShadowAtlas : public RID_Data { enum { QUADRANT_SHIFT = 27, SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1, SHADOW_INVALID = 0xFFFFFFFF, }; struct Quadrant { uint32_t subdivision; struct Shadow { RID owner; uint64_t version; uint64_t alloc_tick; Shadow() { version = 0; alloc_tick = 0; } }; Vector shadows; Quadrant() { subdivision = 0; } } quadrants[4]; int size_order[4]; uint32_t smallest_subdiv; int size; GLuint fbo; GLuint depth; GLuint color; Map shadow_owners; }; struct ShadowCubeMap { GLuint fbo[6]; GLuint cubemap; uint32_t size; }; Vector shadow_cubemaps; RID_Owner shadow_atlas_owner; RID shadow_atlas_create(); void shadow_atlas_set_size(RID p_atlas, int p_size); void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision); bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version); struct DirectionalShadow { GLuint fbo; GLuint depth; GLuint color; int light_count; int size; int current_light; } directional_shadow; virtual int get_directional_light_shadow_size(RID p_light_intance); virtual void set_directional_shadow_count(int p_count); /* REFLECTION PROBE ATLAS API */ virtual RID reflection_atlas_create(); virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_size); virtual void reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv); /* REFLECTION CUBEMAPS */ /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance : public RID_Data { RasterizerStorageGLES2::ReflectionProbe *probe_ptr; RID probe; RID self; RID atlas; int reflection_atlas_index; int render_step; int reflection_index; GLuint fbo[6]; GLuint color[6]; GLuint depth; GLuint cubemap; int current_resolution; mutable bool dirty; uint64_t last_pass; uint32_t index; Transform transform; }; mutable RID_Owner reflection_probe_instance_owner; ReflectionProbeInstance **reflection_probe_instances; int reflection_probe_count; virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); virtual bool reflection_probe_instance_needs_redraw(RID p_instance); virtual bool reflection_probe_instance_has_reflection(RID p_instance); virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas); virtual bool reflection_probe_instance_postprocess_step(RID p_instance); /* ENVIRONMENT API */ struct Environment : public RID_Data { VS::EnvironmentBG bg_mode; RID sky; float sky_custom_fov; Basis sky_orientation; Color bg_color; float bg_energy; float sky_ambient; Color ambient_color; float ambient_energy; float ambient_sky_contribution; int canvas_max_layer; bool fog_enabled; Color fog_color; Color fog_sun_color; float fog_sun_amount; bool fog_depth_enabled; float fog_depth_begin; float fog_depth_end; float fog_depth_curve; bool fog_transmit_enabled; float fog_transmit_curve; bool fog_height_enabled; float fog_height_min; float fog_height_max; float fog_height_curve; Environment() : bg_mode(VS::ENV_BG_CLEAR_COLOR), sky_custom_fov(0.0), bg_energy(1.0), sky_ambient(0), ambient_energy(1.0), ambient_sky_contribution(0.0), canvas_max_layer(0), fog_enabled(false), fog_color(Color(0.5, 0.5, 0.5)), fog_sun_color(Color(0.8, 0.8, 0.0)), fog_sun_amount(0), fog_depth_enabled(true), fog_depth_begin(10), fog_depth_end(0), fog_depth_curve(1), fog_transmit_enabled(true), fog_transmit_curve(1), fog_height_enabled(false), fog_height_min(0), fog_height_max(100), fog_height_curve(1) { } }; mutable RID_Owner environment_owner; virtual RID environment_create(); virtual void environment_set_background(RID p_env, VS::EnvironmentBG p_bg); virtual void environment_set_sky(RID p_env, RID p_sky); virtual void environment_set_sky_custom_fov(RID p_env, float p_scale); virtual void environment_set_sky_orientation(RID p_env, const Basis &p_orientation); virtual void environment_set_bg_color(RID p_env, const Color &p_color); virtual void environment_set_bg_energy(RID p_env, float p_energy); virtual void environment_set_canvas_max_layer(RID p_env, int p_max_layer); virtual void environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy = 1.0, float p_sky_contribution = 0.0); virtual void environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality); virtual void environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality); virtual void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale); virtual void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture); virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness); virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness); virtual void environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale); virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp); virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount); virtual void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve); virtual void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve); virtual bool is_environment(RID p_env); virtual VS::EnvironmentBG environment_get_background(RID p_env); virtual int environment_get_canvas_max_layer(RID p_env); /* LIGHT INSTANCE */ struct LightInstance : public RID_Data { struct ShadowTransform { CameraMatrix camera; Transform transform; float farplane; float split; float bias_scale; }; ShadowTransform shadow_transform[4]; RID self; RID light; RasterizerStorageGLES2::Light *light_ptr; Transform transform; Vector3 light_vector; Vector3 spot_vector; float linear_att; // TODO passes and