/**************************************************************************/ /* rendering_device_driver_vulkan.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rendering_device_driver_vulkan.h" #include "core/config/project_settings.h" #include "core/io/marshalls.h" #include "thirdparty/misc/smolv.h" #include "vulkan_hooks.h" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define PRINT_NATIVE_COMMANDS 0 /*****************/ /**** GENERIC ****/ /*****************/ static const VkFormat RD_TO_VK_FORMAT[RDD::DATA_FORMAT_MAX] = { VK_FORMAT_R4G4_UNORM_PACK8, VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_R5G5B5A1_UNORM_PACK16, VK_FORMAT_B5G5R5A1_UNORM_PACK16, VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_R8_USCALED, VK_FORMAT_R8_SSCALED, VK_FORMAT_R8_UINT, VK_FORMAT_R8_SINT, VK_FORMAT_R8_SRGB, VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_USCALED, VK_FORMAT_R8G8_SSCALED, VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_SINT, VK_FORMAT_R8G8_SRGB, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_R8G8B8_USCALED, VK_FORMAT_R8G8B8_SSCALED, VK_FORMAT_R8G8B8_UINT, VK_FORMAT_R8G8B8_SINT, VK_FORMAT_R8G8B8_SRGB, VK_FORMAT_B8G8R8_UNORM, VK_FORMAT_B8G8R8_SNORM, VK_FORMAT_B8G8R8_USCALED, VK_FORMAT_B8G8R8_SSCALED, VK_FORMAT_B8G8R8_UINT, VK_FORMAT_B8G8R8_SINT, VK_FORMAT_B8G8R8_SRGB, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_USCALED, VK_FORMAT_R8G8B8A8_SSCALED, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_R8G8B8A8_SRGB, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_B8G8R8A8_SNORM, VK_FORMAT_B8G8R8A8_USCALED, VK_FORMAT_B8G8R8A8_SSCALED, VK_FORMAT_B8G8R8A8_UINT, VK_FORMAT_B8G8R8A8_SINT, VK_FORMAT_B8G8R8A8_SRGB, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_FORMAT_A8B8G8R8_SNORM_PACK32, VK_FORMAT_A8B8G8R8_USCALED_PACK32, VK_FORMAT_A8B8G8R8_SSCALED_PACK32, VK_FORMAT_A8B8G8R8_UINT_PACK32, VK_FORMAT_A8B8G8R8_SINT_PACK32, VK_FORMAT_A8B8G8R8_SRGB_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_A2R10G10B10_SNORM_PACK32, VK_FORMAT_A2R10G10B10_USCALED_PACK32, VK_FORMAT_A2R10G10B10_SSCALED_PACK32, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32, VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_FORMAT_A2B10G10R10_SNORM_PACK32, VK_FORMAT_A2B10G10R10_USCALED_PACK32, VK_FORMAT_A2B10G10R10_SSCALED_PACK32, VK_FORMAT_A2B10G10R10_UINT_PACK32, VK_FORMAT_A2B10G10R10_SINT_PACK32, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_SNORM, VK_FORMAT_R16_USCALED, VK_FORMAT_R16_SSCALED, VK_FORMAT_R16_UINT, VK_FORMAT_R16_SINT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16G16_UNORM, VK_FORMAT_R16G16_SNORM, VK_FORMAT_R16G16_USCALED, VK_FORMAT_R16G16_SSCALED, VK_FORMAT_R16G16_UINT, VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16B16_UNORM, VK_FORMAT_R16G16B16_SNORM, VK_FORMAT_R16G16B16_USCALED, VK_FORMAT_R16G16B16_SSCALED, VK_FORMAT_R16G16B16_UINT, VK_FORMAT_R16G16B16_SINT, VK_FORMAT_R16G16B16_SFLOAT, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_USCALED, VK_FORMAT_R16G16B16A16_SSCALED, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R32_UINT, VK_FORMAT_R32_SINT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32B32_UINT, VK_FORMAT_R32G32B32_SINT, VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R64_UINT, VK_FORMAT_R64_SINT, VK_FORMAT_R64_SFLOAT, VK_FORMAT_R64G64_UINT, VK_FORMAT_R64G64_SINT, VK_FORMAT_R64G64_SFLOAT, VK_FORMAT_R64G64B64_UINT, VK_FORMAT_R64G64B64_SINT, VK_FORMAT_R64G64B64_SFLOAT, VK_FORMAT_R64G64B64A64_UINT, VK_FORMAT_R64G64B64A64_SINT, VK_FORMAT_R64G64B64A64_SFLOAT, VK_FORMAT_B10G11R11_UFLOAT_PACK32, VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_D16_UNORM, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_D32_SFLOAT, VK_FORMAT_S8_UINT, VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_SRGB_BLOCK, VK_FORMAT_BC1_RGBA_UNORM_BLOCK, VK_FORMAT_BC1_RGBA_SRGB_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_SRGB_BLOCK, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_SRGB_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_BC4_SNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_SNORM_BLOCK, VK_FORMAT_BC6H_UFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_BC7_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, VK_FORMAT_EAC_R11_UNORM_BLOCK, VK_FORMAT_EAC_R11_SNORM_BLOCK, VK_FORMAT_EAC_R11G11_UNORM_BLOCK, VK_FORMAT_EAC_R11G11_SNORM_BLOCK, VK_FORMAT_ASTC_4x4_UNORM_BLOCK, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_FORMAT_ASTC_5x4_SRGB_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC_5x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_SRGB_BLOCK, VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK, VK_FORMAT_ASTC_8x6_SRGB_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_8x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_SRGB_BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, VK_FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, VK_FORMAT_ASTC_10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x10_UNORM_BLOCK, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK, VK_FORMAT_ASTC_12x12_SRGB_BLOCK, VK_FORMAT_G8B8G8R8_422_UNORM, VK_FORMAT_B8G8R8G8_422_UNORM, VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM, VK_FORMAT_G8_B8R8_2PLANE_422_UNORM, VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM, VK_FORMAT_R10X6_UNORM_PACK16, VK_FORMAT_R10X6G10X6_UNORM_2PACK16, VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16, VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16, VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16, VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16, VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16, VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16, VK_FORMAT_R12X4_UNORM_PACK16, VK_FORMAT_R12X4G12X4_UNORM_2PACK16, VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16, VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16, VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16, VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16, VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16, VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16, VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16, VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16, VK_FORMAT_G16B16G16R16_422_UNORM, VK_FORMAT_B16G16R16G16_422_UNORM, VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, VK_FORMAT_G16_B16R16_2PLANE_420_UNORM, VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, VK_FORMAT_G16_B16R16_2PLANE_422_UNORM, VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, }; // RDD::CompareOperator == VkCompareOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_NEVER, VK_COMPARE_OP_NEVER)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_LESS, VK_COMPARE_OP_LESS)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_EQUAL, VK_COMPARE_OP_EQUAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_LESS_OR_EQUAL, VK_COMPARE_OP_LESS_OR_EQUAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_GREATER, VK_COMPARE_OP_GREATER)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_NOT_EQUAL, VK_COMPARE_OP_NOT_EQUAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_GREATER_OR_EQUAL, VK_COMPARE_OP_GREATER_OR_EQUAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::COMPARE_OP_ALWAYS, VK_COMPARE_OP_ALWAYS)); static_assert(ARRAYS_COMPATIBLE_FIELDWISE(Rect2i, VkRect2D)); uint32_t RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_stages_flags_rd() const { uint32_t flags = 0; if (supported_stages & VK_SHADER_STAGE_VERTEX_BIT) { flags += SHADER_STAGE_VERTEX_BIT; } if (supported_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { flags += SHADER_STAGE_TESSELATION_CONTROL_BIT; } if (supported_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { flags += SHADER_STAGE_TESSELATION_EVALUATION_BIT; } if (supported_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { // FIXME: Add shader stage geometry bit. } if (supported_stages & VK_SHADER_STAGE_FRAGMENT_BIT) { flags += SHADER_STAGE_FRAGMENT_BIT; } if (supported_stages & VK_SHADER_STAGE_COMPUTE_BIT) { flags += SHADER_STAGE_COMPUTE_BIT; } return flags; } String RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_stages_desc() const { String res; if (supported_stages & VK_SHADER_STAGE_VERTEX_BIT) { res += ", STAGE_VERTEX"; } if (supported_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { res += ", STAGE_TESSELLATION_CONTROL"; } if (supported_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { res += ", STAGE_TESSELLATION_EVALUATION"; } if (supported_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { res += ", STAGE_GEOMETRY"; } if (supported_stages & VK_SHADER_STAGE_FRAGMENT_BIT) { res += ", STAGE_FRAGMENT"; } if (supported_stages & VK_SHADER_STAGE_COMPUTE_BIT) { res += ", STAGE_COMPUTE"; } // These are not defined on Android GRMBL. if (supported_stages & 0x00000100 /* VK_SHADER_STAGE_RAYGEN_BIT_KHR */) { res += ", STAGE_RAYGEN_KHR"; } if (supported_stages & 0x00000200 /* VK_SHADER_STAGE_ANY_HIT_BIT_KHR */) { res += ", STAGE_ANY_HIT_KHR"; } if (supported_stages & 0x00000400 /* VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR */) { res += ", STAGE_CLOSEST_HIT_KHR"; } if (supported_stages & 0x00000800 /* VK_SHADER_STAGE_MISS_BIT_KHR */) { res += ", STAGE_MISS_KHR"; } if (supported_stages & 0x00001000 /* VK_SHADER_STAGE_INTERSECTION_BIT_KHR */) { res += ", STAGE_INTERSECTION_KHR"; } if (supported_stages & 0x00002000 /* VK_SHADER_STAGE_CALLABLE_BIT_KHR */) { res += ", STAGE_CALLABLE_KHR"; } if (supported_stages & 0x00000040 /* VK_SHADER_STAGE_TASK_BIT_NV */) { res += ", STAGE_TASK_NV"; } if (supported_stages & 0x00000080 /* VK_SHADER_STAGE_MESH_BIT_NV */) { res += ", STAGE_MESH_NV"; } return res.substr(2); // Remove first ", ". } uint32_t RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_operations_flags_rd() const { uint32_t flags = 0; if (supported_operations & VK_SUBGROUP_FEATURE_BASIC_BIT) { flags += SUBGROUP_BASIC_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_VOTE_BIT) { flags += SUBGROUP_VOTE_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) { flags += SUBGROUP_ARITHMETIC_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_BALLOT_BIT) { flags += SUBGROUP_BALLOT_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) { flags += SUBGROUP_SHUFFLE_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) { flags += SUBGROUP_SHUFFLE_RELATIVE_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) { flags += SUBGROUP_CLUSTERED_BIT; } if (supported_operations & VK_SUBGROUP_FEATURE_QUAD_BIT) { flags += SUBGROUP_QUAD_BIT; } return flags; } String RenderingDeviceDriverVulkan::SubgroupCapabilities::supported_operations_desc() const { String res; if (supported_operations & VK_SUBGROUP_FEATURE_BASIC_BIT) { res += ", FEATURE_BASIC"; } if (supported_operations & VK_SUBGROUP_FEATURE_VOTE_BIT) { res += ", FEATURE_VOTE"; } if (supported_operations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) { res += ", FEATURE_ARITHMETIC"; } if (supported_operations & VK_SUBGROUP_FEATURE_BALLOT_BIT) { res += ", FEATURE_BALLOT"; } if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) { res += ", FEATURE_SHUFFLE"; } if (supported_operations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) { res += ", FEATURE_SHUFFLE_RELATIVE"; } if (supported_operations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) { res += ", FEATURE_CLUSTERED"; } if (supported_operations & VK_SUBGROUP_FEATURE_QUAD_BIT) { res += ", FEATURE_QUAD"; } if (supported_operations & VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV) { res += ", FEATURE_PARTITIONED_NV"; } return res.substr(2); // Remove first ", ". } /*****************/ /**** GENERIC ****/ /*****************/ void RenderingDeviceDriverVulkan::_register_requested_device_extension(const CharString &p_extension_name, bool p_required) { ERR_FAIL_COND(requested_device_extensions.has(p_extension_name)); requested_device_extensions[p_extension_name] = p_required; } Error RenderingDeviceDriverVulkan::_initialize_device_extensions() { enabled_device_extension_names.clear(); _register_requested_device_extension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true); _register_requested_device_extension(VK_KHR_MULTIVIEW_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_16BIT_STORAGE_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, false); _register_requested_device_extension(VK_KHR_MAINTENANCE_2_EXTENSION_NAME, false); _register_requested_device_extension(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME, false); _register_requested_device_extension(VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME, false); if (Engine::get_singleton()->is_generate_spirv_debug_info_enabled()) { _register_requested_device_extension(VK_KHR_SHADER_NON_SEMANTIC_INFO_EXTENSION_NAME, true); } uint32_t device_extension_count = 0; VkResult err = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &device_extension_count, nullptr); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); ERR_FAIL_COND_V_MSG(device_extension_count == 0, ERR_CANT_CREATE, "vkEnumerateDeviceExtensionProperties failed to find any extensions\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?"); TightLocalVector device_extensions; device_extensions.resize(device_extension_count); err = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &device_extension_count, device_extensions.ptr()); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); #ifdef DEV_ENABLED for (uint32_t i = 0; i < device_extension_count; i++) { print_verbose(String("VULKAN: Found device extension ") + String::utf8(device_extensions[i].extensionName)); } #endif // Enable all extensions that are supported and requested. for (uint32_t i = 0; i < device_extension_count; i++) { CharString extension_name(device_extensions[i].extensionName); if (requested_device_extensions.has(extension_name)) { enabled_device_extension_names.insert(extension_name); } } // Now check our requested extensions. for (KeyValue &requested_extension : requested_device_extensions) { if (!enabled_device_extension_names.has(requested_extension.key)) { if (requested_extension.value) { ERR_FAIL_V_MSG(ERR_BUG, String("Required extension ") + String::utf8(requested_extension.key) + String(" not found.")); } else { print_verbose(String("Optional extension ") + String::utf8(requested_extension.key) + String(" not found")); } } } return OK; } Error RenderingDeviceDriverVulkan::_check_device_features() { vkGetPhysicalDeviceFeatures(physical_device, &physical_device_features); // Check for required features. if (!physical_device_features.imageCubeArray || !physical_device_features.independentBlend) { String error_string = vformat("Your GPU (%s) does not support the following features which are required to use Vulkan-based renderers in Godot:\n\n", context_device.name); if (!physical_device_features.imageCubeArray) { error_string += "- No support for image cube arrays.\n"; } if (!physical_device_features.independentBlend) { error_string += "- No support for independentBlend.\n"; } error_string += "\nThis is usually a hardware limitation, so updating graphics drivers won't help in most cases."; #if defined(ANDROID_ENABLED) || defined(IOS_ENABLED) // Android/iOS platform ports currently don't exit themselves when this method returns `ERR_CANT_CREATE`. OS::get_singleton()->alert(error_string + "\nClick OK to exit (black screen will be visible)."); #else OS::get_singleton()->alert(error_string + "\nClick OK to exit."); #endif return ERR_CANT_CREATE; } // Opt-in to the features we actually need/use. These can be changed in the future. // We do this for multiple reasons: // // 1. Certain features (like sparse* stuff) cause unnecessary internal driver allocations. // 2. Others like shaderStorageImageMultisample are a huge red flag // (MSAA + Storage is rarely needed). // 3. Most features when turned off aren't actually off (we just promise the driver not to use them) // and it is validation what will complain. This allows us to target a minimum baseline. // // TODO: Allow the user to override these settings (i.e. turn off more stuff) using profiles // so they can target a broad range of HW. For example Mali HW does not have // shaderClipDistance/shaderCullDistance; thus validation would complain if such feature is used; // allowing them to fix the problem without even owning Mali HW to test on. // // The excluded features are: // - robustBufferAccess (can hamper performance on some hardware) // - occlusionQueryPrecise // - pipelineStatisticsQuery // - shaderStorageImageMultisample (unsupported by Intel Arc, prevents from using MSAA storage accidentally) // - shaderResourceResidency // - sparseBinding (we don't use sparse features and enabling them cause extra internal allocations inside the Vulkan driver we don't need) // - sparseResidencyBuffer // - sparseResidencyImage2D // - sparseResidencyImage3D // - sparseResidency2Samples // - sparseResidency4Samples // - sparseResidency8Samples // - sparseResidency16Samples // - sparseResidencyAliased // - inheritedQueries #define VK_DEVICEFEATURE_ENABLE_IF(x) \ if (physical_device_features.x) { \ requested_device_features.x = physical_device_features.x; \ } else \ ((void)0) requested_device_features = {}; VK_DEVICEFEATURE_ENABLE_IF(fullDrawIndexUint32); VK_DEVICEFEATURE_ENABLE_IF(imageCubeArray); VK_DEVICEFEATURE_ENABLE_IF(independentBlend); VK_DEVICEFEATURE_ENABLE_IF(geometryShader); VK_DEVICEFEATURE_ENABLE_IF(tessellationShader); VK_DEVICEFEATURE_ENABLE_IF(sampleRateShading); VK_DEVICEFEATURE_ENABLE_IF(dualSrcBlend); VK_DEVICEFEATURE_ENABLE_IF(logicOp); VK_DEVICEFEATURE_ENABLE_IF(multiDrawIndirect); VK_DEVICEFEATURE_ENABLE_IF(drawIndirectFirstInstance); VK_DEVICEFEATURE_ENABLE_IF(depthClamp); VK_DEVICEFEATURE_ENABLE_IF(depthBiasClamp); VK_DEVICEFEATURE_ENABLE_IF(fillModeNonSolid); VK_DEVICEFEATURE_ENABLE_IF(depthBounds); VK_DEVICEFEATURE_ENABLE_IF(wideLines); VK_DEVICEFEATURE_ENABLE_IF(largePoints); VK_DEVICEFEATURE_ENABLE_IF(alphaToOne); VK_DEVICEFEATURE_ENABLE_IF(multiViewport); VK_DEVICEFEATURE_ENABLE_IF(samplerAnisotropy); VK_DEVICEFEATURE_ENABLE_IF(textureCompressionETC2); VK_DEVICEFEATURE_ENABLE_IF(textureCompressionASTC_LDR); VK_DEVICEFEATURE_ENABLE_IF(textureCompressionBC); VK_DEVICEFEATURE_ENABLE_IF(vertexPipelineStoresAndAtomics); VK_DEVICEFEATURE_ENABLE_IF(fragmentStoresAndAtomics); VK_DEVICEFEATURE_ENABLE_IF(shaderTessellationAndGeometryPointSize); VK_DEVICEFEATURE_ENABLE_IF(shaderImageGatherExtended); VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageExtendedFormats); VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageReadWithoutFormat); VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageWriteWithoutFormat); VK_DEVICEFEATURE_ENABLE_IF(shaderUniformBufferArrayDynamicIndexing); VK_DEVICEFEATURE_ENABLE_IF(shaderSampledImageArrayDynamicIndexing); VK_DEVICEFEATURE_ENABLE_IF(shaderStorageBufferArrayDynamicIndexing); VK_DEVICEFEATURE_ENABLE_IF(shaderStorageImageArrayDynamicIndexing); VK_DEVICEFEATURE_ENABLE_IF(shaderClipDistance); VK_DEVICEFEATURE_ENABLE_IF(shaderCullDistance); VK_DEVICEFEATURE_ENABLE_IF(shaderFloat64); VK_DEVICEFEATURE_ENABLE_IF(shaderInt64); VK_DEVICEFEATURE_ENABLE_IF(shaderInt16); VK_DEVICEFEATURE_ENABLE_IF(shaderResourceMinLod); VK_DEVICEFEATURE_ENABLE_IF(variableMultisampleRate); return OK; } Error RenderingDeviceDriverVulkan::_check_device_capabilities() { // Fill device family and version. device_capabilities.device_family = DEVICE_VULKAN; device_capabilities.version_major = VK_API_VERSION_MAJOR(physical_device_properties.apiVersion); device_capabilities.version_minor = VK_API_VERSION_MINOR(physical_device_properties.apiVersion); // References: // https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_multiview.html // https://www.khronos.org/blog/vulkan-subgroup-tutorial const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); if (functions.GetPhysicalDeviceFeatures2 != nullptr) { // We must check that the corresponding extension is present before assuming a feature as enabled. // See also: https://github.com/godotengine/godot/issues/65409 void *next_features = nullptr; VkPhysicalDeviceVulkan12Features device_features_vk_1_2 = {}; VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {}; VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = {}; VkPhysicalDevice16BitStorageFeaturesKHR storage_feature = {}; VkPhysicalDeviceMultiviewFeatures multiview_features = {}; VkPhysicalDevicePipelineCreationCacheControlFeatures pipeline_cache_control_features = {}; const bool use_1_2_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_2; if (use_1_2_features) { device_features_vk_1_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; device_features_vk_1_2.pNext = next_features; next_features = &device_features_vk_1_2; } else if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) { shader_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR; shader_features.pNext = next_features; next_features = &shader_features; } if (enabled_device_extension_names.has(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME)) { vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR; vrs_features.pNext = next_features; next_features = &vrs_features; } if (enabled_device_extension_names.has(VK_KHR_16BIT_STORAGE_EXTENSION_NAME)) { storage_feature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR; storage_feature.pNext = next_features; next_features = &storage_feature; } if (enabled_device_extension_names.has(VK_KHR_MULTIVIEW_EXTENSION_NAME)) { multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES; multiview_features.pNext = next_features; next_features = &multiview_features; } if (enabled_device_extension_names.has(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME)) { pipeline_cache_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES; pipeline_cache_control_features.pNext = next_features; next_features = &pipeline_cache_control_features; } VkPhysicalDeviceFeatures2 device_features_2 = {}; device_features_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features_2.pNext = next_features; functions.GetPhysicalDeviceFeatures2(physical_device, &device_features_2); if (use_1_2_features) { #ifdef MACOS_ENABLED ERR_FAIL_COND_V_MSG(!device_features_vk_1_2.shaderSampledImageArrayNonUniformIndexing, ERR_CANT_CREATE, "Your GPU doesn't support shaderSampledImageArrayNonUniformIndexing which is required to use the Vulkan-based renderers in Godot."); #endif if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) { shader_capabilities.shader_float16_is_supported = device_features_vk_1_2.shaderFloat16; shader_capabilities.shader_int8_is_supported = device_features_vk_1_2.shaderInt8; } } else { if (enabled_device_extension_names.has(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) { shader_capabilities.shader_float16_is_supported = shader_features.shaderFloat16; shader_capabilities.shader_int8_is_supported = shader_features.shaderInt8; } } if (enabled_device_extension_names.has(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME)) { vrs_capabilities.pipeline_vrs_supported = vrs_features.pipelineFragmentShadingRate; vrs_capabilities.primitive_vrs_supported = vrs_features.primitiveFragmentShadingRate; vrs_capabilities.attachment_vrs_supported = vrs_features.attachmentFragmentShadingRate; } if (enabled_device_extension_names.has(VK_KHR_MULTIVIEW_EXTENSION_NAME)) { multiview_capabilities.is_supported = multiview_features.multiview; multiview_capabilities.geometry_shader_is_supported = multiview_features.multiviewGeometryShader; multiview_capabilities.tessellation_shader_is_supported = multiview_features.multiviewTessellationShader; } if (enabled_device_extension_names.has(VK_KHR_16BIT_STORAGE_EXTENSION_NAME)) { storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = storage_feature.storageBuffer16BitAccess; storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = storage_feature.uniformAndStorageBuffer16BitAccess; storage_buffer_capabilities.storage_push_constant_16_is_supported = storage_feature.storagePushConstant16; storage_buffer_capabilities.storage_input_output_16 = storage_feature.storageInputOutput16; } if (enabled_device_extension_names.has(VK_EXT_PIPELINE_CREATION_CACHE_CONTROL_EXTENSION_NAME)) { pipeline_cache_control_support = pipeline_cache_control_features.pipelineCreationCacheControl; } } if (functions.GetPhysicalDeviceProperties2 != nullptr) { void *next_properties = nullptr; VkPhysicalDeviceFragmentShadingRatePropertiesKHR vrs_properties = {}; VkPhysicalDeviceMultiviewProperties multiview_properties = {}; VkPhysicalDeviceSubgroupProperties subgroup_properties = {}; VkPhysicalDeviceSubgroupSizeControlProperties subgroup_size_control_properties = {}; VkPhysicalDeviceProperties2 physical_device_properties_2 = {}; const bool use_1_1_properties = physical_device_properties.apiVersion >= VK_API_VERSION_1_1; if (use_1_1_properties) { subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES; subgroup_properties.pNext = next_properties; next_properties = &subgroup_properties; subgroup_capabilities.size_control_is_supported = enabled_device_extension_names.has(VK_EXT_SUBGROUP_SIZE_CONTROL_EXTENSION_NAME); if (subgroup_capabilities.size_control_is_supported) { subgroup_size_control_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES; subgroup_size_control_properties.pNext = next_properties; next_properties = &subgroup_size_control_properties; } } if (multiview_capabilities.is_supported) { multiview_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES; multiview_properties.pNext = next_properties; next_properties = &multiview_properties; } if (vrs_capabilities.attachment_vrs_supported) { vrs_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR; vrs_properties.pNext = next_properties; next_properties = &vrs_properties; } physical_device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; physical_device_properties_2.pNext = next_properties; functions.GetPhysicalDeviceProperties2(physical_device, &physical_device_properties_2); subgroup_capabilities.size = subgroup_properties.subgroupSize; subgroup_capabilities.min_size = subgroup_properties.subgroupSize; subgroup_capabilities.max_size = subgroup_properties.subgroupSize; subgroup_capabilities.supported_stages = subgroup_properties.supportedStages; subgroup_capabilities.supported_operations = subgroup_properties.supportedOperations; // Note: quadOperationsInAllStages will be true if: // - supportedStages has VK_SHADER_STAGE_ALL_GRAPHICS + VK_SHADER_STAGE_COMPUTE_BIT. // - supportedOperations has VK_SUBGROUP_FEATURE_QUAD_BIT. subgroup_capabilities.quad_operations_in_all_stages = subgroup_properties.quadOperationsInAllStages; if (subgroup_capabilities.size_control_is_supported && (subgroup_size_control_properties.requiredSubgroupSizeStages & VK_SHADER_STAGE_COMPUTE_BIT)) { subgroup_capabilities.min_size = subgroup_size_control_properties.minSubgroupSize; subgroup_capabilities.max_size = subgroup_size_control_properties.maxSubgroupSize; } if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) { print_verbose("- Vulkan Variable Rate Shading supported:"); if (vrs_capabilities.pipeline_vrs_supported) { print_verbose(" Pipeline fragment shading rate"); } if (vrs_capabilities.primitive_vrs_supported) { print_verbose(" Primitive fragment shading rate"); } if (vrs_capabilities.attachment_vrs_supported) { // TODO: Expose these somehow to the end user. vrs_capabilities.min_texel_size.x = vrs_properties.minFragmentShadingRateAttachmentTexelSize.width; vrs_capabilities.min_texel_size.y = vrs_properties.minFragmentShadingRateAttachmentTexelSize.height; vrs_capabilities.max_texel_size.x = vrs_properties.maxFragmentShadingRateAttachmentTexelSize.width; vrs_capabilities.max_texel_size.y = vrs_properties.maxFragmentShadingRateAttachmentTexelSize.height; // We'll attempt to default to a texel size of 16x16. vrs_capabilities.texel_size.x = CLAMP(16, vrs_capabilities.min_texel_size.x, vrs_capabilities.max_texel_size.x); vrs_capabilities.texel_size.y = CLAMP(16, vrs_capabilities.min_texel_size.y, vrs_capabilities.max_texel_size.y); print_verbose(String(" Attachment fragment shading rate") + String(", min texel size: (") + itos(vrs_capabilities.min_texel_size.x) + String(", ") + itos(vrs_capabilities.min_texel_size.y) + String(")") + String(", max texel size: (") + itos(vrs_capabilities.max_texel_size.x) + String(", ") + itos(vrs_capabilities.max_texel_size.y) + String(")")); } } else { print_verbose("- Vulkan Variable Rate Shading not supported"); } if (multiview_capabilities.is_supported) { multiview_capabilities.max_view_count = multiview_properties.maxMultiviewViewCount; multiview_capabilities.max_instance_count = multiview_properties.maxMultiviewInstanceIndex; print_verbose("- Vulkan multiview supported:"); print_verbose(" max view count: " + itos(multiview_capabilities.max_view_count)); print_verbose(" max instances: " + itos(multiview_capabilities.max_instance_count)); } else { print_verbose("- Vulkan multiview not supported"); } print_verbose("- Vulkan subgroup:"); print_verbose(" size: " + itos(subgroup_capabilities.size)); print_verbose(" min size: " + itos(subgroup_capabilities.min_size)); print_verbose(" max size: " + itos(subgroup_capabilities.max_size)); print_verbose(" stages: " + subgroup_capabilities.supported_stages_desc()); print_verbose(" supported ops: " + subgroup_capabilities.supported_operations_desc()); if (subgroup_capabilities.quad_operations_in_all_stages) { print_verbose(" quad operations in all stages"); } } return OK; } Error RenderingDeviceDriverVulkan::_add_queue_create_info(LocalVector &r_queue_create_info) { uint32_t queue_family_count = queue_family_properties.size(); queue_families.resize(queue_family_count); VkQueueFlags queue_flags_mask = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT; const uint32_t max_queue_count_per_family = 1; static const float queue_priorities[max_queue_count_per_family] = {}; for (uint32_t i = 0; i < queue_family_count; i++) { if ((queue_family_properties[i].queueFlags & queue_flags_mask) == 0) { // We ignore creating queues in families that don't support any of the operations we require. continue; } VkDeviceQueueCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; create_info.queueFamilyIndex = i; create_info.queueCount = MIN(queue_family_properties[i].queueCount, max_queue_count_per_family); create_info.pQueuePriorities = queue_priorities; r_queue_create_info.push_back(create_info); // Prepare the vectors where the queues will be filled out. queue_families[i].resize(create_info.queueCount); } return OK; } Error RenderingDeviceDriverVulkan::_initialize_device(const LocalVector &p_queue_create_info) { TightLocalVector enabled_extension_names; enabled_extension_names.reserve(enabled_device_extension_names.size()); for (const CharString &extension_name : enabled_device_extension_names) { enabled_extension_names.push_back(extension_name.ptr()); } void *create_info_next = nullptr; VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = {}; shader_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR; shader_features.pNext = create_info_next; shader_features.shaderFloat16 = shader_capabilities.shader_float16_is_supported; shader_features.shaderInt8 = shader_capabilities.shader_int8_is_supported; create_info_next = &shader_features; VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = {}; if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) { vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR; vrs_features.pNext = create_info_next; vrs_features.pipelineFragmentShadingRate = vrs_capabilities.pipeline_vrs_supported; vrs_features.primitiveFragmentShadingRate = vrs_capabilities.primitive_vrs_supported; vrs_features.attachmentFragmentShadingRate = vrs_capabilities.attachment_vrs_supported; create_info_next = &vrs_features; } VkPhysicalDevicePipelineCreationCacheControlFeatures pipeline_cache_control_features = {}; if (pipeline_cache_control_support) { pipeline_cache_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES; pipeline_cache_control_features.pNext = create_info_next; pipeline_cache_control_features.pipelineCreationCacheControl = pipeline_cache_control_support; create_info_next = &pipeline_cache_control_features; } VkPhysicalDeviceVulkan11Features vulkan_1_1_features = {}; VkPhysicalDevice16BitStorageFeaturesKHR storage_features = {}; VkPhysicalDeviceMultiviewFeatures multiview_features = {}; const bool enable_1_2_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_2; if (enable_1_2_features) { // In Vulkan 1.2 and newer we use a newer struct to enable various features. vulkan_1_1_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; vulkan_1_1_features.pNext = create_info_next; vulkan_1_1_features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported; vulkan_1_1_features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported; vulkan_1_1_features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported; vulkan_1_1_features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16; vulkan_1_1_features.multiview = multiview_capabilities.is_supported; vulkan_1_1_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported; vulkan_1_1_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported; vulkan_1_1_features.variablePointersStorageBuffer = 0; vulkan_1_1_features.variablePointers = 0; vulkan_1_1_features.protectedMemory = 0; vulkan_1_1_features.samplerYcbcrConversion = 0; vulkan_1_1_features.shaderDrawParameters = 0; create_info_next = &vulkan_1_1_features; } else { // On Vulkan 1.0 and 1.1 we use our older structs to initialize these features. storage_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR; storage_features.pNext = create_info_next; storage_features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported; storage_features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported; storage_features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported; storage_features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16; create_info_next = &storage_features; const bool enable_1_1_features = physical_device_properties.apiVersion >= VK_API_VERSION_1_1; if (enable_1_1_features) { multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES; multiview_features.pNext = create_info_next; multiview_features.multiview = multiview_capabilities.is_supported; multiview_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported; multiview_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported; create_info_next = &multiview_features; } } VkDeviceCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; create_info.pNext = create_info_next; create_info.queueCreateInfoCount = p_queue_create_info.size(); create_info.pQueueCreateInfos = p_queue_create_info.ptr(); create_info.enabledExtensionCount = enabled_extension_names.size(); create_info.ppEnabledExtensionNames = enabled_extension_names.ptr(); create_info.pEnabledFeatures = &requested_device_features; if (VulkanHooks::get_singleton() != nullptr) { bool device_created = VulkanHooks::get_singleton()->create_vulkan_device(&create_info, &vk_device); ERR_FAIL_COND_V(!device_created, ERR_CANT_CREATE); } else { VkResult err = vkCreateDevice(physical_device, &create_info, nullptr, &vk_device); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); } for (uint32_t i = 0; i < queue_families.size(); i++) { for (uint32_t j = 0; j < queue_families[i].size(); j++) { vkGetDeviceQueue(vk_device, i, j, &queue_families[i][j].queue); } } const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); if (functions.GetDeviceProcAddr != nullptr) { device_functions.CreateSwapchainKHR = PFN_vkCreateSwapchainKHR(functions.GetDeviceProcAddr(vk_device, "vkCreateSwapchainKHR")); device_functions.DestroySwapchainKHR = PFN_vkDestroySwapchainKHR(functions.GetDeviceProcAddr(vk_device, "vkDestroySwapchainKHR")); device_functions.GetSwapchainImagesKHR = PFN_vkGetSwapchainImagesKHR(functions.GetDeviceProcAddr(vk_device, "vkGetSwapchainImagesKHR")); device_functions.AcquireNextImageKHR = PFN_vkAcquireNextImageKHR(functions.GetDeviceProcAddr(vk_device, "vkAcquireNextImageKHR")); device_functions.QueuePresentKHR = PFN_vkQueuePresentKHR(functions.GetDeviceProcAddr(vk_device, "vkQueuePresentKHR")); if (enabled_device_extension_names.has(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME)) { device_functions.CreateRenderPass2KHR = PFN_vkCreateRenderPass2KHR(functions.GetDeviceProcAddr(vk_device, "vkCreateRenderPass2KHR")); } } return OK; } Error RenderingDeviceDriverVulkan::_initialize_allocator() { VmaAllocatorCreateInfo allocator_info = {}; allocator_info.physicalDevice = physical_device; allocator_info.device = vk_device; allocator_info.instance = context_driver->instance_get(); VkResult err = vmaCreateAllocator(&allocator_info, &allocator); ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE, "vmaCreateAllocator failed with error " + itos(err) + "."); return OK; } Error RenderingDeviceDriverVulkan::_initialize_pipeline_cache() { pipelines_cache.buffer.resize(sizeof(PipelineCacheHeader)); PipelineCacheHeader *header = (PipelineCacheHeader *)(pipelines_cache.buffer.ptrw()); *header = {}; header->magic = 868 + VK_PIPELINE_CACHE_HEADER_VERSION_ONE; header->device_id = physical_device_properties.deviceID; header->vendor_id = physical_device_properties.vendorID; header->driver_version = physical_device_properties.driverVersion; memcpy(header->uuid, physical_device_properties.pipelineCacheUUID, VK_UUID_SIZE); header->driver_abi = sizeof(void *); pipeline_cache_id = String::hex_encode_buffer(physical_device_properties.pipelineCacheUUID, VK_UUID_SIZE); pipeline_cache_id += "-driver-" + itos(physical_device_properties.driverVersion); return OK; } static void _convert_subpass_attachments(const VkAttachmentReference2 *p_attachment_references_2, uint32_t p_attachment_references_count, TightLocalVector &r_attachment_references) { r_attachment_references.resize(p_attachment_references_count); for (uint32_t i = 0; i < p_attachment_references_count; i++) { // Ignore sType, pNext and aspectMask (which is currently unused). r_attachment_references[i].attachment = p_attachment_references_2[i].attachment; r_attachment_references[i].layout = p_attachment_references_2[i].layout; } } VkResult RenderingDeviceDriverVulkan::_create_render_pass(VkDevice p_device, const VkRenderPassCreateInfo2 *p_create_info, const VkAllocationCallbacks *p_allocator, VkRenderPass *p_render_pass) { if (device_functions.CreateRenderPass2KHR != nullptr) { return device_functions.CreateRenderPass2KHR(p_device, p_create_info, p_allocator, p_render_pass); } else { // Compatibility fallback with regular create render pass but by converting the inputs from the newer version to the older one. TightLocalVector attachments; attachments.resize(p_create_info->attachmentCount); for (uint32_t i = 0; i < p_create_info->attachmentCount; i++) { // Ignores sType and pNext from the attachment. const VkAttachmentDescription2 &src = p_create_info->pAttachments[i]; VkAttachmentDescription &dst = attachments[i]; dst.flags = src.flags; dst.format = src.format; dst.samples = src.samples; dst.loadOp = src.loadOp; dst.storeOp = src.storeOp; dst.stencilLoadOp = src.stencilLoadOp; dst.stencilStoreOp = src.stencilStoreOp; dst.initialLayout = src.initialLayout; dst.finalLayout = src.finalLayout; } const uint32_t attachment_vectors_per_subpass = 4; TightLocalVector> subpasses_attachments; TightLocalVector subpasses; subpasses_attachments.resize(p_create_info->subpassCount * attachment_vectors_per_subpass); subpasses.resize(p_create_info->subpassCount); for (uint32_t i = 0; i < p_create_info->subpassCount; i++) { const uint32_t vector_base_index = i * attachment_vectors_per_subpass; const uint32_t input_attachments_index = vector_base_index + 0; const uint32_t color_attachments_index = vector_base_index + 1; const uint32_t resolve_attachments_index = vector_base_index + 2; const uint32_t depth_attachment_index = vector_base_index + 3; _convert_subpass_attachments(p_create_info->pSubpasses[i].pInputAttachments, p_create_info->pSubpasses[i].inputAttachmentCount, subpasses_attachments[input_attachments_index]); _convert_subpass_attachments(p_create_info->pSubpasses[i].pColorAttachments, p_create_info->pSubpasses[i].colorAttachmentCount, subpasses_attachments[color_attachments_index]); _convert_subpass_attachments(p_create_info->pSubpasses[i].pResolveAttachments, p_create_info->pSubpasses[i].colorAttachmentCount, subpasses_attachments[resolve_attachments_index]); _convert_subpass_attachments(p_create_info->pSubpasses[i].pDepthStencilAttachment, (p_create_info->pSubpasses[i].pDepthStencilAttachment != nullptr) ? 1 : 0, subpasses_attachments[depth_attachment_index]); // Ignores sType and pNext from the subpass. const VkSubpassDescription2 &src_subpass = p_create_info->pSubpasses[i]; VkSubpassDescription &dst_subpass = subpasses[i]; dst_subpass.flags = src_subpass.flags; dst_subpass.pipelineBindPoint = src_subpass.pipelineBindPoint; dst_subpass.inputAttachmentCount = src_subpass.inputAttachmentCount; dst_subpass.pInputAttachments = subpasses_attachments[input_attachments_index].ptr(); dst_subpass.colorAttachmentCount = src_subpass.colorAttachmentCount; dst_subpass.pColorAttachments = subpasses_attachments[color_attachments_index].ptr(); dst_subpass.pResolveAttachments = subpasses_attachments[resolve_attachments_index].ptr(); dst_subpass.pDepthStencilAttachment = subpasses_attachments[depth_attachment_index].ptr(); dst_subpass.preserveAttachmentCount = src_subpass.preserveAttachmentCount; dst_subpass.pPreserveAttachments = src_subpass.pPreserveAttachments; } TightLocalVector dependencies; dependencies.resize(p_create_info->dependencyCount); for (uint32_t i = 0; i < p_create_info->dependencyCount; i++) { // Ignores sType and pNext from the dependency, and viewMask which is currently unused. const VkSubpassDependency2 &src_dependency = p_create_info->pDependencies[i]; VkSubpassDependency &dst_dependency = dependencies[i]; dst_dependency.srcSubpass = src_dependency.srcSubpass; dst_dependency.dstSubpass = src_dependency.dstSubpass; dst_dependency.srcStageMask = src_dependency.srcStageMask; dst_dependency.dstStageMask = src_dependency.dstStageMask; dst_dependency.srcAccessMask = src_dependency.srcAccessMask; dst_dependency.dstAccessMask = src_dependency.dstAccessMask; dst_dependency.dependencyFlags = src_dependency.dependencyFlags; } VkRenderPassCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; create_info.pNext = p_create_info->pNext; create_info.flags = p_create_info->flags; create_info.attachmentCount = attachments.size(); create_info.pAttachments = attachments.ptr(); create_info.subpassCount = subpasses.size(); create_info.pSubpasses = subpasses.ptr(); create_info.dependencyCount = dependencies.size(); create_info.pDependencies = dependencies.ptr(); return vkCreateRenderPass(vk_device, &create_info, p_allocator, p_render_pass); } } bool RenderingDeviceDriverVulkan::_release_image_semaphore(CommandQueue *p_command_queue, uint32_t p_semaphore_index, bool p_release_on_swap_chain) { SwapChain *swap_chain = p_command_queue->image_semaphores_swap_chains[p_semaphore_index]; if (swap_chain != nullptr) { // Clear the swap chain from the command queue's vector. p_command_queue->image_semaphores_swap_chains[p_semaphore_index] = nullptr; if (p_release_on_swap_chain) { // Remove the acquired semaphore from the swap chain's vectors. for (uint32_t i = 0; i < swap_chain->command_queues_acquired.size(); i++) { if (swap_chain->command_queues_acquired[i] == p_command_queue && swap_chain->command_queues_acquired_semaphores[i] == p_semaphore_index) { swap_chain->command_queues_acquired.remove_at(i); swap_chain->command_queues_acquired_semaphores.remove_at(i); break; } } } return true; } return false; } bool RenderingDeviceDriverVulkan::_recreate_image_semaphore(CommandQueue *p_command_queue, uint32_t p_semaphore_index, bool p_release_on_swap_chain) { _release_image_semaphore(p_command_queue, p_semaphore_index, p_release_on_swap_chain); VkSemaphore semaphore; VkSemaphoreCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkResult err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore); ERR_FAIL_COND_V(err != VK_SUCCESS, false); // Indicate the semaphore is free again and destroy the previous one before storing the new one. vkDestroySemaphore(vk_device, p_command_queue->image_semaphores[p_semaphore_index], nullptr); p_command_queue->image_semaphores[p_semaphore_index] = semaphore; p_command_queue->free_image_semaphores.push_back(p_semaphore_index); return true; } void RenderingDeviceDriverVulkan::_set_object_name(VkObjectType p_object_type, uint64_t p_object_handle, String p_object_name) { const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); if (functions.SetDebugUtilsObjectNameEXT != nullptr) { CharString obj_data = p_object_name.utf8(); VkDebugUtilsObjectNameInfoEXT name_info; name_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT; name_info.pNext = nullptr; name_info.objectType = p_object_type; name_info.objectHandle = p_object_handle; name_info.pObjectName = obj_data.get_data(); functions.SetDebugUtilsObjectNameEXT(vk_device, &name_info); } } Error RenderingDeviceDriverVulkan::initialize(uint32_t p_device_index, uint32_t p_frame_count) { context_device = context_driver->device_get(p_device_index); physical_device = context_driver->physical_device_get(p_device_index); vkGetPhysicalDeviceProperties(physical_device, &physical_device_properties); frame_count = p_frame_count; // Copy the queue family properties the context already retrieved. uint32_t queue_family_count = context_driver->queue_family_get_count(p_device_index); queue_family_properties.resize(queue_family_count); for (uint32_t i = 0; i < queue_family_count; i++) { queue_family_properties[i] = context_driver->queue_family_get(p_device_index, i); } Error err = _initialize_device_extensions(); ERR_FAIL_COND_V(err != OK, err); err = _check_device_features(); ERR_FAIL_COND_V(err != OK, err); err = _check_device_capabilities(); ERR_FAIL_COND_V(err != OK, err); LocalVector queue_create_info; err = _add_queue_create_info(queue_create_info); ERR_FAIL_COND_V(err != OK, err); err = _initialize_device(queue_create_info); ERR_FAIL_COND_V(err != OK, err); err = _initialize_allocator(); ERR_FAIL_COND_V(err != OK, err); err = _initialize_pipeline_cache(); ERR_FAIL_COND_V(err != OK, err); max_descriptor_sets_per_pool = GLOBAL_GET("rendering/rendering_device/vulkan/max_descriptors_per_pool"); return OK; } /****************/ /**** MEMORY ****/ /****************/ static const uint32_t SMALL_ALLOCATION_MAX_SIZE = 4096; VmaPool RenderingDeviceDriverVulkan::_find_or_create_small_allocs_pool(uint32_t p_mem_type_index) { if (small_allocs_pools.has(p_mem_type_index)) { return small_allocs_pools[p_mem_type_index]; } print_verbose("Creating VMA small objects pool for memory type index " + itos(p_mem_type_index)); VmaPoolCreateInfo pci = {}; pci.memoryTypeIndex = p_mem_type_index; pci.flags = 0; pci.blockSize = 0; pci.minBlockCount = 0; pci.maxBlockCount = SIZE_MAX; pci.priority = 0.5f; pci.minAllocationAlignment = 0; pci.pMemoryAllocateNext = nullptr; VmaPool pool = VK_NULL_HANDLE; VkResult res = vmaCreatePool(allocator, &pci, &pool); small_allocs_pools[p_mem_type_index] = pool; // Don't try to create it again if failed the first time. ERR_FAIL_COND_V_MSG(res, pool, "vmaCreatePool failed with error " + itos(res) + "."); return pool; } /*****************/ /**** BUFFERS ****/ /*****************/ // RDD::BufferUsageBits == VkBufferUsageFlagBits. static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TRANSFER_FROM_BIT, VK_BUFFER_USAGE_TRANSFER_SRC_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TRANSFER_TO_BIT, VK_BUFFER_USAGE_TRANSFER_DST_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_TEXEL_BIT, VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_UNIFORM_BIT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_STORAGE_BIT, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_INDEX_BIT, VK_BUFFER_USAGE_INDEX_BUFFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_VERTEX_BIT, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BUFFER_USAGE_INDIRECT_BIT, VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT)); RDD::BufferID RenderingDeviceDriverVulkan::buffer_create(uint64_t p_size, BitField p_usage, MemoryAllocationType p_allocation_type) { VkBufferCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; create_info.size = p_size; create_info.usage = p_usage; create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VmaAllocationCreateInfo alloc_create_info = {}; switch (p_allocation_type) { case MEMORY_ALLOCATION_TYPE_CPU: { bool is_src = p_usage.has_flag(BUFFER_USAGE_TRANSFER_FROM_BIT); bool is_dst = p_usage.has_flag(BUFFER_USAGE_TRANSFER_TO_BIT); if (is_src && !is_dst) { // Looks like a staging buffer: CPU maps, writes sequentially, then GPU copies to VRAM. alloc_create_info.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; } if (is_dst && !is_src) { // Looks like a readback buffer: GPU copies from VRAM, then CPU maps and reads. alloc_create_info.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; } alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_HOST; alloc_create_info.requiredFlags = (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); } break; case MEMORY_ALLOCATION_TYPE_GPU: { alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; if (p_size <= SMALL_ALLOCATION_MAX_SIZE) { uint32_t mem_type_index = 0; vmaFindMemoryTypeIndexForBufferInfo(allocator, &create_info, &alloc_create_info, &mem_type_index); alloc_create_info.pool = _find_or_create_small_allocs_pool(mem_type_index); } } break; } VkBuffer vk_buffer = VK_NULL_HANDLE; VmaAllocation allocation = nullptr; VmaAllocationInfo alloc_info = {}; VkResult err = vmaCreateBuffer(allocator, &create_info, &alloc_create_info, &vk_buffer, &allocation, &alloc_info); ERR_FAIL_COND_V_MSG(err, BufferID(), "Can't create buffer of size: " + itos(p_size) + ", error " + itos(err) + "."); // Bookkeep. BufferInfo *buf_info = VersatileResource::allocate(resources_allocator); buf_info->vk_buffer = vk_buffer; buf_info->allocation.handle = allocation; buf_info->allocation.size = alloc_info.size; buf_info->size = p_size; return BufferID(buf_info); } bool RenderingDeviceDriverVulkan::buffer_set_texel_format(BufferID p_buffer, DataFormat p_format) { BufferInfo *buf_info = (BufferInfo *)p_buffer.id; DEV_ASSERT(!buf_info->vk_view); VkBufferViewCreateInfo view_create_info = {}; view_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO; view_create_info.buffer = buf_info->vk_buffer; view_create_info.format = RD_TO_VK_FORMAT[p_format]; view_create_info.range = buf_info->allocation.size; VkResult res = vkCreateBufferView(vk_device, &view_create_info, nullptr, &buf_info->vk_view); ERR_FAIL_COND_V_MSG(res, false, "Unable to create buffer view, error " + itos(res) + "."); return true; } void RenderingDeviceDriverVulkan::buffer_free(BufferID p_buffer) { BufferInfo *buf_info = (BufferInfo *)p_buffer.id; if (buf_info->vk_view) { vkDestroyBufferView(vk_device, buf_info->vk_view, nullptr); } vmaDestroyBuffer(allocator, buf_info->vk_buffer, buf_info->allocation.handle); VersatileResource::free(resources_allocator, buf_info); } uint64_t RenderingDeviceDriverVulkan::buffer_get_allocation_size(BufferID p_buffer) { const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id; return buf_info->allocation.size; } uint8_t *RenderingDeviceDriverVulkan::buffer_map(BufferID p_buffer) { const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id; void *data_ptr = nullptr; VkResult err = vmaMapMemory(allocator, buf_info->allocation.handle, &data_ptr); ERR_FAIL_COND_V_MSG(err, nullptr, "vmaMapMemory failed with error " + itos(err) + "."); return (uint8_t *)data_ptr; } void RenderingDeviceDriverVulkan::buffer_unmap(BufferID p_buffer) { const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id; vmaUnmapMemory(allocator, buf_info->allocation.handle); } /*****************/ /**** TEXTURE ****/ /*****************/ static const VkImageType RD_TEX_TYPE_TO_VK_IMG_TYPE[RDD::TEXTURE_TYPE_MAX] = { VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, VK_IMAGE_TYPE_3D, VK_IMAGE_TYPE_2D, VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, VK_IMAGE_TYPE_2D, }; static const VkSampleCountFlagBits RD_TO_VK_SAMPLE_COUNT[RDD::TEXTURE_SAMPLES_MAX] = { VK_SAMPLE_COUNT_1_BIT, VK_SAMPLE_COUNT_2_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_COUNT_8_BIT, VK_SAMPLE_COUNT_16_BIT, VK_SAMPLE_COUNT_32_BIT, VK_SAMPLE_COUNT_64_BIT, }; // RDD::TextureType == VkImageViewType. static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_1D, VK_IMAGE_VIEW_TYPE_1D)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_2D, VK_IMAGE_VIEW_TYPE_2D)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_3D, VK_IMAGE_VIEW_TYPE_3D)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_CUBE, VK_IMAGE_VIEW_TYPE_CUBE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE_1D_ARRAY)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_2D_ARRAY, VK_IMAGE_VIEW_TYPE_2D_ARRAY)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_TYPE_CUBE_ARRAY, VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)); // RDD::TextureSwizzle == VkComponentSwizzle. static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_ZERO, VK_COMPONENT_SWIZZLE_ZERO)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_ONE, VK_COMPONENT_SWIZZLE_ONE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_G, VK_COMPONENT_SWIZZLE_G)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_B, VK_COMPONENT_SWIZZLE_B)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_SWIZZLE_A, VK_COMPONENT_SWIZZLE_A)); // RDD::TextureLayout == VkImageLayout. static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_UNDEFINED)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_PREINITIALIZED)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_LAYOUT_VRS_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR)); // RDD::TextureAspectBits == VkImageAspectFlagBits. static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_DEPTH_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::TEXTURE_ASPECT_STENCIL_BIT, VK_IMAGE_ASPECT_STENCIL_BIT)); VkSampleCountFlagBits RenderingDeviceDriverVulkan::_ensure_supported_sample_count(TextureSamples p_requested_sample_count) { VkSampleCountFlags sample_count_flags = (physical_device_properties.limits.framebufferColorSampleCounts & physical_device_properties.limits.framebufferDepthSampleCounts); if ((sample_count_flags & RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count])) { // The requested sample count is supported. return RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count]; } else { // Find the closest lower supported sample count. VkSampleCountFlagBits sample_count = RD_TO_VK_SAMPLE_COUNT[p_requested_sample_count]; while (sample_count > VK_SAMPLE_COUNT_1_BIT) { if (sample_count_flags & sample_count) { return sample_count; } sample_count = (VkSampleCountFlagBits)(sample_count >> 1); } } return VK_SAMPLE_COUNT_1_BIT; } RDD::TextureID RenderingDeviceDriverVulkan::texture_create(const TextureFormat &p_format, const TextureView &p_view) { VkImageCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; if (p_format.shareable_formats.size()) { create_info.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; if (enabled_device_extension_names.has(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME)) { VkFormat *vk_allowed_formats = ALLOCA_ARRAY(VkFormat, p_format.shareable_formats.size()); for (int i = 0; i < p_format.shareable_formats.size(); i++) { vk_allowed_formats[i] = RD_TO_VK_FORMAT[p_format.shareable_formats[i]]; } VkImageFormatListCreateInfoKHR *format_list_create_info = ALLOCA_SINGLE(VkImageFormatListCreateInfoKHR); *format_list_create_info = {}; format_list_create_info->sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR; format_list_create_info->viewFormatCount = p_format.shareable_formats.size(); format_list_create_info->pViewFormats = vk_allowed_formats; create_info.pNext = format_list_create_info; } } if (p_format.texture_type == TEXTURE_TYPE_CUBE || p_format.texture_type == TEXTURE_TYPE_CUBE_ARRAY) { create_info.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; } /*if (p_format.texture_type == TEXTURE_TYPE_2D || p_format.texture_type == TEXTURE_TYPE_2D_ARRAY) { create_info.flags |= VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT; }*/ create_info.imageType = RD_TEX_TYPE_TO_VK_IMG_TYPE[p_format.texture_type]; create_info.format = RD_TO_VK_FORMAT[p_format.format]; create_info.extent.width = p_format.width; create_info.extent.height = p_format.height; create_info.extent.depth = p_format.depth; create_info.mipLevels = p_format.mipmaps; create_info.arrayLayers = p_format.array_layers; create_info.samples = _ensure_supported_sample_count(p_format.samples); create_info.tiling = (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL; // Usage. if ((p_format.usage_bits & TEXTURE_USAGE_SAMPLING_BIT)) { create_info.usage |= VK_IMAGE_USAGE_SAMPLED_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_STORAGE_BIT)) { create_info.usage |= VK_IMAGE_USAGE_STORAGE_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) { create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { create_info.usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_INPUT_ATTACHMENT_BIT)) { create_info.usage |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_VRS_ATTACHMENT_BIT)) { create_info.usage |= VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR; } if ((p_format.usage_bits & TEXTURE_USAGE_CAN_UPDATE_BIT)) { create_info.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_FROM_BIT)) { create_info.usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; } if ((p_format.usage_bits & TEXTURE_USAGE_CAN_COPY_TO_BIT)) { create_info.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; } create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Allocate memory. uint32_t width = 0, height = 0; uint32_t image_size = get_image_format_required_size(p_format.format, p_format.width, p_format.height, p_format.depth, p_format.mipmaps, &width, &height); VmaAllocationCreateInfo alloc_create_info = {}; alloc_create_info.flags = (p_format.usage_bits & TEXTURE_USAGE_CPU_READ_BIT) ? VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT : 0; alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; if (image_size <= SMALL_ALLOCATION_MAX_SIZE) { uint32_t mem_type_index = 0; vmaFindMemoryTypeIndexForImageInfo(allocator, &create_info, &alloc_create_info, &mem_type_index); alloc_create_info.pool = _find_or_create_small_allocs_pool(mem_type_index); } // Create. VkImage vk_image = VK_NULL_HANDLE; VmaAllocation allocation = nullptr; VmaAllocationInfo alloc_info = {}; VkResult err = vmaCreateImage(allocator, &create_info, &alloc_create_info, &vk_image, &allocation, &alloc_info); ERR_FAIL_COND_V_MSG(err, TextureID(), "vmaCreateImage failed with error " + itos(err) + "."); // Create view. VkImageViewCreateInfo image_view_create_info = {}; image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; image_view_create_info.image = vk_image; image_view_create_info.viewType = (VkImageViewType)p_format.texture_type; image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format]; image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r; image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g; image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b; image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a; image_view_create_info.subresourceRange.levelCount = create_info.mipLevels; image_view_create_info.subresourceRange.layerCount = create_info.arrayLayers; if ((p_format.usage_bits & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; } else { image_view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; } VkImageView vk_image_view = VK_NULL_HANDLE; err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &vk_image_view); if (err) { vmaDestroyImage(allocator, vk_image, allocation); ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + "."); } // Bookkeep. TextureInfo *tex_info = VersatileResource::allocate(resources_allocator); tex_info->vk_view = vk_image_view; tex_info->rd_format = p_format.format; tex_info->vk_create_info = create_info; tex_info->vk_view_create_info = image_view_create_info; tex_info->allocation.handle = allocation; vmaGetAllocationInfo(allocator, tex_info->allocation.handle, &tex_info->allocation.info); #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX", uint64_t(vk_image_view), uint64_t(vk_image))); #endif return TextureID(tex_info); } RDD::TextureID RenderingDeviceDriverVulkan::texture_create_from_extension(uint64_t p_native_texture, TextureType p_type, DataFormat p_format, uint32_t p_array_layers, bool p_depth_stencil) { VkImage vk_image = (VkImage)p_native_texture; // We only need to create a view into the already existing natively-provided texture. VkImageViewCreateInfo image_view_create_info = {}; image_view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; image_view_create_info.image = vk_image; image_view_create_info.viewType = (VkImageViewType)p_type; image_view_create_info.format = RD_TO_VK_FORMAT[p_format]; image_view_create_info.components.r = VK_COMPONENT_SWIZZLE_R; image_view_create_info.components.g = VK_COMPONENT_SWIZZLE_G; image_view_create_info.components.b = VK_COMPONENT_SWIZZLE_B; image_view_create_info.components.a = VK_COMPONENT_SWIZZLE_A; image_view_create_info.subresourceRange.levelCount = 1; image_view_create_info.subresourceRange.layerCount = p_array_layers; image_view_create_info.subresourceRange.aspectMask = p_depth_stencil ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT; VkImageView vk_image_view = VK_NULL_HANDLE; VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &vk_image_view); if (err) { ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + "."); } // Bookkeep. TextureInfo *tex_info = VersatileResource::allocate(resources_allocator); tex_info->vk_view = vk_image_view; tex_info->rd_format = p_format; tex_info->vk_view_create_info = image_view_create_info; return TextureID(tex_info); } RDD::TextureID RenderingDeviceDriverVulkan::texture_create_shared(TextureID p_original_texture, const TextureView &p_view) { const TextureInfo *owner_tex_info = (const TextureInfo *)p_original_texture.id; #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!owner_tex_info->allocation.handle, TextureID()); #endif VkImageViewCreateInfo image_view_create_info = owner_tex_info->vk_view_create_info; image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format]; image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r; image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g; image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b; image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a; if (enabled_device_extension_names.has(VK_KHR_MAINTENANCE_2_EXTENSION_NAME)) { // May need to make VK_KHR_maintenance2 mandatory and thus has Vulkan 1.1 be our minimum supported version // if we require setting this information. Vulkan 1.0 may simply not care. if (image_view_create_info.format != owner_tex_info->vk_view_create_info.format) { VkImageViewUsageCreateInfo *usage_info = ALLOCA_SINGLE(VkImageViewUsageCreateInfo); *usage_info = {}; usage_info->sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO; usage_info->usage = owner_tex_info->vk_create_info.usage; // Certain features may not be available for the format of the view. { VkFormatProperties properties = {}; vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_view.format], &properties); const VkFormatFeatureFlags &supported_flags = owner_tex_info->vk_create_info.tiling == VK_IMAGE_TILING_LINEAR ? properties.linearTilingFeatures : properties.optimalTilingFeatures; if ((usage_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) && !