all that stuff ? uint64_t last_scene_pass; uint64_t last_scene_shadow_pass; uint16_t light_index; uint16_t light_directional_index; Rect2 directional_rect; Set shadow_atlases; // atlases where this light is registered }; mutable RID_Owner light_instance_owner; virtual RID light_instance_create(RID p_light); virtual void light_instance_set_transform(RID p_light_instance, const Transform &p_transform); virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0); virtual void light_instance_mark_visible(RID p_light_instance); virtual bool light_instances_can_render_shadow_cube() const { return storage->config.support_shadow_cubemaps; } LightInstance **render_light_instances; int render_directional_lights; int render_light_instance_count; /* REFLECTION INSTANCE */ virtual RID gi_probe_instance_create(); virtual void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data); virtual void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform); virtual void gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds); /* RENDER LIST */ enum LightMode { LIGHTMODE_NORMAL, LIGHTMODE_UNSHADED, LIGHTMODE_LIGHTMAP, LIGHTMODE_LIGHTMAP_CAPTURE, }; struct RenderList { enum { MAX_LIGHTS = 255, MAX_REFLECTION_PROBES = 255, DEFAULT_MAX_ELEMENTS = 65536 }; int max_elements; struct Element { RasterizerScene::InstanceBase *instance; RasterizerStorageGLES2::Geometry *geometry; RasterizerStorageGLES2::Material *material; RasterizerStorageGLES2::GeometryOwner *owner; bool use_accum; //is this an add pass for multipass bool *use_accum_ptr; union { //TODO: should be endian swapped on big endian struct { int32_t depth_layer : 16; int32_t priority : 16; }; uint32_t depth_key; }; union { struct { //from least significant to most significant in sort, TODO: should be endian swapped on big endian uint64_t geometry_index : 14; uint64_t instancing : 1; uint64_t skeleton : 1; uint64_t shader_index : 10; uint64_t material_index : 10; uint64_t light_index : 8; uint64_t light_type2 : 1; // if 1==0 : nolight/directional, else omni/spot uint64_t refprobe_1_index : 8; uint64_t refprobe_0_index : 8; uint64_t light_type1 : 1; //no light, directional is 0, omni spot is 1 uint64_t light_mode : 2; // LightMode enum }; uint64_t sort_key; }; }; Element *base_elements; Element **elements; int element_count; int alpha_element_count; void clear() { element_count = 0; alpha_element_count = 0; } // sorts struct SortByKey { _FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const { if (A->depth_key == B->depth_key) { return A->sort_key < B->sort_key; } else { return A->depth_key < B->depth_key; } } }; void sort_by_key(bool p_alpha) { SortArray sorter; if (p_alpha) { sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count); } else { sorter.sort(elements, element_count); } } struct SortByDepth { _FORCE_INLINE_ bool operator()(const Element *A, const Element *B) const { return A->instance->depth < B->instance->depth; } }; void sort_by_depth(bool p_alpha) { //used for shadows SortArray sorter; if (p_alpha) { sorter.sort(&elements[max_elements - alpha_element_count], alpha_element_count); } else { sorter.sort(elements, element_count); } } // element adding and stuff _FORCE_INLINE_ Element *add_element() { if (element_count + alpha_element_count >= max_elements) return NULL; elements[element_count] = &base_elements[element_count]; return elements[element_count++]; } _FORCE_INLINE_ Element *add_alpha_element() { if (element_count + alpha_element_count >= max_elements) { return NULL; } int idx = max_elements - alpha_element_count - 1; elements[idx] = &base_elements[idx]; alpha_element_count++; return elements[idx]; } void init() { element_count = 0; alpha_element_count = 0; elements = memnew_arr(Element *, max_elements); base_elements = memnew_arr(Element, max_elements); for (int i = 0; i < max_elements; i++) { elements[i] = &base_elements[i]; } } RenderList() { max_elements = DEFAULT_MAX_ELEMENTS; } ~RenderList() { memdelete_arr(elements); memdelete_arr(base_elements); } }; RenderList render_list; void _add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass); void _add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass); void _fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass); void _render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow); void _draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation); _FORCE_INLINE_ bool _setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size = Size2i(0, 0)); _FORCE_INLINE_ void _setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton); _FORCE_INLINE_ void _setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas); _FORCE_INLINE_ void _setup_light(LightInstance *p_light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform); _FORCE_INLINE_ void _setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env); _FORCE_INLINE_ void _render_geometry(RenderList::Element *p_element); virtual void render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); virtual void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); virtual bool free(RID p_rid); virtual void set_scene_pass(uint64_t p_pass); virtual void set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw); void iteration(); void initialize(); void finalize(); RasterizerSceneGLES2(); }; #endif // RASTERIZERSCENEGLES2_H