(supported_flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) { usage_info->usage &= ~VK_IMAGE_USAGE_STORAGE_BIT; } if ((usage_info->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(supported_flags & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) { usage_info->usage &= ~VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } } image_view_create_info.pNext = usage_info; } } VkImageView new_vk_image_view = VK_NULL_HANDLE; VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &new_vk_image_view); ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + "."); // Bookkeep. TextureInfo *tex_info = VersatileResource::allocate(resources_allocator); *tex_info = *owner_tex_info; tex_info->vk_view = new_vk_image_view; tex_info->vk_view_create_info = image_view_create_info; tex_info->allocation = {}; #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX", uint64_t(new_vk_image_view), uint64_t(owner_tex_info->vk_view_create_info.image))); #endif return TextureID(tex_info); } RDD::TextureID RenderingDeviceDriverVulkan::texture_create_shared_from_slice(TextureID p_original_texture, const TextureView &p_view, TextureSliceType p_slice_type, uint32_t p_layer, uint32_t p_layers, uint32_t p_mipmap, uint32_t p_mipmaps) { const TextureInfo *owner_tex_info = (const TextureInfo *)p_original_texture.id; #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!owner_tex_info->allocation.handle, TextureID()); #endif VkImageViewCreateInfo image_view_create_info = owner_tex_info->vk_view_create_info; switch (p_slice_type) { case TEXTURE_SLICE_2D: { image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D; } break; case TEXTURE_SLICE_3D: { image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_3D; } break; case TEXTURE_SLICE_CUBEMAP: { image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_CUBE; } break; case TEXTURE_SLICE_2D_ARRAY: { image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; } break; default: { return TextureID(nullptr); } } image_view_create_info.format = RD_TO_VK_FORMAT[p_view.format]; image_view_create_info.components.r = (VkComponentSwizzle)p_view.swizzle_r; image_view_create_info.components.g = (VkComponentSwizzle)p_view.swizzle_g; image_view_create_info.components.b = (VkComponentSwizzle)p_view.swizzle_b; image_view_create_info.components.a = (VkComponentSwizzle)p_view.swizzle_a; image_view_create_info.subresourceRange.baseMipLevel = p_mipmap; image_view_create_info.subresourceRange.levelCount = p_mipmaps; image_view_create_info.subresourceRange.baseArrayLayer = p_layer; image_view_create_info.subresourceRange.layerCount = p_layers; VkImageView new_vk_image_view = VK_NULL_HANDLE; VkResult err = vkCreateImageView(vk_device, &image_view_create_info, nullptr, &new_vk_image_view); ERR_FAIL_COND_V_MSG(err, TextureID(), "vkCreateImageView failed with error " + itos(err) + "."); // Bookkeep. TextureInfo *tex_info = VersatileResource::allocate(resources_allocator); *tex_info = *owner_tex_info; tex_info->vk_view = new_vk_image_view; tex_info->vk_view_create_info = image_view_create_info; tex_info->allocation = {}; #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCreateImageView: 0x%uX for 0x%uX (%d %d %d %d)", uint64_t(new_vk_image_view), uint64_t(owner_tex_info->vk_view_create_info.image), p_mipmap, p_mipmaps, p_layer, p_layers)); #endif return TextureID(tex_info); } void RenderingDeviceDriverVulkan::texture_free(TextureID p_texture) { TextureInfo *tex_info = (TextureInfo *)p_texture.id; vkDestroyImageView(vk_device, tex_info->vk_view, nullptr); if (tex_info->allocation.handle) { vmaDestroyImage(allocator, tex_info->vk_view_create_info.image, tex_info->allocation.handle); } VersatileResource::free(resources_allocator, tex_info); } uint64_t RenderingDeviceDriverVulkan::texture_get_allocation_size(TextureID p_texture) { const TextureInfo *tex_info = (const TextureInfo *)p_texture.id; return tex_info->allocation.info.size; } void RenderingDeviceDriverVulkan::texture_get_copyable_layout(TextureID p_texture, const TextureSubresource &p_subresource, TextureCopyableLayout *r_layout) { const TextureInfo *tex_info = (const TextureInfo *)p_texture.id; *r_layout = {}; if (tex_info->vk_create_info.tiling == VK_IMAGE_TILING_LINEAR) { VkImageSubresource vk_subres = {}; vk_subres.aspectMask = (VkImageAspectFlags)(1 << p_subresource.aspect); vk_subres.arrayLayer = p_subresource.layer; vk_subres.mipLevel = p_subresource.mipmap; VkSubresourceLayout vk_layout = {}; vkGetImageSubresourceLayout(vk_device, tex_info->vk_view_create_info.image, &vk_subres, &vk_layout); r_layout->offset = vk_layout.offset; r_layout->size = vk_layout.size; r_layout->row_pitch = vk_layout.rowPitch; r_layout->depth_pitch = vk_layout.depthPitch; r_layout->layer_pitch = vk_layout.arrayPitch; } else { // Tight. uint32_t w = tex_info->vk_create_info.extent.width; uint32_t h = tex_info->vk_create_info.extent.height; uint32_t d = tex_info->vk_create_info.extent.depth; if (p_subresource.mipmap > 0) { r_layout->offset = get_image_format_required_size(tex_info->rd_format, w, h, d, p_subresource.mipmap); } for (uint32_t i = 0; i < p_subresource.mipmap; i++) { w = MAX(1u, w >> 1); h = MAX(1u, h >> 1); d = MAX(1u, d >> 1); } uint32_t bw = 0, bh = 0; get_compressed_image_format_block_dimensions(tex_info->rd_format, bw, bh); uint32_t sbw = 0, sbh = 0; r_layout->size = get_image_format_required_size(tex_info->rd_format, w, h, d, 1, &sbw, &sbh); r_layout->row_pitch = r_layout->size / ((sbh / bh) * d); r_layout->depth_pitch = r_layout->size / d; r_layout->layer_pitch = r_layout->size / tex_info->vk_create_info.arrayLayers; } } uint8_t *RenderingDeviceDriverVulkan::texture_map(TextureID p_texture, const TextureSubresource &p_subresource) { const TextureInfo *tex_info = (const TextureInfo *)p_texture.id; VkImageSubresource vk_subres = {}; vk_subres.aspectMask = (VkImageAspectFlags)(1 << p_subresource.aspect); vk_subres.arrayLayer = p_subresource.layer; vk_subres.mipLevel = p_subresource.mipmap; VkSubresourceLayout vk_layout = {}; vkGetImageSubresourceLayout(vk_device, tex_info->vk_view_create_info.image, &vk_subres, &vk_layout); void *data_ptr = nullptr; VkResult err = vkMapMemory( vk_device, tex_info->allocation.info.deviceMemory, tex_info->allocation.info.offset + vk_layout.offset, vk_layout.size, 0, &data_ptr); vmaMapMemory(allocator, tex_info->allocation.handle, &data_ptr); ERR_FAIL_COND_V_MSG(err, nullptr, "vkMapMemory failed with error " + itos(err) + "."); return (uint8_t *)data_ptr; } void RenderingDeviceDriverVulkan::texture_unmap(TextureID p_texture) { const TextureInfo *tex_info = (const TextureInfo *)p_texture.id; vkUnmapMemory(vk_device, tex_info->allocation.info.deviceMemory); } BitField RenderingDeviceDriverVulkan::texture_get_usages_supported_by_format(DataFormat p_format, bool p_cpu_readable) { VkFormatProperties properties = {}; vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_format], &properties); const VkFormatFeatureFlags &flags = p_cpu_readable ? properties.linearTilingFeatures : properties.optimalTilingFeatures; // Everything supported by default makes an all-or-nothing check easier for the caller. BitField supported = INT64_MAX; if (!(flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) { supported.clear_flag(TEXTURE_USAGE_SAMPLING_BIT); } if (!(flags & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) { supported.clear_flag(TEXTURE_USAGE_COLOR_ATTACHMENT_BIT); } if (!(flags & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)) { supported.clear_flag(TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT); } if (!(flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) { supported.clear_flag(TEXTURE_USAGE_STORAGE_BIT); } if (!(flags & VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT)) { supported.clear_flag(TEXTURE_USAGE_STORAGE_ATOMIC_BIT); } // Validation via VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR fails if VRS attachment is not supported. if (p_format != DATA_FORMAT_R8_UINT) { supported.clear_flag(TEXTURE_USAGE_VRS_ATTACHMENT_BIT); } return supported; } /*****************/ /**** SAMPLER ****/ /*****************/ // RDD::SamplerRepeatMode == VkSamplerAddressMode. static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT, VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_CLAMP_TO_BORDER, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_REPEAT_MODE_MIRROR_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE)); // RDD::SamplerBorderColor == VkBorderColor. static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_TRANSPARENT_BLACK, VK_BORDER_COLOR_INT_TRANSPARENT_BLACK)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_BLACK, VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_OPAQUE_BLACK, VK_BORDER_COLOR_INT_OPAQUE_BLACK)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_FLOAT_OPAQUE_WHITE, VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::SAMPLER_BORDER_COLOR_INT_OPAQUE_WHITE, VK_BORDER_COLOR_INT_OPAQUE_WHITE)); RDD::SamplerID RenderingDeviceDriverVulkan::sampler_create(const SamplerState &p_state) { VkSamplerCreateInfo sampler_create_info = {}; sampler_create_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; sampler_create_info.pNext = nullptr; sampler_create_info.flags = 0; sampler_create_info.magFilter = p_state.mag_filter == SAMPLER_FILTER_LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; sampler_create_info.minFilter = p_state.min_filter == SAMPLER_FILTER_LINEAR ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; sampler_create_info.mipmapMode = p_state.mip_filter == SAMPLER_FILTER_LINEAR ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; sampler_create_info.addressModeU = (VkSamplerAddressMode)p_state.repeat_u; sampler_create_info.addressModeV = (VkSamplerAddressMode)p_state.repeat_v; sampler_create_info.addressModeW = (VkSamplerAddressMode)p_state.repeat_w; sampler_create_info.mipLodBias = p_state.lod_bias; sampler_create_info.anisotropyEnable = p_state.use_anisotropy && (physical_device_features.samplerAnisotropy == VK_TRUE); sampler_create_info.maxAnisotropy = p_state.anisotropy_max; sampler_create_info.compareEnable = p_state.enable_compare; sampler_create_info.compareOp = (VkCompareOp)p_state.compare_op; sampler_create_info.minLod = p_state.min_lod; sampler_create_info.maxLod = p_state.max_lod; sampler_create_info.borderColor = (VkBorderColor)p_state.border_color; sampler_create_info.unnormalizedCoordinates = p_state.unnormalized_uvw; VkSampler vk_sampler = VK_NULL_HANDLE; VkResult res = vkCreateSampler(vk_device, &sampler_create_info, nullptr, &vk_sampler); ERR_FAIL_COND_V_MSG(res, SamplerID(), "vkCreateSampler failed with error " + itos(res) + "."); return SamplerID(vk_sampler); } void RenderingDeviceDriverVulkan::sampler_free(SamplerID p_sampler) { vkDestroySampler(vk_device, (VkSampler)p_sampler.id, nullptr); } bool RenderingDeviceDriverVulkan::sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_filter) { switch (p_filter) { case SAMPLER_FILTER_NEAREST: { return true; } case SAMPLER_FILTER_LINEAR: { VkFormatProperties properties = {}; vkGetPhysicalDeviceFormatProperties(physical_device, RD_TO_VK_FORMAT[p_format], &properties); return (properties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT); } } return false; } /**********************/ /**** VERTEX ARRAY ****/ /**********************/ RDD::VertexFormatID RenderingDeviceDriverVulkan::vertex_format_create(VectorView p_vertex_attribs) { // Pre-bookkeep. VertexFormatInfo *vf_info = VersatileResource::allocate(resources_allocator); vf_info->vk_bindings.resize(p_vertex_attribs.size()); vf_info->vk_attributes.resize(p_vertex_attribs.size()); for (uint32_t i = 0; i < p_vertex_attribs.size(); i++) { vf_info->vk_bindings[i] = {}; vf_info->vk_bindings[i].binding = i; vf_info->vk_bindings[i].stride = p_vertex_attribs[i].stride; vf_info->vk_bindings[i].inputRate = p_vertex_attribs[i].frequency == VERTEX_FREQUENCY_INSTANCE ? VK_VERTEX_INPUT_RATE_INSTANCE : VK_VERTEX_INPUT_RATE_VERTEX; vf_info->vk_attributes[i] = {}; vf_info->vk_attributes[i].binding = i; vf_info->vk_attributes[i].location = p_vertex_attribs[i].location; vf_info->vk_attributes[i].format = RD_TO_VK_FORMAT[p_vertex_attribs[i].format]; vf_info->vk_attributes[i].offset = p_vertex_attribs[i].offset; } vf_info->vk_create_info = {}; vf_info->vk_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vf_info->vk_create_info.vertexBindingDescriptionCount = vf_info->vk_bindings.size(); vf_info->vk_create_info.pVertexBindingDescriptions = vf_info->vk_bindings.ptr(); vf_info->vk_create_info.vertexAttributeDescriptionCount = vf_info->vk_attributes.size(); vf_info->vk_create_info.pVertexAttributeDescriptions = vf_info->vk_attributes.ptr(); return VertexFormatID(vf_info); } void RenderingDeviceDriverVulkan::vertex_format_free(VertexFormatID p_vertex_format) { VertexFormatInfo *vf_info = (VertexFormatInfo *)p_vertex_format.id; VersatileResource::free(resources_allocator, vf_info); } /******************/ /**** BARRIERS ****/ /******************/ // RDD::PipelineStageBits == VkPipelineStageFlagBits. static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_DRAW_INDIRECT_BIT, VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_GEOMETRY_SHADER_BIT, VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)); // RDD::BarrierAccessBits == VkAccessFlagBits. static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INDIRECT_COMMAND_READ_BIT, VK_ACCESS_INDIRECT_COMMAND_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INDEX_READ_BIT, VK_ACCESS_INDEX_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_UNIFORM_READ_BIT, VK_ACCESS_UNIFORM_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_INPUT_ATTACHMENT_READ_BIT, VK_ACCESS_INPUT_ATTACHMENT_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_SHADER_READ_BIT, VK_ACCESS_SHADER_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_SHADER_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_READ_BIT, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_TRANSFER_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_HOST_READ_BIT, VK_ACCESS_HOST_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_HOST_WRITE_BIT, VK_ACCESS_HOST_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_MEMORY_READ_BIT, VK_ACCESS_MEMORY_READ_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_MEMORY_WRITE_BIT, VK_ACCESS_MEMORY_WRITE_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BARRIER_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT, VK_ACCESS_FRAGMENT_SHADING_RATE_ATTACHMENT_READ_BIT_KHR)); void RenderingDeviceDriverVulkan::command_pipeline_barrier( CommandBufferID p_cmd_buffer, BitField p_src_stages, BitField p_dst_stages, VectorView p_memory_barriers, VectorView p_buffer_barriers, VectorView p_texture_barriers) { VkMemoryBarrier *vk_memory_barriers = ALLOCA_ARRAY(VkMemoryBarrier, p_memory_barriers.size()); for (uint32_t i = 0; i < p_memory_barriers.size(); i++) { vk_memory_barriers[i] = {}; vk_memory_barriers[i].sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER; vk_memory_barriers[i].srcAccessMask = (VkPipelineStageFlags)p_memory_barriers[i].src_access; vk_memory_barriers[i].dstAccessMask = (VkAccessFlags)p_memory_barriers[i].dst_access; } VkBufferMemoryBarrier *vk_buffer_barriers = ALLOCA_ARRAY(VkBufferMemoryBarrier, p_buffer_barriers.size()); for (uint32_t i = 0; i < p_buffer_barriers.size(); i++) { vk_buffer_barriers[i] = {}; vk_buffer_barriers[i].sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER; vk_buffer_barriers[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk_buffer_barriers[i].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk_buffer_barriers[i].srcAccessMask = (VkAccessFlags)p_buffer_barriers[i].src_access; vk_buffer_barriers[i].dstAccessMask = (VkAccessFlags)p_buffer_barriers[i].dst_access; vk_buffer_barriers[i].buffer = ((const BufferInfo *)p_buffer_barriers[i].buffer.id)->vk_buffer; vk_buffer_barriers[i].offset = p_buffer_barriers[i].offset; vk_buffer_barriers[i].size = p_buffer_barriers[i].size; } VkImageMemoryBarrier *vk_image_barriers = ALLOCA_ARRAY(VkImageMemoryBarrier, p_texture_barriers.size()); for (uint32_t i = 0; i < p_texture_barriers.size(); i++) { const TextureInfo *tex_info = (const TextureInfo *)p_texture_barriers[i].texture.id; vk_image_barriers[i] = {}; vk_image_barriers[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; vk_image_barriers[i].srcAccessMask = (VkAccessFlags)p_texture_barriers[i].src_access; vk_image_barriers[i].dstAccessMask = (VkAccessFlags)p_texture_barriers[i].dst_access; vk_image_barriers[i].oldLayout = (VkImageLayout)p_texture_barriers[i].prev_layout; vk_image_barriers[i].newLayout = (VkImageLayout)p_texture_barriers[i].next_layout; vk_image_barriers[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk_image_barriers[i].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vk_image_barriers[i].image = tex_info->vk_view_create_info.image; vk_image_barriers[i].subresourceRange.aspectMask = (VkImageAspectFlags)p_texture_barriers[i].subresources.aspect; vk_image_barriers[i].subresourceRange.baseMipLevel = p_texture_barriers[i].subresources.base_mipmap; vk_image_barriers[i].subresourceRange.levelCount = p_texture_barriers[i].subresources.mipmap_count; vk_image_barriers[i].subresourceRange.baseArrayLayer = p_texture_barriers[i].subresources.base_layer; vk_image_barriers[i].subresourceRange.layerCount = p_texture_barriers[i].subresources.layer_count; } #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCmdPipelineBarrier MEMORY %d BUFFER %d TEXTURE %d", p_memory_barriers.size(), p_buffer_barriers.size(), p_texture_barriers.size())); for (uint32_t i = 0; i < p_memory_barriers.size(); i++) { print_line(vformat(" VkMemoryBarrier #%d src 0x%uX dst 0x%uX", i, vk_memory_barriers[i].srcAccessMask, vk_memory_barriers[i].dstAccessMask)); } for (uint32_t i = 0; i < p_buffer_barriers.size(); i++) { print_line(vformat(" VkBufferMemoryBarrier #%d src 0x%uX dst 0x%uX buffer 0x%ux", i, vk_buffer_barriers[i].srcAccessMask, vk_buffer_barriers[i].dstAccessMask, uint64_t(vk_buffer_barriers[i].buffer))); } for (uint32_t i = 0; i < p_texture_barriers.size(); i++) { print_line(vformat(" VkImageMemoryBarrier #%d src 0x%uX dst 0x%uX image 0x%ux old %d new %d (%d %d %d %d)", i, vk_image_barriers[i].srcAccessMask, vk_image_barriers[i].dstAccessMask, uint64_t(vk_image_barriers[i].image), vk_image_barriers[i].oldLayout, vk_image_barriers[i].newLayout, vk_image_barriers[i].subresourceRange.baseMipLevel, vk_image_barriers[i].subresourceRange.levelCount, vk_image_barriers[i].subresourceRange.baseArrayLayer, vk_image_barriers[i].subresourceRange.layerCount)); } #endif vkCmdPipelineBarrier( (VkCommandBuffer)p_cmd_buffer.id, (VkPipelineStageFlags)p_src_stages, (VkPipelineStageFlags)p_dst_stages, 0, p_memory_barriers.size(), vk_memory_barriers, p_buffer_barriers.size(), vk_buffer_barriers, p_texture_barriers.size(), vk_image_barriers); } /****************/ /**** FENCES ****/ /****************/ RDD::FenceID RenderingDeviceDriverVulkan::fence_create() { VkFence vk_fence = VK_NULL_HANDLE; VkFenceCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; VkResult err = vkCreateFence(vk_device, &create_info, nullptr, &vk_fence); ERR_FAIL_COND_V(err != VK_SUCCESS, FenceID()); Fence *fence = memnew(Fence); fence->vk_fence = vk_fence; fence->queue_signaled_from = nullptr; return FenceID(fence); } Error RenderingDeviceDriverVulkan::fence_wait(FenceID p_fence) { Fence *fence = (Fence *)(p_fence.id); VkResult err = vkWaitForFences(vk_device, 1, &fence->vk_fence, VK_TRUE, UINT64_MAX); ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED); err = vkResetFences(vk_device, 1, &fence->vk_fence); ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED); if (fence->queue_signaled_from != nullptr) { // Release all semaphores that the command queue associated to the fence waited on the last time it was submitted. LocalVector> &pairs = fence->queue_signaled_from->image_semaphores_for_fences; uint32_t i = 0; while (i < pairs.size()) { if (pairs[i].first == fence) { _release_image_semaphore(fence->queue_signaled_from, pairs[i].second, true); fence->queue_signaled_from->free_image_semaphores.push_back(pairs[i].second); pairs.remove_at(i); } else { i++; } } fence->queue_signaled_from = nullptr; } return OK; } void RenderingDeviceDriverVulkan::fence_free(FenceID p_fence) { Fence *fence = (Fence *)(p_fence.id); vkDestroyFence(vk_device, fence->vk_fence, nullptr); memdelete(fence); } /********************/ /**** SEMAPHORES ****/ /********************/ RDD::SemaphoreID RenderingDeviceDriverVulkan::semaphore_create() { VkSemaphore semaphore = VK_NULL_HANDLE; VkSemaphoreCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkResult err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore); ERR_FAIL_COND_V(err != VK_SUCCESS, SemaphoreID()); return SemaphoreID(semaphore); } void RenderingDeviceDriverVulkan::semaphore_free(SemaphoreID p_semaphore) { vkDestroySemaphore(vk_device, VkSemaphore(p_semaphore.id), nullptr); } /******************/ /**** COMMANDS ****/ /******************/ // ----- QUEUE FAMILY ----- RDD::CommandQueueFamilyID RenderingDeviceDriverVulkan::command_queue_family_get(BitField p_cmd_queue_family_bits, RenderingContextDriver::SurfaceID p_surface) { // Pick the queue with the least amount of bits that can fulfill the requirements. VkQueueFlags picked_queue_flags = VK_QUEUE_FLAG_BITS_MAX_ENUM; uint32_t picked_family_index = UINT_MAX; for (uint32_t i = 0; i < queue_family_properties.size(); i++) { if (queue_families[i].is_empty()) { // Ignore empty queue families. continue; } if (p_surface != 0 && !context_driver->queue_family_supports_present(physical_device, i, p_surface)) { // Present is not an actual bit but something that must be queried manually. continue; } // Preferring a queue with less bits will get us closer to getting a queue that performs better for our requirements. // For example, dedicated compute and transfer queues are usually indicated as such. const VkQueueFlags option_queue_flags = queue_family_properties[i].queueFlags; const bool includes_all_bits = (option_queue_flags & p_cmd_queue_family_bits) == p_cmd_queue_family_bits; const bool prefer_less_bits = option_queue_flags < picked_queue_flags; if (includes_all_bits && prefer_less_bits) { picked_family_index = i; picked_queue_flags = option_queue_flags; } } ERR_FAIL_COND_V_MSG(picked_family_index >= queue_family_properties.size(), CommandQueueFamilyID(), "A queue family with the requested bits could not be found."); // Since 0 is a valid index and we use 0 as the error case, we make the index start from 1 instead. return CommandQueueFamilyID(picked_family_index + 1); } // ----- QUEUE ----- RDD::CommandQueueID RenderingDeviceDriverVulkan::command_queue_create(CommandQueueFamilyID p_cmd_queue_family, bool p_identify_as_main_queue) { DEV_ASSERT(p_cmd_queue_family.id != 0); // Make a virtual queue on top of a real queue. Use the queue from the family with the least amount of virtual queues created. uint32_t family_index = p_cmd_queue_family.id - 1; TightLocalVector &queue_family = queue_families[family_index]; uint32_t picked_queue_index = UINT_MAX; uint32_t picked_virtual_count = UINT_MAX; for (uint32_t i = 0; i < queue_family.size(); i++) { if (queue_family[i].virtual_count < picked_virtual_count) { picked_queue_index = i; picked_virtual_count = queue_family[i].virtual_count; } } ERR_FAIL_COND_V_MSG(picked_queue_index >= queue_family.size(), CommandQueueID(), "A queue in the picked family could not be found."); // Create the virtual queue. CommandQueue *command_queue = memnew(CommandQueue); command_queue->queue_family = family_index; command_queue->queue_index = picked_queue_index; queue_family[picked_queue_index].virtual_count++; // If is was identified as the main queue and a hook is active, indicate it as such to the hook. if (p_identify_as_main_queue && (VulkanHooks::get_singleton() != nullptr)) { VulkanHooks::get_singleton()->set_direct_queue_family_and_index(family_index, picked_queue_index); } return CommandQueueID(command_queue); } Error RenderingDeviceDriverVulkan::command_queue_execute_and_present(CommandQueueID p_cmd_queue, VectorView p_wait_semaphores, VectorView p_cmd_buffers, VectorView p_cmd_semaphores, FenceID p_cmd_fence, VectorView p_swap_chains) { DEV_ASSERT(p_cmd_queue.id != 0); VkResult err; CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id); Queue &device_queue = queue_families[command_queue->queue_family][command_queue->queue_index]; Fence *fence = (Fence *)(p_cmd_fence.id); VkFence vk_fence = (fence != nullptr) ? fence->vk_fence : VK_NULL_HANDLE; thread_local LocalVector wait_semaphores; thread_local LocalVector wait_semaphores_stages; wait_semaphores.clear(); wait_semaphores_stages.clear(); if (!command_queue->pending_semaphores_for_execute.is_empty()) { for (uint32_t i = 0; i < command_queue->pending_semaphores_for_execute.size(); i++) { VkSemaphore wait_semaphore = command_queue->image_semaphores[command_queue->pending_semaphores_for_execute[i]]; wait_semaphores.push_back(wait_semaphore); wait_semaphores_stages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT); } command_queue->pending_semaphores_for_execute.clear(); } for (uint32_t i = 0; i < p_wait_semaphores.size(); i++) { // FIXME: Allow specifying the stage mask in more detail. wait_semaphores.push_back(VkSemaphore(p_wait_semaphores[i].id)); wait_semaphores_stages.push_back(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT); } if (p_cmd_buffers.size() > 0) { thread_local LocalVector command_buffers; thread_local LocalVector signal_semaphores; command_buffers.clear(); signal_semaphores.clear(); for (uint32_t i = 0; i < p_cmd_buffers.size(); i++) { command_buffers.push_back(VkCommandBuffer(p_cmd_buffers[i].id)); } for (uint32_t i = 0; i < p_cmd_semaphores.size(); i++) { signal_semaphores.push_back(VkSemaphore(p_cmd_semaphores[i].id)); } VkSemaphore present_semaphore = VK_NULL_HANDLE; if (p_swap_chains.size() > 0) { if (command_queue->present_semaphores.is_empty()) { // Create the semaphores used for presentation if they haven't been created yet. VkSemaphore semaphore = VK_NULL_HANDLE; VkSemaphoreCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; for (uint32_t i = 0; i < frame_count; i++) { err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore); ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED); command_queue->present_semaphores.push_back(semaphore); } } // If a presentation semaphore is required, cycle across the ones available on the queue. It is technically possible // and valid to reuse the same semaphore for this particular operation, but we create multiple ones anyway in case // some hardware expects multiple semaphores to be used. present_semaphore = command_queue->present_semaphores[command_queue->present_semaphore_index]; signal_semaphores.push_back(present_semaphore); command_queue->present_semaphore_index = (command_queue->present_semaphore_index + 1) % command_queue->present_semaphores.size(); } VkSubmitInfo submit_info = {}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.waitSemaphoreCount = wait_semaphores.size(); submit_info.pWaitSemaphores = wait_semaphores.ptr(); submit_info.pWaitDstStageMask = wait_semaphores_stages.ptr(); submit_info.commandBufferCount = command_buffers.size(); submit_info.pCommandBuffers = command_buffers.ptr(); submit_info.signalSemaphoreCount = signal_semaphores.size(); submit_info.pSignalSemaphores = signal_semaphores.ptr(); device_queue.submit_mutex.lock(); err = vkQueueSubmit(device_queue.queue, 1, &submit_info, vk_fence); device_queue.submit_mutex.unlock(); ERR_FAIL_COND_V(err != VK_SUCCESS, FAILED); if (fence != nullptr && !command_queue->pending_semaphores_for_fence.is_empty()) { fence->queue_signaled_from = command_queue; // Indicate to the fence that it should release the semaphores that were waited on this submission the next time the fence is waited on. for (uint32_t i = 0; i < command_queue->pending_semaphores_for_fence.size(); i++) { command_queue->image_semaphores_for_fences.push_back({ fence, command_queue->pending_semaphores_for_fence[i] }); } command_queue->pending_semaphores_for_fence.clear(); } if (present_semaphore != VK_NULL_HANDLE) { // If command buffers were executed, swap chains must wait on the present semaphore used by the command queue. wait_semaphores.clear(); wait_semaphores.push_back(present_semaphore); } } if (p_swap_chains.size() > 0) { thread_local LocalVector swapchains; thread_local LocalVector image_indices; thread_local LocalVector results; swapchains.clear(); image_indices.clear(); for (uint32_t i = 0; i < p_swap_chains.size(); i++) { SwapChain *swap_chain = (SwapChain *)(p_swap_chains[i].id); swapchains.push_back(swap_chain->vk_swapchain); DEV_ASSERT(swap_chain->image_index < swap_chain->images.size()); image_indices.push_back(swap_chain->image_index); } results.resize(swapchains.size()); VkPresentInfoKHR present_info = {}; present_info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present_info.waitSemaphoreCount = wait_semaphores.size(); present_info.pWaitSemaphores = wait_semaphores.ptr(); present_info.swapchainCount = swapchains.size(); present_info.pSwapchains = swapchains.ptr(); present_info.pImageIndices = image_indices.ptr(); present_info.pResults = results.ptr(); device_queue.submit_mutex.lock(); err = device_functions.QueuePresentKHR(device_queue.queue, &present_info); device_queue.submit_mutex.unlock(); // Set the index to an invalid value. If any of the swap chains returned out of date, indicate it should be resized the next time it's acquired. bool any_result_is_out_of_date = false; for (uint32_t i = 0; i < p_swap_chains.size(); i++) { SwapChain *swap_chain = (SwapChain *)(p_swap_chains[i].id); swap_chain->image_index = UINT_MAX; if (results[i] == VK_ERROR_OUT_OF_DATE_KHR) { context_driver->surface_set_needs_resize(swap_chain->surface, true); any_result_is_out_of_date = true; } } if (any_result_is_out_of_date || err == VK_ERROR_OUT_OF_DATE_KHR) { // It is possible for presentation to fail with out of date while acquire might've succeeded previously. This case // will be considered a silent failure as it can be triggered easily by resizing a window in the OS natively. return FAILED; } // Handling VK_SUBOPTIMAL_KHR the same as VK_SUCCESS is completely intentional. // // Godot does not currently support native rotation in Android when creating the swap chain. It intentionally uses // VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR instead of the current transform bits available in the surface capabilities. // Choosing the transform that leads to optimal presentation leads to distortion that makes the application unusable, // as the rotation of all the content is not handled at the moment. // // VK_SUBOPTIMAL_KHR is accepted as a successful case even if it's not the most efficient solution to work around this // problem. This behavior should not be changed unless the swap chain recreation uses the current transform bits, as // it'll lead to very low performance in Android by entering an endless loop where it'll always resize the swap chain // every frame. ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_SUBOPTIMAL_KHR, FAILED); } return OK; } void RenderingDeviceDriverVulkan::command_queue_free(CommandQueueID p_cmd_queue) { DEV_ASSERT(p_cmd_queue); CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id); // Erase all the semaphores used for presentation. for (VkSemaphore semaphore : command_queue->present_semaphores) { vkDestroySemaphore(vk_device, semaphore, nullptr); } // Erase all the semaphores used for image acquisition. for (VkSemaphore semaphore : command_queue->image_semaphores) { vkDestroySemaphore(vk_device, semaphore, nullptr); } // Retrieve the queue family corresponding to the virtual queue. DEV_ASSERT(command_queue->queue_family < queue_families.size()); TightLocalVector &queue_family = queue_families[command_queue->queue_family]; // Decrease the virtual queue count. DEV_ASSERT(command_queue->queue_index < queue_family.size()); DEV_ASSERT(queue_family[command_queue->queue_index].virtual_count > 0); queue_family[command_queue->queue_index].virtual_count--; // Destroy the virtual queue structure. memdelete(command_queue); } // ----- POOL ----- RDD::CommandPoolID RenderingDeviceDriverVulkan::command_pool_create(CommandQueueFamilyID p_cmd_queue_family, CommandBufferType p_cmd_buffer_type) { DEV_ASSERT(p_cmd_queue_family.id != 0); uint32_t family_index = p_cmd_queue_family.id - 1; VkCommandPoolCreateInfo cmd_pool_info = {}; cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmd_pool_info.queueFamilyIndex = family_index; cmd_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VkCommandPool vk_command_pool = VK_NULL_HANDLE; VkResult res = vkCreateCommandPool(vk_device, &cmd_pool_info, nullptr, &vk_command_pool); ERR_FAIL_COND_V_MSG(res, CommandPoolID(), "vkCreateCommandPool failed with error " + itos(res) + "."); CommandPool *command_pool = memnew(CommandPool); command_pool->vk_command_pool = vk_command_pool; command_pool->buffer_type = p_cmd_buffer_type; return CommandPoolID(command_pool); } void RenderingDeviceDriverVulkan::command_pool_free(CommandPoolID p_cmd_pool) { DEV_ASSERT(p_cmd_pool); CommandPool *command_pool = (CommandPool *)(p_cmd_pool.id); vkDestroyCommandPool(vk_device, command_pool->vk_command_pool, nullptr); memdelete(command_pool); } // ----- BUFFER ----- RDD::CommandBufferID RenderingDeviceDriverVulkan::command_buffer_create(CommandPoolID p_cmd_pool) { DEV_ASSERT(p_cmd_pool); const CommandPool *command_pool = (const CommandPool *)(p_cmd_pool.id); VkCommandBufferAllocateInfo cmd_buf_info = {}; cmd_buf_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmd_buf_info.commandPool = command_pool->vk_command_pool; cmd_buf_info.commandBufferCount = 1; if (command_pool->buffer_type == COMMAND_BUFFER_TYPE_SECONDARY) { cmd_buf_info.level = VK_COMMAND_BUFFER_LEVEL_SECONDARY; } else { cmd_buf_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; } VkCommandBuffer vk_cmd_buffer = VK_NULL_HANDLE; VkResult err = vkAllocateCommandBuffers(vk_device, &cmd_buf_info, &vk_cmd_buffer); ERR_FAIL_COND_V_MSG(err, CommandBufferID(), "vkAllocateCommandBuffers failed with error " + itos(err) + "."); return CommandBufferID(vk_cmd_buffer); } bool RenderingDeviceDriverVulkan::command_buffer_begin(CommandBufferID p_cmd_buffer) { // Reset is implicit (VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT). VkCommandBufferBeginInfo cmd_buf_begin_info = {}; cmd_buf_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmd_buf_begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; VkResult err = vkBeginCommandBuffer((VkCommandBuffer)p_cmd_buffer.id, &cmd_buf_begin_info); ERR_FAIL_COND_V_MSG(err, false, "vkBeginCommandBuffer failed with error " + itos(err) + "."); return true; } bool RenderingDeviceDriverVulkan::command_buffer_begin_secondary(CommandBufferID p_cmd_buffer, RenderPassID p_render_pass, uint32_t p_subpass, FramebufferID p_framebuffer) { // Reset is implicit (VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT). VkCommandBufferInheritanceInfo inheritance_info = {}; inheritance_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO; inheritance_info.renderPass = (VkRenderPass)p_render_pass.id; inheritance_info.subpass = p_subpass; inheritance_info.framebuffer = (VkFramebuffer)p_framebuffer.id; VkCommandBufferBeginInfo cmd_buf_begin_info = {}; cmd_buf_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmd_buf_begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT | VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; cmd_buf_begin_info.pInheritanceInfo = &inheritance_info; VkResult err = vkBeginCommandBuffer((VkCommandBuffer)p_cmd_buffer.id, &cmd_buf_begin_info); ERR_FAIL_COND_V_MSG(err, false, "vkBeginCommandBuffer failed with error " + itos(err) + "."); return true; } void RenderingDeviceDriverVulkan::command_buffer_end(CommandBufferID p_cmd_buffer) { vkEndCommandBuffer((VkCommandBuffer)p_cmd_buffer.id); } void RenderingDeviceDriverVulkan::command_buffer_execute_secondary(CommandBufferID p_cmd_buffer, VectorView p_secondary_cmd_buffers) { vkCmdExecuteCommands((VkCommandBuffer)p_cmd_buffer.id, p_secondary_cmd_buffers.size(), (const VkCommandBuffer *)p_secondary_cmd_buffers.ptr()); } /********************/ /**** SWAP CHAIN ****/ /********************/ void RenderingDeviceDriverVulkan::_swap_chain_release(SwapChain *swap_chain) { // Destroy views and framebuffers associated to the swapchain's images. for (FramebufferID framebuffer : swap_chain->framebuffers) { framebuffer_free(framebuffer); } for (VkImageView view : swap_chain->image_views) { vkDestroyImageView(vk_device, view, nullptr); } swap_chain->image_index = UINT_MAX; swap_chain->images.clear(); swap_chain->image_views.clear(); swap_chain->framebuffers.clear(); if (swap_chain->vk_swapchain != VK_NULL_HANDLE) { device_functions.DestroySwapchainKHR(vk_device, swap_chain->vk_swapchain, nullptr); swap_chain->vk_swapchain = VK_NULL_HANDLE; } for (uint32_t i = 0; i < swap_chain->command_queues_acquired.size(); i++) { _recreate_image_semaphore(swap_chain->command_queues_acquired[i], swap_chain->command_queues_acquired_semaphores[i], false); } swap_chain->command_queues_acquired.clear(); swap_chain->command_queues_acquired_semaphores.clear(); } RenderingDeviceDriver::SwapChainID RenderingDeviceDriverVulkan::swap_chain_create(RenderingContextDriver::SurfaceID p_surface) { DEV_ASSERT(p_surface != 0); RenderingContextDriverVulkan::Surface *surface = (RenderingContextDriverVulkan::Surface *)(p_surface); const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); // Retrieve the formats supported by the surface. uint32_t format_count = 0; VkResult err = functions.GetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface->vk_surface, &format_count, nullptr); ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID()); TightLocalVector formats; formats.resize(format_count); err = functions.GetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface->vk_surface, &format_count, formats.ptr()); ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID()); VkFormat format = VK_FORMAT_UNDEFINED; VkColorSpaceKHR color_space = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR; if (format_count == 1 && formats[0].format == VK_FORMAT_UNDEFINED) { // If the format list includes just one entry of VK_FORMAT_UNDEFINED, the surface has no preferred format. format = VK_FORMAT_B8G8R8A8_UNORM; color_space = formats[0].colorSpace; } else if (format_count > 0) { // Use one of the supported formats, prefer B8G8R8A8_UNORM. const VkFormat preferred_format = VK_FORMAT_B8G8R8A8_UNORM; const VkFormat second_format = VK_FORMAT_R8G8B8A8_UNORM; for (uint32_t i = 0; i < format_count; i++) { if (formats[i].format == preferred_format || formats[i].format == second_format) { format = formats[i].format; if (formats[i].format == preferred_format) { // This is the preferred format, stop searching. break; } } } } // No formats are supported. ERR_FAIL_COND_V_MSG(format == VK_FORMAT_UNDEFINED, SwapChainID(), "Surface did not return any valid formats."); // Create the render pass for the chosen format. VkAttachmentDescription2KHR attachment = {}; attachment.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR; attachment.format = format; attachment.samples = VK_SAMPLE_COUNT_1_BIT; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference2KHR color_reference = {}; color_reference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR; color_reference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription2KHR subpass = {}; subpass.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_reference; VkRenderPassCreateInfo2KHR pass_info = {}; pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR; pass_info.attachmentCount = 1; pass_info.pAttachments = &attachment; pass_info.subpassCount = 1; pass_info.pSubpasses = &subpass; VkRenderPass render_pass = VK_NULL_HANDLE; err = _create_render_pass(vk_device, &pass_info, nullptr, &render_pass); ERR_FAIL_COND_V(err != VK_SUCCESS, SwapChainID()); SwapChain *swap_chain = memnew(SwapChain); swap_chain->surface = p_surface; swap_chain->format = format; swap_chain->color_space = color_space; swap_chain->render_pass = RenderPassID(render_pass); return SwapChainID(swap_chain); } Error RenderingDeviceDriverVulkan::swap_chain_resize(CommandQueueID p_cmd_queue, SwapChainID p_swap_chain, uint32_t p_desired_framebuffer_count) { DEV_ASSERT(p_cmd_queue.id != 0); DEV_ASSERT(p_swap_chain.id != 0); CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id); SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id); // Release all current contents of the swap chain. _swap_chain_release(swap_chain); // Validate if the command queue being used supports creating the swap chain for this surface. const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); if (!context_driver->queue_family_supports_present(physical_device, command_queue->queue_family, swap_chain->surface)) { ERR_FAIL_V_MSG(ERR_CANT_CREATE, "Surface is not supported by device. Did the GPU go offline? Was the window created on another monitor? Check" "previous errors & try launching with --gpu-validation."); } // Retrieve the surface's capabilities. RenderingContextDriverVulkan::Surface *surface = (RenderingContextDriverVulkan::Surface *)(swap_chain->surface); VkSurfaceCapabilitiesKHR surface_capabilities = {}; VkResult err = functions.GetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, surface->vk_surface, &surface_capabilities); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); VkExtent2D extent; if (surface_capabilities.currentExtent.width == 0xFFFFFFFF) { // The current extent is currently undefined, so the current surface width and height will be clamped to the surface's capabilities. extent.width = CLAMP(surface->width, surface_capabilities.minImageExtent.width, surface_capabilities.maxImageExtent.width); extent.height = CLAMP(surface->height, surface_capabilities.minImageExtent.height, surface_capabilities.maxImageExtent.height); } else { // Grab the dimensions from the current extent. extent = surface_capabilities.currentExtent; surface->width = extent.width; surface->height = extent.height; } if (surface->width == 0 || surface->height == 0) { // The surface doesn't have valid dimensions, so we can't create a swap chain. return ERR_SKIP; } // Find what present modes are supported. TightLocalVector present_modes; uint32_t present_modes_count = 0; err = functions.GetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface->vk_surface, &present_modes_count, nullptr); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); present_modes.resize(present_modes_count); err = functions.GetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface->vk_surface, &present_modes_count, present_modes.ptr()); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); // Choose the present mode based on the display server setting. VkPresentModeKHR present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR; String present_mode_name = "Enabled"; switch (surface->vsync_mode) { case DisplayServer::VSYNC_MAILBOX: present_mode = VK_PRESENT_MODE_MAILBOX_KHR; present_mode_name = "Mailbox"; break; case DisplayServer::VSYNC_ADAPTIVE: present_mode = VK_PRESENT_MODE_FIFO_RELAXED_KHR; present_mode_name = "Adaptive"; break; case DisplayServer::VSYNC_ENABLED: present_mode = VK_PRESENT_MODE_FIFO_KHR; present_mode_name = "Enabled"; break; case DisplayServer::VSYNC_DISABLED: present_mode = VK_PRESENT_MODE_IMMEDIATE_KHR; present_mode_name = "Disabled"; break; } bool present_mode_available = present_modes.find(present_mode) >= 0; if (present_mode_available) { print_verbose("Using present mode: " + present_mode_name); } else { // Present mode is not available, fall back to FIFO which is guaranteed to be supported. WARN_PRINT(vformat("The requested V-Sync mode %s is not available. Falling back to V-Sync mode Enabled.", present_mode_name)); surface->vsync_mode = DisplayServer::VSYNC_ENABLED; present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR; } // Clamp the desired image count to the surface's capabilities. uint32_t desired_swapchain_images = MAX(p_desired_framebuffer_count, surface_capabilities.minImageCount); if (surface_capabilities.maxImageCount > 0) { // Only clamp to the max image count if it's defined. A max image count of 0 means there's no upper limit to the amount of images. desired_swapchain_images = MIN(desired_swapchain_images, surface_capabilities.maxImageCount); } // Prefer identity transform if it's supported, use the current transform otherwise. // This behavior is intended as Godot does not supported native rotation in platforms that use these bits. // Refer to the comment in command_queue_present() for more details. VkSurfaceTransformFlagBitsKHR surface_transform_bits; if (surface_capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { surface_transform_bits = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { surface_transform_bits = surface_capabilities.currentTransform; } VkCompositeAlphaFlagBitsKHR composite_alpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; if (OS::get_singleton()->is_layered_allowed() || !(surface_capabilities.supportedCompositeAlpha & composite_alpha)) { // Find a supported composite alpha mode - one of these is guaranteed to be set. VkCompositeAlphaFlagBitsKHR composite_alpha_flags[4] = { VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR }; for (uint32_t i = 0; i < ARRAY_SIZE(composite_alpha_flags); i++) { if (surface_capabilities.supportedCompositeAlpha & composite_alpha_flags[i]) { composite_alpha = composite_alpha_flags[i]; break; } } } VkSwapchainCreateInfoKHR swap_create_info = {}; swap_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; swap_create_info.surface = surface->vk_surface; swap_create_info.minImageCount = desired_swapchain_images; swap_create_info.imageFormat = swap_chain->format; swap_create_info.imageColorSpace = swap_chain->color_space; swap_create_info.imageExtent = extent; swap_create_info.imageArrayLayers = 1; swap_create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; swap_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; swap_create_info.preTransform = surface_transform_bits; swap_create_info.compositeAlpha = composite_alpha; swap_create_info.presentMode = present_mode; swap_create_info.clipped = true; err = device_functions.CreateSwapchainKHR(vk_device, &swap_create_info, nullptr, &swap_chain->vk_swapchain); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); uint32_t image_count = 0; err = device_functions.GetSwapchainImagesKHR(vk_device, swap_chain->vk_swapchain, &image_count, nullptr); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); swap_chain->images.resize(image_count); err = device_functions.GetSwapchainImagesKHR(vk_device, swap_chain->vk_swapchain, &image_count, swap_chain->images.ptr()); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); VkImageViewCreateInfo view_create_info = {}; view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_create_info.format = swap_chain->format; view_create_info.components.r = VK_COMPONENT_SWIZZLE_R; view_create_info.components.g = VK_COMPONENT_SWIZZLE_G; view_create_info.components.b = VK_COMPONENT_SWIZZLE_B; view_create_info.components.a = VK_COMPONENT_SWIZZLE_A; view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view_create_info.subresourceRange.levelCount = 1; view_create_info.subresourceRange.layerCount = 1; swap_chain->image_views.reserve(image_count); VkImageView image_view; for (uint32_t i = 0; i < image_count; i++) { view_create_info.image = swap_chain->images[i]; err = vkCreateImageView(vk_device, &view_create_info, nullptr, &image_view); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); swap_chain->image_views.push_back(image_view); } swap_chain->framebuffers.reserve(image_count); VkFramebufferCreateInfo fb_create_info = {}; fb_create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fb_create_info.renderPass = VkRenderPass(swap_chain->render_pass.id); fb_create_info.attachmentCount = 1; fb_create_info.width = surface->width; fb_create_info.height = surface->height; fb_create_info.layers = 1; VkFramebuffer framebuffer; for (uint32_t i = 0; i < image_count; i++) { fb_create_info.pAttachments = &swap_chain->image_views[i]; err = vkCreateFramebuffer(vk_device, &fb_create_info, nullptr, &framebuffer); ERR_FAIL_COND_V(err != VK_SUCCESS, ERR_CANT_CREATE); swap_chain->framebuffers.push_back(RDD::FramebufferID(framebuffer)); } // Once everything's been created correctly, indicate the surface no longer needs to be resized. context_driver->surface_set_needs_resize(swap_chain->surface, false); return OK; } RDD::FramebufferID RenderingDeviceDriverVulkan::swap_chain_acquire_framebuffer(CommandQueueID p_cmd_queue, SwapChainID p_swap_chain, bool &r_resize_required) { DEV_ASSERT(p_cmd_queue); DEV_ASSERT(p_swap_chain); CommandQueue *command_queue = (CommandQueue *)(p_cmd_queue.id); SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id); if ((swap_chain->vk_swapchain == VK_NULL_HANDLE) || context_driver->surface_get_needs_resize(swap_chain->surface)) { // The surface does not have a valid swap chain or it indicates it requires a resize. r_resize_required = true; return FramebufferID(); } VkResult err; VkSemaphore semaphore = VK_NULL_HANDLE; uint32_t semaphore_index = 0; if (command_queue->free_image_semaphores.is_empty()) { // Add a new semaphore if none are free. VkSemaphoreCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; err = vkCreateSemaphore(vk_device, &create_info, nullptr, &semaphore); ERR_FAIL_COND_V(err != VK_SUCCESS, FramebufferID()); semaphore_index = command_queue->image_semaphores.size(); command_queue->image_semaphores.push_back(semaphore); command_queue->image_semaphores_swap_chains.push_back(swap_chain); } else { // Pick a free semaphore. uint32_t free_index = command_queue->free_image_semaphores.size() - 1; semaphore_index = command_queue->free_image_semaphores[free_index]; command_queue->image_semaphores_swap_chains[semaphore_index] = swap_chain; command_queue->free_image_semaphores.remove_at(free_index); semaphore = command_queue->image_semaphores[semaphore_index]; } // Store in the swap chain the acquired semaphore. swap_chain->command_queues_acquired.push_back(command_queue); swap_chain->command_queues_acquired_semaphores.push_back(semaphore_index); err = device_functions.AcquireNextImageKHR(vk_device, swap_chain->vk_swapchain, UINT64_MAX, semaphore, VK_NULL_HANDLE, &swap_chain->image_index); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // Out of date leaves the semaphore in a signaled state that will never finish, so it's necessary to recreate it. bool semaphore_recreated = _recreate_image_semaphore(command_queue, semaphore_index, true); ERR_FAIL_COND_V(!semaphore_recreated, FramebufferID()); // Swap chain is out of date and must be recreated. r_resize_required = true; return FramebufferID(); } else if (err != VK_SUCCESS && err != VK_SUBOPTIMAL_KHR) { // Swap chain failed to present but the reason is unknown. // Refer to the comment in command_queue_present() as to why VK_SUBOPTIMAL_KHR is handled the same as VK_SUCCESS. return FramebufferID(); } // Indicate the command queue should wait on these semaphores on the next submission and that it should // indicate they're free again on the next fence. command_queue->pending_semaphores_for_execute.push_back(semaphore_index); command_queue->pending_semaphores_for_fence.push_back(semaphore_index); // Return the corresponding framebuffer to the new current image. return swap_chain->framebuffers[swap_chain->image_index]; } RDD::RenderPassID RenderingDeviceDriverVulkan::swap_chain_get_render_pass(SwapChainID p_swap_chain) { DEV_ASSERT(p_swap_chain.id != 0); SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id); return swap_chain->render_pass; } RDD::DataFormat RenderingDeviceDriverVulkan::swap_chain_get_format(SwapChainID p_swap_chain) { DEV_ASSERT(p_swap_chain.id != 0); SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id); switch (swap_chain->format) { case VK_FORMAT_B8G8R8A8_UNORM: return DATA_FORMAT_B8G8R8A8_UNORM; case VK_FORMAT_R8G8B8A8_UNORM: return DATA_FORMAT_R8G8B8A8_UNORM; default: DEV_ASSERT(false && "Unknown swap chain format."); return DATA_FORMAT_MAX; } } void RenderingDeviceDriverVulkan::swap_chain_free(SwapChainID p_swap_chain) { DEV_ASSERT(p_swap_chain.id != 0); SwapChain *swap_chain = (SwapChain *)(p_swap_chain.id); _swap_chain_release(swap_chain); if (swap_chain->render_pass.id != 0) { vkDestroyRenderPass(vk_device, VkRenderPass(swap_chain->render_pass.id), nullptr); } memdelete(swap_chain); } /*********************/ /**** FRAMEBUFFER ****/ /*********************/ RDD::FramebufferID RenderingDeviceDriverVulkan::framebuffer_create(RenderPassID p_render_pass, VectorView p_attachments, uint32_t p_width, uint32_t p_height) { VkImageView *vk_img_views = ALLOCA_ARRAY(VkImageView, p_attachments.size()); for (uint32_t i = 0; i < p_attachments.size(); i++) { vk_img_views[i] = ((const TextureInfo *)p_attachments[i].id)->vk_view; } VkFramebufferCreateInfo framebuffer_create_info = {}; framebuffer_create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebuffer_create_info.renderPass = (VkRenderPass)p_render_pass.id; framebuffer_create_info.attachmentCount = p_attachments.size(); framebuffer_create_info.pAttachments = vk_img_views; framebuffer_create_info.width = p_width; framebuffer_create_info.height = p_height; framebuffer_create_info.layers = 1; VkFramebuffer vk_framebuffer = VK_NULL_HANDLE; VkResult err = vkCreateFramebuffer(vk_device, &framebuffer_create_info, nullptr, &vk_framebuffer); ERR_FAIL_COND_V_MSG(err, FramebufferID(), "vkCreateFramebuffer failed with error " + itos(err) + "."); #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCreateFramebuffer 0x%uX with %d attachments", uint64_t(vk_framebuffer), p_attachments.size())); for (uint32_t i = 0; i < p_attachments.size(); i++) { const TextureInfo *attachment_info = (const TextureInfo *)p_attachments[i].id; print_line(vformat(" Attachment #%d: IMAGE 0x%uX VIEW 0x%uX", i, uint64_t(attachment_info->vk_view_create_info.image), uint64_t(attachment_info->vk_view))); } #endif return FramebufferID(vk_framebuffer); } void RenderingDeviceDriverVulkan::framebuffer_free(FramebufferID p_framebuffer) { vkDestroyFramebuffer(vk_device, (VkFramebuffer)p_framebuffer.id, nullptr); } /****************/ /**** SHADER ****/ /****************/ static VkShaderStageFlagBits RD_STAGE_TO_VK_SHADER_STAGE_BITS[RDD::SHADER_STAGE_MAX] = { VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_FRAGMENT_BIT, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, VK_SHADER_STAGE_COMPUTE_BIT, }; String RenderingDeviceDriverVulkan::shader_get_binary_cache_key() { return "Vulkan-SV" + uitos(ShaderBinary::VERSION); } Vector RenderingDeviceDriverVulkan::shader_compile_binary_from_spirv(VectorView p_spirv, const String &p_shader_name) { ShaderReflection shader_refl; if (_reflect_spirv(p_spirv, shader_refl) != OK) { return Vector(); } ERR_FAIL_COND_V_MSG((uint32_t)shader_refl.uniform_sets.size() > physical_device_properties.limits.maxBoundDescriptorSets, Vector(), "Number of uniform sets is larger than what is supported by the hardware (" + itos(physical_device_properties.limits.maxBoundDescriptorSets) + ")."); // Collect reflection data into binary data. ShaderBinary::Data binary_data; Vector> uniforms; // Set bindings. Vector specialization_constants; { binary_data.vertex_input_mask = shader_refl.vertex_input_mask; binary_data.fragment_output_mask = shader_refl.fragment_output_mask; binary_data.specialization_constants_count = shader_refl.specialization_constants.size(); binary_data.is_compute = shader_refl.is_compute; binary_data.compute_local_size[0] = shader_refl.compute_local_size[0]; binary_data.compute_local_size[1] = shader_refl.compute_local_size[1]; binary_data.compute_local_size[2] = shader_refl.compute_local_size[2]; binary_data.set_count = shader_refl.uniform_sets.size(); binary_data.push_constant_size = shader_refl.push_constant_size; for (uint32_t i = 0; i < SHADER_STAGE_MAX; i++) { if (shader_refl.push_constant_stages.has_flag((ShaderStage)(1 << i))) { binary_data.vk_push_constant_stages_mask |= RD_STAGE_TO_VK_SHADER_STAGE_BITS[i]; } } for (const Vector &set_refl : shader_refl.uniform_sets) { Vector set_bindings; for (const ShaderUniform &uniform_refl : set_refl) { ShaderBinary::DataBinding binding; binding.type = (uint32_t)uniform_refl.type; binding.binding = uniform_refl.binding; binding.stages = (uint32_t)uniform_refl.stages; binding.length = uniform_refl.length; binding.writable = (uint32_t)uniform_refl.writable; set_bindings.push_back(binding); } uniforms.push_back(set_bindings); } for (const ShaderSpecializationConstant &refl_sc : shader_refl.specialization_constants) { ShaderBinary::SpecializationConstant spec_constant; spec_constant.type = (uint32_t)refl_sc.type; spec_constant.constant_id = refl_sc.constant_id; spec_constant.int_value = refl_sc.int_value; spec_constant.stage_flags = (uint32_t)refl_sc.stages; specialization_constants.push_back(spec_constant); } } Vector> compressed_stages; Vector smolv_size; Vector zstd_size; // If 0, zstd not used. uint32_t stages_binary_size = 0; bool strip_debug = false; for (uint32_t i = 0; i < p_spirv.size(); i++) { smolv::ByteArray smolv; if (!smolv::Encode(p_spirv[i].spirv.ptr(), p_spirv[i].spirv.size(), smolv, strip_debug ? smolv::kEncodeFlagStripDebugInfo : 0)) { ERR_FAIL_V_MSG(Vector(), "Error compressing shader stage :" + String(SHADER_STAGE_NAMES[p_spirv[i].shader_stage])); } else { smolv_size.push_back(smolv.size()); { // zstd. Vector zstd; zstd.resize(Compression::get_max_compressed_buffer_size(smolv.size(), Compression::MODE_ZSTD)); int dst_size = Compression::compress(zstd.ptrw(), &smolv[0], smolv.size(), Compression::MODE_ZSTD); if (dst_size > 0 && (uint32_t)dst_size < smolv.size()) { zstd_size.push_back(dst_size); zstd.resize(dst_size); compressed_stages.push_back(zstd); } else { Vector smv; smv.resize(smolv.size()); memcpy(smv.ptrw(), &smolv[0], smolv.size()); zstd_size.push_back(0); // Not using zstd. compressed_stages.push_back(smv); } } } uint32_t s = compressed_stages[i].size(); if (s % 4 != 0) { s += 4 - (s % 4); } stages_binary_size += s; } binary_data.specialization_constants_count = specialization_constants.size(); binary_data.set_count = uniforms.size(); binary_data.stage_count = p_spirv.size(); CharString shader_name_utf = p_shader_name.utf8(); binary_data.shader_name_len = shader_name_utf.length(); uint32_t total_size = sizeof(uint32_t) * 3; // Header + version + main datasize;. total_size += sizeof(ShaderBinary::Data); total_size += binary_data.shader_name_len; if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange. total_size += 4 - (binary_data.shader_name_len % 4); } for (int i = 0; i < uniforms.size(); i++) { total_size += sizeof(uint32_t); total_size += uniforms[i].size() * sizeof(ShaderBinary::DataBinding); } total_size += sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size(); total_size += compressed_stages.size() * sizeof(uint32_t) * 3; // Sizes. total_size += stages_binary_size; Vector ret; ret.resize(total_size); { uint32_t offset = 0; uint8_t *binptr = ret.ptrw(); binptr[0] = 'G'; binptr[1] = 'S'; binptr[2] = 'B'; binptr[3] = 'D'; // Godot Shader Binary Data. offset += 4; encode_uint32(ShaderBinary::VERSION, binptr + offset); offset += sizeof(uint32_t); encode_uint32(sizeof(ShaderBinary::Data), binptr + offset); offset += sizeof(uint32_t); memcpy(binptr + offset, &binary_data, sizeof(ShaderBinary::Data)); offset += sizeof(ShaderBinary::Data); if (binary_data.shader_name_len > 0) { memcpy(binptr + offset, shader_name_utf.ptr(), binary_data.shader_name_len); offset += binary_data.shader_name_len; if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange. offset += 4 - (binary_data.shader_name_len % 4); } } for (int i = 0; i < uniforms.size(); i++) { int count = uniforms[i].size(); encode_uint32(count, binptr + offset); offset += sizeof(uint32_t); if (count > 0) { memcpy(binptr + offset, uniforms[i].ptr(), sizeof(ShaderBinary::DataBinding) * count); offset += sizeof(ShaderBinary::DataBinding) * count; } } if (specialization_constants.size()) { memcpy(binptr + offset, specialization_constants.ptr(), sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size()); offset += sizeof(ShaderBinary::SpecializationConstant) * specialization_constants.size(); } for (int i = 0; i < compressed_stages.size(); i++) { encode_uint32(p_spirv[i].shader_stage, binptr + offset); offset += sizeof(uint32_t); encode_uint32(smolv_size[i], binptr + offset); offset += sizeof(uint32_t); encode_uint32(zstd_size[i], binptr + offset); offset += sizeof(uint32_t); memcpy(binptr + offset, compressed_stages[i].ptr(), compressed_stages[i].size()); uint32_t s = compressed_stages[i].size(); if (s % 4 != 0) { s += 4 - (s % 4); } offset += s; } DEV_ASSERT(offset == (uint32_t)ret.size()); } return ret; } RDD::ShaderID RenderingDeviceDriverVulkan::shader_create_from_bytecode(const Vector &p_shader_binary, ShaderDescription &r_shader_desc, String &r_name) { r_shader_desc = {}; // Driver-agnostic. ShaderInfo shader_info; // Driver-specific. const uint8_t *binptr = p_shader_binary.ptr(); uint32_t binsize = p_shader_binary.size(); uint32_t read_offset = 0; // Consistency check. ERR_FAIL_COND_V(binsize < sizeof(uint32_t) * 3 + sizeof(ShaderBinary::Data), ShaderID()); ERR_FAIL_COND_V(binptr[0] != 'G' || binptr[1] != 'S' || binptr[2] != 'B' || binptr[3] != 'D', ShaderID()); uint32_t bin_version = decode_uint32(binptr + 4); ERR_FAIL_COND_V(bin_version != ShaderBinary::VERSION, ShaderID()); uint32_t bin_data_size = decode_uint32(binptr + 8); const ShaderBinary::Data &binary_data = *(reinterpret_cast(binptr + 12)); r_shader_desc.push_constant_size = binary_data.push_constant_size; shader_info.vk_push_constant_stages = binary_data.vk_push_constant_stages_mask; r_shader_desc.vertex_input_mask = binary_data.vertex_input_mask; r_shader_desc.fragment_output_mask = binary_data.fragment_output_mask; r_shader_desc.is_compute = binary_data.is_compute; r_shader_desc.compute_local_size[0] = binary_data.compute_local_size[0]; r_shader_desc.compute_local_size[1] = binary_data.compute_local_size[1]; r_shader_desc.compute_local_size[2] = binary_data.compute_local_size[2]; read_offset += sizeof(uint32_t) * 3 + bin_data_size; if (binary_data.shader_name_len) { r_name.parse_utf8((const char *)(binptr + read_offset), binary_data.shader_name_len); read_offset += binary_data.shader_name_len; if ((binary_data.shader_name_len % 4) != 0) { // Alignment rules are really strange. read_offset += 4 - (binary_data.shader_name_len % 4); } } Vector> vk_set_bindings; r_shader_desc.uniform_sets.resize(binary_data.set_count); vk_set_bindings.resize(binary_data.set_count); for (uint32_t i = 0; i < binary_data.set_count; i++) { ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) >= binsize, ShaderID()); uint32_t set_count = decode_uint32(binptr + read_offset); read_offset += sizeof(uint32_t); const ShaderBinary::DataBinding *set_ptr = reinterpret_cast(binptr + read_offset); uint32_t set_size = set_count * sizeof(ShaderBinary::DataBinding); ERR_FAIL_COND_V(read_offset + set_size >= binsize, ShaderID()); for (uint32_t j = 0; j < set_count; j++) { ShaderUniform info; info.type = UniformType(set_ptr[j].type); info.writable = set_ptr[j].writable; info.length = set_ptr[j].length; info.binding = set_ptr[j].binding; info.stages = set_ptr[j].stages; VkDescriptorSetLayoutBinding layout_binding = {}; layout_binding.binding = set_ptr[j].binding; layout_binding.descriptorCount = 1; for (uint32_t k = 0; k < SHADER_STAGE_MAX; k++) { if ((set_ptr[j].stages & (1 << k))) { layout_binding.stageFlags |= RD_STAGE_TO_VK_SHADER_STAGE_BITS[k]; } } switch (info.type) { case UNIFORM_TYPE_SAMPLER: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER; layout_binding.descriptorCount = set_ptr[j].length; } break; case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; layout_binding.descriptorCount = set_ptr[j].length; } break; case UNIFORM_TYPE_TEXTURE: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; layout_binding.descriptorCount = set_ptr[j].length; } break; case UNIFORM_TYPE_IMAGE: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; layout_binding.descriptorCount = set_ptr[j].length; } break; case UNIFORM_TYPE_TEXTURE_BUFFER: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; layout_binding.descriptorCount = set_ptr[j].length; } break; case UNIFORM_TYPE_IMAGE_BUFFER: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; } break; case UNIFORM_TYPE_UNIFORM_BUFFER: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; } break; case UNIFORM_TYPE_STORAGE_BUFFER: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; } break; case UNIFORM_TYPE_INPUT_ATTACHMENT: { layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; } break; default: { DEV_ASSERT(false); } } r_shader_desc.uniform_sets.write[i].push_back(info); vk_set_bindings.write[i].push_back(layout_binding); } read_offset += set_size; } ERR_FAIL_COND_V(read_offset + binary_data.specialization_constants_count * sizeof(ShaderBinary::SpecializationConstant) >= binsize, ShaderID()); r_shader_desc.specialization_constants.resize(binary_data.specialization_constants_count); for (uint32_t i = 0; i < binary_data.specialization_constants_count; i++) { const ShaderBinary::SpecializationConstant &src_sc = *(reinterpret_cast(binptr + read_offset)); ShaderSpecializationConstant sc; sc.type = PipelineSpecializationConstantType(src_sc.type); sc.constant_id = src_sc.constant_id; sc.int_value = src_sc.int_value; sc.stages = src_sc.stage_flags; r_shader_desc.specialization_constants.write[i] = sc; read_offset += sizeof(ShaderBinary::SpecializationConstant); } Vector> stages_spirv; stages_spirv.resize(binary_data.stage_count); r_shader_desc.stages.resize(binary_data.stage_count); for (uint32_t i = 0; i < binary_data.stage_count; i++) { ERR_FAIL_COND_V(read_offset + sizeof(uint32_t) * 3 >= binsize, ShaderID()); uint32_t stage = decode_uint32(binptr + read_offset); read_offset += sizeof(uint32_t); uint32_t smolv_size = decode_uint32(binptr + read_offset); read_offset += sizeof(uint32_t); uint32_t zstd_size = decode_uint32(binptr + read_offset); read_offset += sizeof(uint32_t); uint32_t buf_size = (zstd_size > 0) ? zstd_size : smolv_size; Vector smolv; const uint8_t *src_smolv = nullptr; if (zstd_size > 0) { // Decompress to smolv. smolv.resize(smolv_size); int dec_smolv_size = Compression::decompress(smolv.ptrw(), smolv.size(), binptr + read_offset, zstd_size, Compression::MODE_ZSTD); ERR_FAIL_COND_V(dec_smolv_size != (int32_t)smolv_size, ShaderID()); src_smolv = smolv.ptr(); } else { src_smolv = binptr + read_offset; } Vector &spirv = stages_spirv.ptrw()[i]; uint32_t spirv_size = smolv::GetDecodedBufferSize(src_smolv, smolv_size); spirv.resize(spirv_size); if (!smolv::Decode(src_smolv, smolv_size, spirv.ptrw(), spirv_size)) { ERR_FAIL_V_MSG(ShaderID(), "Malformed smolv input uncompressing shader stage:" + String(SHADER_STAGE_NAMES[stage])); } r_shader_desc.stages.set(i, ShaderStage(stage)); if (buf_size % 4 != 0) { buf_size += 4 - (buf_size % 4); } DEV_ASSERT(read_offset + buf_size <= binsize); read_offset += buf_size; } DEV_ASSERT(read_offset == binsize); // Modules. String error_text; for (int i = 0; i < r_shader_desc.stages.size(); i++) { VkShaderModuleCreateInfo shader_module_create_info = {}; shader_module_create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; shader_module_create_info.codeSize = stages_spirv[i].size(); shader_module_create_info.pCode = (const uint32_t *)stages_spirv[i].ptr(); VkShaderModule vk_module = VK_NULL_HANDLE; VkResult res = vkCreateShaderModule(vk_device, &shader_module_create_info, nullptr, &vk_module); if (res) { error_text = "Error (" + itos(res) + ") creating shader module for stage: " + String(SHADER_STAGE_NAMES[r_shader_desc.stages[i]]); break; } VkPipelineShaderStageCreateInfo create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; create_info.stage = RD_STAGE_TO_VK_SHADER_STAGE_BITS[r_shader_desc.stages[i]]; create_info.module = vk_module; create_info.pName = "main"; shader_info.vk_stages_create_info.push_back(create_info); } // Descriptor sets. if (error_text.is_empty()) { DEV_ASSERT((uint32_t)vk_set_bindings.size() == binary_data.set_count); for (uint32_t i = 0; i < binary_data.set_count; i++) { // Empty ones are fine if they were not used according to spec (binding count will be 0). VkDescriptorSetLayoutCreateInfo layout_create_info = {}; layout_create_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layout_create_info.bindingCount = vk_set_bindings[i].size(); layout_create_info.pBindings = vk_set_bindings[i].ptr(); VkDescriptorSetLayout layout = VK_NULL_HANDLE; VkResult res = vkCreateDescriptorSetLayout(vk_device, &layout_create_info, nullptr, &layout); if (res) { error_text = "Error (" + itos(res) + ") creating descriptor set layout for set " + itos(i); break; } shader_info.vk_descriptor_set_layouts.push_back(layout); } } if (error_text.is_empty()) { // Pipeline layout. VkPipelineLayoutCreateInfo pipeline_layout_create_info = {}; pipeline_layout_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipeline_layout_create_info.setLayoutCount = binary_data.set_count; pipeline_layout_create_info.pSetLayouts = shader_info.vk_descriptor_set_layouts.ptr(); if (binary_data.push_constant_size) { VkPushConstantRange *push_constant_range = ALLOCA_SINGLE(VkPushConstantRange); *push_constant_range = {}; push_constant_range->stageFlags = binary_data.vk_push_constant_stages_mask; push_constant_range->size = binary_data.push_constant_size; pipeline_layout_create_info.pushConstantRangeCount = 1; pipeline_layout_create_info.pPushConstantRanges = push_constant_range; } VkResult err = vkCreatePipelineLayout(vk_device, &pipeline_layout_create_info, nullptr, &shader_info.vk_pipeline_layout); if (err) { error_text = "Error (" + itos(err) + ") creating pipeline layout."; } } if (!error_text.is_empty()) { // Clean up if failed. for (uint32_t i = 0; i < shader_info.vk_stages_create_info.size(); i++) { vkDestroyShaderModule(vk_device, shader_info.vk_stages_create_info[i].module, nullptr); } for (uint32_t i = 0; i < binary_data.set_count; i++) { vkDestroyDescriptorSetLayout(vk_device, shader_info.vk_descriptor_set_layouts[i], nullptr); } ERR_FAIL_V_MSG(ShaderID(), error_text); } // Bookkeep. ShaderInfo *shader_info_ptr = VersatileResource::allocate(resources_allocator); *shader_info_ptr = shader_info; return ShaderID(shader_info_ptr); } void RenderingDeviceDriverVulkan::shader_free(ShaderID p_shader) { ShaderInfo *shader_info = (ShaderInfo *)p_shader.id; for (uint32_t i = 0; i < shader_info->vk_descriptor_set_layouts.size(); i++) { vkDestroyDescriptorSetLayout(vk_device, shader_info->vk_descriptor_set_layouts[i], nullptr); } vkDestroyPipelineLayout(vk_device, shader_info->vk_pipeline_layout, nullptr); for (uint32_t i = 0; i < shader_info->vk_stages_create_info.size(); i++) { vkDestroyShaderModule(vk_device, shader_info->vk_stages_create_info[i].module, nullptr); } VersatileResource::free(resources_allocator, shader_info); } /*********************/ /**** UNIFORM SET ****/ /*********************/ VkDescriptorPool RenderingDeviceDriverVulkan::_descriptor_set_pool_find_or_create(const DescriptorSetPoolKey &p_key, DescriptorSetPools::Iterator *r_pool_sets_it) { DescriptorSetPools::Iterator pool_sets_it = descriptor_set_pools.find(p_key); if (pool_sets_it) { for (KeyValue &E : pool_sets_it->value) { if (E.value < max_descriptor_sets_per_pool) { *r_pool_sets_it = pool_sets_it; return E.key; } } } // Create a new one. // Here comes more vulkan API strangeness. VkDescriptorPoolSize *vk_sizes = ALLOCA_ARRAY(VkDescriptorPoolSize, UNIFORM_TYPE_MAX); uint32_t vk_sizes_count = 0; { VkDescriptorPoolSize *curr_vk_size = vk_sizes; if (p_key.uniform_type[UNIFORM_TYPE_SAMPLER]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_SAMPLER; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_SAMPLER] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_TEXTURE]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_TEXTURE] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_IMAGE]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_IMAGE] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_TEXTURE_BUFFER] || p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; curr_vk_size->descriptorCount = (p_key.uniform_type[UNIFORM_TYPE_TEXTURE_BUFFER] + p_key.uniform_type[UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER]) * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_IMAGE_BUFFER]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_IMAGE_BUFFER] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_UNIFORM_BUFFER]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_UNIFORM_BUFFER] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_STORAGE_BUFFER]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_STORAGE_BUFFER] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } if (p_key.uniform_type[UNIFORM_TYPE_INPUT_ATTACHMENT]) { *curr_vk_size = {}; curr_vk_size->type = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; curr_vk_size->descriptorCount = p_key.uniform_type[UNIFORM_TYPE_INPUT_ATTACHMENT] * max_descriptor_sets_per_pool; curr_vk_size++; vk_sizes_count++; } DEV_ASSERT(vk_sizes_count <= UNIFORM_TYPE_MAX); } VkDescriptorPoolCreateInfo descriptor_set_pool_create_info = {}; descriptor_set_pool_create_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptor_set_pool_create_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; // Can't think how somebody may NOT need this flag. descriptor_set_pool_create_info.maxSets = max_descriptor_sets_per_pool; descriptor_set_pool_create_info.poolSizeCount = vk_sizes_count; descriptor_set_pool_create_info.pPoolSizes = vk_sizes; VkDescriptorPool vk_pool = VK_NULL_HANDLE; VkResult res = vkCreateDescriptorPool(vk_device, &descriptor_set_pool_create_info, nullptr, &vk_pool); if (res) { ERR_FAIL_COND_V_MSG(res, VK_NULL_HANDLE, "vkCreateDescriptorPool failed with error " + itos(res) + "."); } // Bookkeep. if (!pool_sets_it) { pool_sets_it = descriptor_set_pools.insert(p_key, HashMap()); } HashMap &pool_rcs = pool_sets_it->value; pool_rcs.insert(vk_pool, 0); *r_pool_sets_it = pool_sets_it; return vk_pool; } void RenderingDeviceDriverVulkan::_descriptor_set_pool_unreference(DescriptorSetPools::Iterator p_pool_sets_it, VkDescriptorPool p_vk_descriptor_pool) { HashMap::Iterator pool_rcs_it = p_pool_sets_it->value.find(p_vk_descriptor_pool); pool_rcs_it->value--; if (pool_rcs_it->value == 0) { vkDestroyDescriptorPool(vk_device, p_vk_descriptor_pool, nullptr); p_pool_sets_it->value.erase(p_vk_descriptor_pool); if (p_pool_sets_it->value.is_empty()) { descriptor_set_pools.remove(p_pool_sets_it); } } } RDD::UniformSetID RenderingDeviceDriverVulkan::uniform_set_create(VectorView p_uniforms, ShaderID p_shader, uint32_t p_set_index) { DescriptorSetPoolKey pool_key; VkWriteDescriptorSet *vk_writes = ALLOCA_ARRAY(VkWriteDescriptorSet, p_uniforms.size()); for (uint32_t i = 0; i < p_uniforms.size(); i++) { const BoundUniform &uniform = p_uniforms[i]; vk_writes[i] = {}; vk_writes[i].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; vk_writes[i].dstBinding = uniform.binding; vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_MAX_ENUM; // Invalid value. uint32_t num_descriptors = 1; switch (uniform.type) { case UNIFORM_TYPE_SAMPLER: { num_descriptors = uniform.ids.size(); VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { vk_img_infos[j] = {}; vk_img_infos[j].sampler = (VkSampler)uniform.ids[j].id; vk_img_infos[j].imageView = VK_NULL_HANDLE; vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_UNDEFINED; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER; vk_writes[i].pImageInfo = vk_img_infos; } break; case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { num_descriptors = uniform.ids.size() / 2; VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { vk_img_infos[j] = {}; vk_img_infos[j].sampler = (VkSampler)uniform.ids[j * 2 + 0].id; vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j * 2 + 1].id)->vk_view; vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; vk_writes[i].pImageInfo = vk_img_infos; } break; case UNIFORM_TYPE_TEXTURE: { num_descriptors = uniform.ids.size(); VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { vk_img_infos[j] = {}; vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view; vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE; vk_writes[i].pImageInfo = vk_img_infos; } break; case UNIFORM_TYPE_IMAGE: { num_descriptors = uniform.ids.size(); VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { vk_img_infos[j] = {}; vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view; vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_GENERAL; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; vk_writes[i].pImageInfo = vk_img_infos; } break; case UNIFORM_TYPE_TEXTURE_BUFFER: { num_descriptors = uniform.ids.size(); VkDescriptorBufferInfo *vk_buf_infos = ALLOCA_ARRAY(VkDescriptorBufferInfo, num_descriptors); VkBufferView *vk_buf_views = ALLOCA_ARRAY(VkBufferView, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[j].id; vk_buf_infos[j] = {}; vk_buf_infos[j].buffer = buf_info->vk_buffer; vk_buf_infos[j].range = buf_info->size; vk_buf_views[j] = buf_info->vk_view; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; vk_writes[i].pBufferInfo = vk_buf_infos; vk_writes[i].pTexelBufferView = vk_buf_views; } break; case UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: { num_descriptors = uniform.ids.size() / 2; VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); VkDescriptorBufferInfo *vk_buf_infos = ALLOCA_ARRAY(VkDescriptorBufferInfo, num_descriptors); VkBufferView *vk_buf_views = ALLOCA_ARRAY(VkBufferView, num_descriptors); for (uint32_t j = 0; j < num_descriptors; j++) { vk_img_infos[j] = {}; vk_img_infos[j].sampler = (VkSampler)uniform.ids[j * 2 + 0].id; const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[j * 2 + 1].id; vk_buf_infos[j] = {}; vk_buf_infos[j].buffer = buf_info->vk_buffer; vk_buf_infos[j].range = buf_info->size; vk_buf_views[j] = buf_info->vk_view; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; vk_writes[i].pImageInfo = vk_img_infos; vk_writes[i].pBufferInfo = vk_buf_infos; vk_writes[i].pTexelBufferView = vk_buf_views; } break; case UNIFORM_TYPE_IMAGE_BUFFER: { CRASH_NOW_MSG("Unimplemented!"); // TODO. } break; case UNIFORM_TYPE_UNIFORM_BUFFER: { const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[0].id; VkDescriptorBufferInfo *vk_buf_info = ALLOCA_SINGLE(VkDescriptorBufferInfo); *vk_buf_info = {}; vk_buf_info->buffer = buf_info->vk_buffer; vk_buf_info->range = buf_info->size; vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; vk_writes[i].pBufferInfo = vk_buf_info; } break; case UNIFORM_TYPE_STORAGE_BUFFER: { const BufferInfo *buf_info = (const BufferInfo *)uniform.ids[0].id; VkDescriptorBufferInfo *vk_buf_info = ALLOCA_SINGLE(VkDescriptorBufferInfo); *vk_buf_info = {}; vk_buf_info->buffer = buf_info->vk_buffer; vk_buf_info->range = buf_info->size; vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; vk_writes[i].pBufferInfo = vk_buf_info; } break; case UNIFORM_TYPE_INPUT_ATTACHMENT: { num_descriptors = uniform.ids.size(); VkDescriptorImageInfo *vk_img_infos = ALLOCA_ARRAY(VkDescriptorImageInfo, num_descriptors); for (uint32_t j = 0; j < uniform.ids.size(); j++) { vk_img_infos[j] = {}; vk_img_infos[j].imageView = ((const TextureInfo *)uniform.ids[j].id)->vk_view; vk_img_infos[j].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } vk_writes[i].descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; vk_writes[i].pImageInfo = vk_img_infos; } break; default: { DEV_ASSERT(false); } } vk_writes[i].descriptorCount = num_descriptors; ERR_FAIL_COND_V_MSG(pool_key.uniform_type[uniform.type] == MAX_UNIFORM_POOL_ELEMENT, UniformSetID(), "Uniform set reached the limit of bindings for the same type (" + itos(MAX_UNIFORM_POOL_ELEMENT) + ")."); pool_key.uniform_type[uniform.type] += num_descriptors; } // Need a descriptor pool. DescriptorSetPools::Iterator pool_sets_it = {}; VkDescriptorPool vk_pool = _descriptor_set_pool_find_or_create(pool_key, &pool_sets_it); DEV_ASSERT(vk_pool); pool_sets_it->value[vk_pool]++; VkDescriptorSetAllocateInfo descriptor_set_allocate_info = {}; descriptor_set_allocate_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; descriptor_set_allocate_info.descriptorPool = vk_pool; descriptor_set_allocate_info.descriptorSetCount = 1; const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; descriptor_set_allocate_info.pSetLayouts = &shader_info->vk_descriptor_set_layouts[p_set_index]; VkDescriptorSet vk_descriptor_set = VK_NULL_HANDLE; VkResult res = vkAllocateDescriptorSets(vk_device, &descriptor_set_allocate_info, &vk_descriptor_set); if (res) { _descriptor_set_pool_unreference(pool_sets_it, vk_pool); ERR_FAIL_V_MSG(UniformSetID(), "Cannot allocate descriptor sets, error " + itos(res) + "."); } for (uint32_t i = 0; i < p_uniforms.size(); i++) { vk_writes[i].dstSet = vk_descriptor_set; } vkUpdateDescriptorSets(vk_device, p_uniforms.size(), vk_writes, 0, nullptr); // Bookkeep. UniformSetInfo *usi = VersatileResource::allocate(resources_allocator); usi->vk_descriptor_set = vk_descriptor_set; usi->vk_descriptor_pool = vk_pool; usi->pool_sets_it = pool_sets_it; return UniformSetID(usi); } void RenderingDeviceDriverVulkan::uniform_set_free(UniformSetID p_uniform_set) { UniformSetInfo *usi = (UniformSetInfo *)p_uniform_set.id; vkFreeDescriptorSets(vk_device, usi->vk_descriptor_pool, 1, &usi->vk_descriptor_set); _descriptor_set_pool_unreference(usi->pool_sets_it, usi->vk_descriptor_pool); VersatileResource::free(resources_allocator, usi); } // ----- COMMANDS ----- void RenderingDeviceDriverVulkan::command_uniform_set_prepare_for_use(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) { } /******************/ /**** TRANSFER ****/ /******************/ static_assert(ARRAYS_COMPATIBLE_FIELDWISE(RDD::BufferCopyRegion, VkBufferCopy)); static void _texture_subresource_range_to_vk(const RDD::TextureSubresourceRange &p_subresources, VkImageSubresourceRange *r_vk_subreources) { *r_vk_subreources = {}; r_vk_subreources->aspectMask = (VkImageAspectFlags)p_subresources.aspect; r_vk_subreources->baseMipLevel = p_subresources.base_mipmap; r_vk_subreources->levelCount = p_subresources.mipmap_count; r_vk_subreources->baseArrayLayer = p_subresources.base_layer; r_vk_subreources->layerCount = p_subresources.layer_count; } static void _texture_subresource_layers_to_vk(const RDD::TextureSubresourceLayers &p_subresources, VkImageSubresourceLayers *r_vk_subreources) { *r_vk_subreources = {}; r_vk_subreources->aspectMask = (VkImageAspectFlags)p_subresources.aspect; r_vk_subreources->mipLevel = p_subresources.mipmap; r_vk_subreources->baseArrayLayer = p_subresources.base_layer; r_vk_subreources->layerCount = p_subresources.layer_count; } static void _buffer_texture_copy_region_to_vk(const RDD::BufferTextureCopyRegion &p_copy_region, VkBufferImageCopy *r_vk_copy_region) { *r_vk_copy_region = {}; r_vk_copy_region->bufferOffset = p_copy_region.buffer_offset; _texture_subresource_layers_to_vk(p_copy_region.texture_subresources, &r_vk_copy_region->imageSubresource); r_vk_copy_region->imageOffset.x = p_copy_region.texture_offset.x; r_vk_copy_region->imageOffset.y = p_copy_region.texture_offset.y; r_vk_copy_region->imageOffset.z = p_copy_region.texture_offset.z; r_vk_copy_region->imageExtent.width = p_copy_region.texture_region_size.x; r_vk_copy_region->imageExtent.height = p_copy_region.texture_region_size.y; r_vk_copy_region->imageExtent.depth = p_copy_region.texture_region_size.z; } static void _texture_copy_region_to_vk(const RDD::TextureCopyRegion &p_copy_region, VkImageCopy *r_vk_copy_region) { *r_vk_copy_region = {}; _texture_subresource_layers_to_vk(p_copy_region.src_subresources, &r_vk_copy_region->srcSubresource); r_vk_copy_region->srcOffset.x = p_copy_region.src_offset.x; r_vk_copy_region->srcOffset.y = p_copy_region.src_offset.y; r_vk_copy_region->srcOffset.z = p_copy_region.src_offset.z; _texture_subresource_layers_to_vk(p_copy_region.dst_subresources, &r_vk_copy_region->dstSubresource); r_vk_copy_region->dstOffset.x = p_copy_region.dst_offset.x; r_vk_copy_region->dstOffset.y = p_copy_region.dst_offset.y; r_vk_copy_region->dstOffset.z = p_copy_region.dst_offset.z; r_vk_copy_region->extent.width = p_copy_region.size.x; r_vk_copy_region->extent.height = p_copy_region.size.y; r_vk_copy_region->extent.depth = p_copy_region.size.z; } void RenderingDeviceDriverVulkan::command_clear_buffer(CommandBufferID p_cmd_buffer, BufferID p_buffer, uint64_t p_offset, uint64_t p_size) { const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id; vkCmdFillBuffer((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_size, 0); } void RenderingDeviceDriverVulkan::command_copy_buffer(CommandBufferID p_cmd_buffer, BufferID p_src_buffer, BufferID p_dst_buffer, VectorView p_regions) { const BufferInfo *src_buf_info = (const BufferInfo *)p_src_buffer.id; const BufferInfo *dst_buf_info = (const BufferInfo *)p_dst_buffer.id; vkCmdCopyBuffer((VkCommandBuffer)p_cmd_buffer.id, src_buf_info->vk_buffer, dst_buf_info->vk_buffer, p_regions.size(), (const VkBufferCopy *)p_regions.ptr()); } void RenderingDeviceDriverVulkan::command_copy_texture(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, VectorView p_regions) { VkImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkImageCopy, p_regions.size()); for (uint32_t i = 0; i < p_regions.size(); i++) { _texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]); } const TextureInfo *src_tex_info = (const TextureInfo *)p_src_texture.id; const TextureInfo *dst_tex_info = (const TextureInfo *)p_dst_texture.id; vkCmdCopyImage((VkCommandBuffer)p_cmd_buffer.id, src_tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, dst_tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, p_regions.size(), vk_copy_regions); } void RenderingDeviceDriverVulkan::command_resolve_texture(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, uint32_t p_src_layer, uint32_t p_src_mipmap, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, uint32_t p_dst_layer, uint32_t p_dst_mipmap) { const TextureInfo *src_tex_info = (const TextureInfo *)p_src_texture.id; const TextureInfo *dst_tex_info = (const TextureInfo *)p_dst_texture.id; VkImageResolve vk_resolve = {}; vk_resolve.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; vk_resolve.srcSubresource.mipLevel = p_src_mipmap; vk_resolve.srcSubresource.baseArrayLayer = p_src_layer; vk_resolve.srcSubresource.layerCount = 1; vk_resolve.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; vk_resolve.dstSubresource.mipLevel = p_dst_mipmap; vk_resolve.dstSubresource.baseArrayLayer = p_dst_layer; vk_resolve.dstSubresource.layerCount = 1; vk_resolve.extent.width = MAX(1u, src_tex_info->vk_create_info.extent.width >> p_src_mipmap); vk_resolve.extent.height = MAX(1u, src_tex_info->vk_create_info.extent.height >> p_src_mipmap); vk_resolve.extent.depth = MAX(1u, src_tex_info->vk_create_info.extent.depth >> p_src_mipmap); vkCmdResolveImage((VkCommandBuffer)p_cmd_buffer.id, src_tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, dst_tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, 1, &vk_resolve); } void RenderingDeviceDriverVulkan::command_clear_color_texture(CommandBufferID p_cmd_buffer, TextureID p_texture, TextureLayout p_texture_layout, const Color &p_color, const TextureSubresourceRange &p_subresources) { VkClearColorValue vk_color = {}; memcpy(&vk_color.float32, p_color.components, sizeof(VkClearColorValue::float32)); VkImageSubresourceRange vk_subresources = {}; _texture_subresource_range_to_vk(p_subresources, &vk_subresources); const TextureInfo *tex_info = (const TextureInfo *)p_texture.id; vkCmdClearColorImage((VkCommandBuffer)p_cmd_buffer.id, tex_info->vk_view_create_info.image, (VkImageLayout)p_texture_layout, &vk_color, 1, &vk_subresources); } void RenderingDeviceDriverVulkan::command_copy_buffer_to_texture(CommandBufferID p_cmd_buffer, BufferID p_src_buffer, TextureID p_dst_texture, TextureLayout p_dst_texture_layout, VectorView p_regions) { VkBufferImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkBufferImageCopy, p_regions.size()); for (uint32_t i = 0; i < p_regions.size(); i++) { _buffer_texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]); } const BufferInfo *buf_info = (const BufferInfo *)p_src_buffer.id; const TextureInfo *tex_info = (const TextureInfo *)p_dst_texture.id; vkCmdCopyBufferToImage((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, tex_info->vk_view_create_info.image, (VkImageLayout)p_dst_texture_layout, p_regions.size(), vk_copy_regions); } void RenderingDeviceDriverVulkan::command_copy_texture_to_buffer(CommandBufferID p_cmd_buffer, TextureID p_src_texture, TextureLayout p_src_texture_layout, BufferID p_dst_buffer, VectorView p_regions) { VkBufferImageCopy *vk_copy_regions = ALLOCA_ARRAY(VkBufferImageCopy, p_regions.size()); for (uint32_t i = 0; i < p_regions.size(); i++) { _buffer_texture_copy_region_to_vk(p_regions[i], &vk_copy_regions[i]); } const TextureInfo *tex_info = (const TextureInfo *)p_src_texture.id; const BufferInfo *buf_info = (const BufferInfo *)p_dst_buffer.id; vkCmdCopyImageToBuffer((VkCommandBuffer)p_cmd_buffer.id, tex_info->vk_view_create_info.image, (VkImageLayout)p_src_texture_layout, buf_info->vk_buffer, p_regions.size(), vk_copy_regions); } /******************/ /**** PIPELINE ****/ /******************/ void RenderingDeviceDriverVulkan::pipeline_free(PipelineID p_pipeline) { vkDestroyPipeline(vk_device, (VkPipeline)p_pipeline.id, nullptr); } // ----- BINDING ----- void RenderingDeviceDriverVulkan::command_bind_push_constants(CommandBufferID p_cmd_buffer, ShaderID p_shader, uint32_t p_dst_first_index, VectorView p_data) { const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; vkCmdPushConstants((VkCommandBuffer)p_cmd_buffer.id, shader_info->vk_pipeline_layout, shader_info->vk_push_constant_stages, p_dst_first_index * sizeof(uint32_t), p_data.size() * sizeof(uint32_t), p_data.ptr()); } // ----- CACHE ----- int RenderingDeviceDriverVulkan::caching_instance_count = 0; bool RenderingDeviceDriverVulkan::pipeline_cache_create(const Vector &p_data) { if (caching_instance_count) { WARN_PRINT("There's already a RenderingDeviceDriverVulkan instance doing PSO caching. Only one can at the same time. This one won't."); return false; } caching_instance_count++; pipelines_cache.current_size = 0; pipelines_cache.buffer.resize(sizeof(PipelineCacheHeader)); // Parse. { if (p_data.is_empty()) { // No pre-existing cache, just create it. } else if (p_data.size() <= (int)sizeof(PipelineCacheHeader)) { WARN_PRINT("Invalid/corrupt pipelines cache."); } else { const PipelineCacheHeader *loaded_header = reinterpret_cast(p_data.ptr()); if (loaded_header->magic != 868 + VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { WARN_PRINT("Invalid pipelines cache magic number."); } else { const uint8_t *loaded_buffer_start = p_data.ptr() + sizeof(PipelineCacheHeader); uint32_t loaded_buffer_size = p_data.size() - sizeof(PipelineCacheHeader); const PipelineCacheHeader *current_header = (PipelineCacheHeader *)pipelines_cache.buffer.ptr(); if (loaded_header->data_hash != hash_murmur3_buffer(loaded_buffer_start, loaded_buffer_size) || loaded_header->data_size != loaded_buffer_size || loaded_header->vendor_id != current_header->vendor_id || loaded_header->device_id != current_header->device_id || loaded_header->driver_version != current_header->driver_version || memcmp(loaded_header->uuid, current_header->uuid, VK_UUID_SIZE) != 0 || loaded_header->driver_abi != current_header->driver_abi) { WARN_PRINT("Invalid pipelines cache header."); } else { pipelines_cache.current_size = loaded_buffer_size; pipelines_cache.buffer = p_data; } } } } // Create. { VkPipelineCacheCreateInfo cache_info = {}; cache_info.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; cache_info.initialDataSize = pipelines_cache.buffer.size() - sizeof(PipelineCacheHeader); cache_info.pInitialData = pipelines_cache.buffer.ptr() + sizeof(PipelineCacheHeader); if (pipeline_cache_control_support) { cache_info.flags = VK_PIPELINE_CACHE_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; } VkResult err = vkCreatePipelineCache(vk_device, &cache_info, nullptr, &pipelines_cache.vk_cache); if (err != VK_SUCCESS) { WARN_PRINT("vkCreatePipelinecache failed with error " + itos(err) + "."); return false; } } return true; } void RenderingDeviceDriverVulkan::pipeline_cache_free() { DEV_ASSERT(pipelines_cache.vk_cache); vkDestroyPipelineCache(vk_device, pipelines_cache.vk_cache, nullptr); pipelines_cache.vk_cache = VK_NULL_HANDLE; DEV_ASSERT(caching_instance_count > 0); caching_instance_count--; } size_t RenderingDeviceDriverVulkan::pipeline_cache_query_size() { DEV_ASSERT(pipelines_cache.vk_cache); // FIXME: // We're letting the cache grow unboundedly. We may want to set at limit and see if implementations use LRU or the like. // If we do, we won't be able to assume any longer that the cache is dirty if, and only if, it has grown. VkResult err = vkGetPipelineCacheData(vk_device, pipelines_cache.vk_cache, &pipelines_cache.current_size, nullptr); ERR_FAIL_COND_V_MSG(err, 0, "vkGetPipelineCacheData failed with error " + itos(err) + "."); return pipelines_cache.current_size; } Vector RenderingDeviceDriverVulkan::pipeline_cache_serialize() { DEV_ASSERT(pipelines_cache.vk_cache); pipelines_cache.buffer.resize(pipelines_cache.current_size + sizeof(PipelineCacheHeader)); VkResult err = vkGetPipelineCacheData(vk_device, pipelines_cache.vk_cache, &pipelines_cache.current_size, pipelines_cache.buffer.ptrw() + sizeof(PipelineCacheHeader)); ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_INCOMPLETE, Vector()); // Incomplete is OK because the cache may have grown since the size was queried (unless when exiting). // The real buffer size may now be bigger than the updated current_size. // We take into account the new size but keep the buffer resized in a worst-case fashion. PipelineCacheHeader *header = (PipelineCacheHeader *)pipelines_cache.buffer.ptrw(); header->data_size = pipelines_cache.current_size; header->data_hash = hash_murmur3_buffer(pipelines_cache.buffer.ptr() + sizeof(PipelineCacheHeader), pipelines_cache.current_size); return pipelines_cache.buffer; } /*******************/ /**** RENDERING ****/ /*******************/ // ----- SUBPASS ----- // RDD::AttachmentLoadOp == VkAttachmentLoadOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_LOAD_OP_LOAD)); static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_LOAD_OP_CLEAR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE)); // RDD::AttachmentStoreOp == VkAttachmentStoreOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_STORE_OP_STORE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::ATTACHMENT_STORE_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE)); // Assuming Vulkan and RDD's are backed by uint32_t in: // - VkSubpassDescription2::pPreserveAttachments and RDD::Subpass::preserve_attachments. // - VkRenderPassCreateInfo2KHR::pCorrelatedViewMasks and p_view_correlation_mask. static void _attachment_reference_to_vk(const RDD::AttachmentReference &p_attachment_reference, VkAttachmentReference2KHR *r_vk_attachment_reference) { *r_vk_attachment_reference = {}; r_vk_attachment_reference->sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR; r_vk_attachment_reference->attachment = p_attachment_reference.attachment; r_vk_attachment_reference->layout = (VkImageLayout)p_attachment_reference.layout; r_vk_attachment_reference->aspectMask = (VkImageAspectFlags)p_attachment_reference.aspect; } RDD::RenderPassID RenderingDeviceDriverVulkan::render_pass_create(VectorView p_attachments, VectorView p_subpasses, VectorView p_subpass_dependencies, uint32_t p_view_count) { // These are only used if we use multiview but we need to define them in scope. const uint32_t view_mask = (1 << p_view_count) - 1; const uint32_t correlation_mask = (1 << p_view_count) - 1; VkAttachmentDescription2KHR *vk_attachments = ALLOCA_ARRAY(VkAttachmentDescription2KHR, p_attachments.size()); for (uint32_t i = 0; i < p_attachments.size(); i++) { vk_attachments[i] = {}; vk_attachments[i].sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR; vk_attachments[i].format = RD_TO_VK_FORMAT[p_attachments[i].format]; vk_attachments[i].samples = _ensure_supported_sample_count(p_attachments[i].samples); vk_attachments[i].loadOp = (VkAttachmentLoadOp)p_attachments[i].load_op; vk_attachments[i].storeOp = (VkAttachmentStoreOp)p_attachments[i].store_op; vk_attachments[i].stencilLoadOp = (VkAttachmentLoadOp)p_attachments[i].stencil_load_op; vk_attachments[i].stencilStoreOp = (VkAttachmentStoreOp)p_attachments[i].stencil_store_op; vk_attachments[i].initialLayout = (VkImageLayout)p_attachments[i].initial_layout; vk_attachments[i].finalLayout = (VkImageLayout)p_attachments[i].final_layout; } VkSubpassDescription2KHR *vk_subpasses = ALLOCA_ARRAY(VkSubpassDescription2KHR, p_subpasses.size()); for (uint32_t i = 0; i < p_subpasses.size(); i++) { VkAttachmentReference2KHR *vk_subpass_input_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].input_references.size()); for (uint32_t j = 0; j < p_subpasses[i].input_references.size(); j++) { _attachment_reference_to_vk(p_subpasses[i].input_references[j], &vk_subpass_input_attachments[j]); } VkAttachmentReference2KHR *vk_subpass_color_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].color_references.size()); for (uint32_t j = 0; j < p_subpasses[i].color_references.size(); j++) { _attachment_reference_to_vk(p_subpasses[i].color_references[j], &vk_subpass_color_attachments[j]); } VkAttachmentReference2KHR *vk_subpass_resolve_attachments = ALLOCA_ARRAY(VkAttachmentReference2KHR, p_subpasses[i].resolve_references.size()); for (uint32_t j = 0; j < p_subpasses[i].resolve_references.size(); j++) { _attachment_reference_to_vk(p_subpasses[i].resolve_references[j], &vk_subpass_resolve_attachments[j]); } VkAttachmentReference2KHR *vk_subpass_depth_stencil_attachment = nullptr; if (p_subpasses[i].depth_stencil_reference.attachment != AttachmentReference::UNUSED) { vk_subpass_depth_stencil_attachment = ALLOCA_SINGLE(VkAttachmentReference2KHR); _attachment_reference_to_vk(p_subpasses[i].depth_stencil_reference, vk_subpass_depth_stencil_attachment); } vk_subpasses[i] = {}; vk_subpasses[i].sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR; vk_subpasses[i].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; vk_subpasses[i].viewMask = p_view_count == 1 ? 0 : view_mask; vk_subpasses[i].inputAttachmentCount = p_subpasses[i].input_references.size(); vk_subpasses[i].pInputAttachments = vk_subpass_input_attachments; vk_subpasses[i].colorAttachmentCount = p_subpasses[i].color_references.size(); vk_subpasses[i].pColorAttachments = vk_subpass_color_attachments; vk_subpasses[i].pResolveAttachments = vk_subpass_resolve_attachments; vk_subpasses[i].pDepthStencilAttachment = vk_subpass_depth_stencil_attachment; vk_subpasses[i].preserveAttachmentCount = p_subpasses[i].preserve_attachments.size(); vk_subpasses[i].pPreserveAttachments = p_subpasses[i].preserve_attachments.ptr(); // VRS. if (vrs_capabilities.attachment_vrs_supported && p_subpasses[i].vrs_reference.attachment != AttachmentReference::UNUSED) { VkAttachmentReference2KHR *vk_subpass_vrs_attachment = ALLOCA_SINGLE(VkAttachmentReference2KHR); *vk_subpass_vrs_attachment = {}; vk_subpass_vrs_attachment->sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR; vk_subpass_vrs_attachment->attachment = p_subpasses[i].vrs_reference.attachment; vk_subpass_vrs_attachment->layout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR; VkFragmentShadingRateAttachmentInfoKHR *vk_vrs_info = ALLOCA_SINGLE(VkFragmentShadingRateAttachmentInfoKHR); *vk_vrs_info = {}; vk_vrs_info->sType = VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR; vk_vrs_info->pFragmentShadingRateAttachment = vk_subpass_vrs_attachment; vk_vrs_info->shadingRateAttachmentTexelSize.width = vrs_capabilities.texel_size.x; vk_vrs_info->shadingRateAttachmentTexelSize.height = vrs_capabilities.texel_size.y; vk_subpasses[i].pNext = vk_vrs_info; } } VkSubpassDependency2KHR *vk_subpass_dependencies = ALLOCA_ARRAY(VkSubpassDependency2KHR, p_subpass_dependencies.size()); for (uint32_t i = 0; i < p_subpass_dependencies.size(); i++) { vk_subpass_dependencies[i] = {}; vk_subpass_dependencies[i].sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2; vk_subpass_dependencies[i].srcSubpass = p_subpass_dependencies[i].src_subpass; vk_subpass_dependencies[i].dstSubpass = p_subpass_dependencies[i].dst_subpass; vk_subpass_dependencies[i].srcStageMask = (VkPipelineStageFlags)p_subpass_dependencies[i].src_stages; vk_subpass_dependencies[i].dstStageMask = (VkPipelineStageFlags)p_subpass_dependencies[i].dst_stages; vk_subpass_dependencies[i].srcAccessMask = (VkAccessFlags)p_subpass_dependencies[i].src_access; vk_subpass_dependencies[i].dstAccessMask = (VkAccessFlags)p_subpass_dependencies[i].dst_access; } VkRenderPassCreateInfo2KHR create_info = {}; create_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR; create_info.attachmentCount = p_attachments.size(); create_info.pAttachments = vk_attachments; create_info.subpassCount = p_subpasses.size(); create_info.pSubpasses = vk_subpasses; create_info.dependencyCount = p_subpass_dependencies.size(); create_info.pDependencies = vk_subpass_dependencies; create_info.correlatedViewMaskCount = p_view_count == 1 ? 0 : 1; create_info.pCorrelatedViewMasks = p_view_count == 1 ? nullptr : &correlation_mask; // Multiview. if (p_view_count > 1 && device_functions.CreateRenderPass2KHR == nullptr) { // This is only required when not using vkCreateRenderPass2. // We add it if vkCreateRenderPass2KHR is not supported, // resulting this in being passed to our vkCreateRenderPass fallback. uint32_t *vk_view_masks = ALLOCA_ARRAY(uint32_t, p_subpasses.size()); for (uint32_t i = 0; i < p_subpasses.size(); i++) { vk_view_masks[i] = view_mask; } VkRenderPassMultiviewCreateInfo *multiview_create_info = ALLOCA_SINGLE(VkRenderPassMultiviewCreateInfo); *multiview_create_info = {}; multiview_create_info->sType = VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO; multiview_create_info->subpassCount = p_subpasses.size(); multiview_create_info->pViewMasks = vk_view_masks; multiview_create_info->correlationMaskCount = 1; multiview_create_info->pCorrelationMasks = &correlation_mask; create_info.pNext = multiview_create_info; } VkRenderPass vk_render_pass = VK_NULL_HANDLE; VkResult res = _create_render_pass(vk_device, &create_info, nullptr, &vk_render_pass); ERR_FAIL_COND_V_MSG(res, RenderPassID(), "vkCreateRenderPass2KHR failed with error " + itos(res) + "."); return RenderPassID(vk_render_pass); } void RenderingDeviceDriverVulkan::render_pass_free(RenderPassID p_render_pass) { vkDestroyRenderPass(vk_device, (VkRenderPass)p_render_pass.id, nullptr); } // ----- COMMANDS ----- static_assert(ARRAYS_COMPATIBLE_FIELDWISE(RDD::RenderPassClearValue, VkClearValue)); void RenderingDeviceDriverVulkan::command_begin_render_pass(CommandBufferID p_cmd_buffer, RenderPassID p_render_pass, FramebufferID p_framebuffer, CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView p_clear_values) { VkRenderPassBeginInfo render_pass_begin = {}; render_pass_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; render_pass_begin.renderPass = (VkRenderPass)p_render_pass.id; render_pass_begin.framebuffer = (VkFramebuffer)p_framebuffer.id; render_pass_begin.renderArea.offset.x = p_rect.position.x; render_pass_begin.renderArea.offset.y = p_rect.position.y; render_pass_begin.renderArea.extent.width = p_rect.size.x; render_pass_begin.renderArea.extent.height = p_rect.size.y; render_pass_begin.clearValueCount = p_clear_values.size(); render_pass_begin.pClearValues = (const VkClearValue *)p_clear_values.ptr(); VkSubpassContents vk_subpass_contents = p_cmd_buffer_type == COMMAND_BUFFER_TYPE_PRIMARY ? VK_SUBPASS_CONTENTS_INLINE : VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS; vkCmdBeginRenderPass((VkCommandBuffer)p_cmd_buffer.id, &render_pass_begin, vk_subpass_contents); #if PRINT_NATIVE_COMMANDS print_line(vformat("vkCmdBeginRenderPass Pass 0x%uX Framebuffer 0x%uX", p_render_pass.id, p_framebuffer.id)); #endif } void RenderingDeviceDriverVulkan::command_end_render_pass(CommandBufferID p_cmd_buffer) { vkCmdEndRenderPass((VkCommandBuffer)p_cmd_buffer.id); #if PRINT_NATIVE_COMMANDS print_line("vkCmdEndRenderPass"); #endif } void RenderingDeviceDriverVulkan::command_next_render_subpass(CommandBufferID p_cmd_buffer, CommandBufferType p_cmd_buffer_type) { VkSubpassContents vk_subpass_contents = p_cmd_buffer_type == COMMAND_BUFFER_TYPE_PRIMARY ? VK_SUBPASS_CONTENTS_INLINE : VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS; vkCmdNextSubpass((VkCommandBuffer)p_cmd_buffer.id, vk_subpass_contents); } void RenderingDeviceDriverVulkan::command_render_set_viewport(CommandBufferID p_cmd_buffer, VectorView p_viewports) { VkViewport *vk_viewports = ALLOCA_ARRAY(VkViewport, p_viewports.size()); for (uint32_t i = 0; i < p_viewports.size(); i++) { vk_viewports[i] = {}; vk_viewports[i].x = p_viewports[i].position.x; vk_viewports[i].y = p_viewports[i].position.y; vk_viewports[i].width = p_viewports[i].size.x; vk_viewports[i].height = p_viewports[i].size.y; vk_viewports[i].minDepth = 0.0f; vk_viewports[i].maxDepth = 1.0f; } vkCmdSetViewport((VkCommandBuffer)p_cmd_buffer.id, 0, p_viewports.size(), vk_viewports); } void RenderingDeviceDriverVulkan::command_render_set_scissor(CommandBufferID p_cmd_buffer, VectorView p_scissors) { vkCmdSetScissor((VkCommandBuffer)p_cmd_buffer.id, 0, p_scissors.size(), (VkRect2D *)p_scissors.ptr()); } void RenderingDeviceDriverVulkan::command_render_clear_attachments(CommandBufferID p_cmd_buffer, VectorView p_attachment_clears, VectorView p_rects) { VkClearAttachment *vk_clears = ALLOCA_ARRAY(VkClearAttachment, p_attachment_clears.size()); for (uint32_t i = 0; i < p_attachment_clears.size(); i++) { vk_clears[i] = {}; memcpy(&vk_clears[i].clearValue, &p_attachment_clears[i].value, sizeof(VkClearValue)); vk_clears[i].colorAttachment = p_attachment_clears[i].color_attachment; vk_clears[i].aspectMask = p_attachment_clears[i].aspect; } VkClearRect *vk_rects = ALLOCA_ARRAY(VkClearRect, p_rects.size()); for (uint32_t i = 0; i < p_rects.size(); i++) { vk_rects[i] = {}; vk_rects[i].rect.offset.x = p_rects[i].position.x; vk_rects[i].rect.offset.y = p_rects[i].position.y; vk_rects[i].rect.extent.width = p_rects[i].size.x; vk_rects[i].rect.extent.height = p_rects[i].size.y; vk_rects[i].baseArrayLayer = 0; vk_rects[i].layerCount = 1; } vkCmdClearAttachments((VkCommandBuffer)p_cmd_buffer.id, p_attachment_clears.size(), vk_clears, p_rects.size(), vk_rects); } void RenderingDeviceDriverVulkan::command_bind_render_pipeline(CommandBufferID p_cmd_buffer, PipelineID p_pipeline) { vkCmdBindPipeline((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_GRAPHICS, (VkPipeline)p_pipeline.id); } void RenderingDeviceDriverVulkan::command_bind_render_uniform_set(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) { const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; const UniformSetInfo *usi = (const UniformSetInfo *)p_uniform_set.id; vkCmdBindDescriptorSets((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_GRAPHICS, shader_info->vk_pipeline_layout, p_set_index, 1, &usi->vk_descriptor_set, 0, nullptr); } void RenderingDeviceDriverVulkan::command_render_draw(CommandBufferID p_cmd_buffer, uint32_t p_vertex_count, uint32_t p_instance_count, uint32_t p_base_vertex, uint32_t p_first_instance) { vkCmdDraw((VkCommandBuffer)p_cmd_buffer.id, p_vertex_count, p_instance_count, p_base_vertex, p_first_instance); } void RenderingDeviceDriverVulkan::command_render_draw_indexed(CommandBufferID p_cmd_buffer, uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index, int32_t p_vertex_offset, uint32_t p_first_instance) { vkCmdDrawIndexed((VkCommandBuffer)p_cmd_buffer.id, p_index_count, p_instance_count, p_first_index, p_vertex_offset, p_first_instance); } void RenderingDeviceDriverVulkan::command_render_draw_indexed_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id; vkCmdDrawIndexedIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_draw_count, p_stride); } void RenderingDeviceDriverVulkan::command_render_draw_indexed_indirect_count(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { const BufferInfo *indirect_buf_info = (const BufferInfo *)p_indirect_buffer.id; const BufferInfo *count_buf_info = (const BufferInfo *)p_count_buffer.id; vkCmdDrawIndexedIndirectCount((VkCommandBuffer)p_cmd_buffer.id, indirect_buf_info->vk_buffer, p_offset, count_buf_info->vk_buffer, p_count_buffer_offset, p_max_draw_count, p_stride); } void RenderingDeviceDriverVulkan::command_render_draw_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id; vkCmdDrawIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_draw_count, p_stride); } void RenderingDeviceDriverVulkan::command_render_draw_indirect_count(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset, BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { const BufferInfo *indirect_buf_info = (const BufferInfo *)p_indirect_buffer.id; const BufferInfo *count_buf_info = (const BufferInfo *)p_count_buffer.id; vkCmdDrawIndirectCount((VkCommandBuffer)p_cmd_buffer.id, indirect_buf_info->vk_buffer, p_offset, count_buf_info->vk_buffer, p_count_buffer_offset, p_max_draw_count, p_stride); } void RenderingDeviceDriverVulkan::command_render_bind_vertex_buffers(CommandBufferID p_cmd_buffer, uint32_t p_binding_count, const BufferID *p_buffers, const uint64_t *p_offsets) { VkBuffer *vk_buffers = ALLOCA_ARRAY(VkBuffer, p_binding_count); for (uint32_t i = 0; i < p_binding_count; i++) { vk_buffers[i] = ((const BufferInfo *)p_buffers[i].id)->vk_buffer; } vkCmdBindVertexBuffers((VkCommandBuffer)p_cmd_buffer.id, 0, p_binding_count, vk_buffers, p_offsets); } void RenderingDeviceDriverVulkan::command_render_bind_index_buffer(CommandBufferID p_cmd_buffer, BufferID p_buffer, IndexBufferFormat p_format, uint64_t p_offset) { const BufferInfo *buf_info = (const BufferInfo *)p_buffer.id; vkCmdBindIndexBuffer((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset, p_format == INDEX_BUFFER_FORMAT_UINT16 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32); } void RenderingDeviceDriverVulkan::command_render_set_blend_constants(CommandBufferID p_cmd_buffer, const Color &p_constants) { vkCmdSetBlendConstants((VkCommandBuffer)p_cmd_buffer.id, p_constants.components); } void RenderingDeviceDriverVulkan::command_render_set_line_width(CommandBufferID p_cmd_buffer, float p_width) { vkCmdSetLineWidth((VkCommandBuffer)p_cmd_buffer.id, p_width); } // ----- PIPELINE ----- static const VkPrimitiveTopology RD_TO_VK_PRIMITIVE[RDD::RENDER_PRIMITIVE_MAX] = { VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, }; // RDD::PolygonCullMode == VkCullModeFlagBits. static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_DISABLED, VK_CULL_MODE_NONE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_FRONT, VK_CULL_MODE_FRONT_BIT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::POLYGON_CULL_BACK, VK_CULL_MODE_BACK_BIT)); // RDD::StencilOperation == VkStencilOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_KEEP, VK_STENCIL_OP_KEEP)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_ZERO, VK_STENCIL_OP_ZERO)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_REPLACE, VK_STENCIL_OP_REPLACE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INCREMENT_AND_CLAMP, VK_STENCIL_OP_INCREMENT_AND_CLAMP)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_DECREMENT_AND_CLAMP, VK_STENCIL_OP_DECREMENT_AND_CLAMP)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INVERT, VK_STENCIL_OP_INVERT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_INCREMENT_AND_WRAP, VK_STENCIL_OP_INCREMENT_AND_WRAP)); static_assert(ENUM_MEMBERS_EQUAL(RDD::STENCIL_OP_DECREMENT_AND_WRAP, VK_STENCIL_OP_DECREMENT_AND_WRAP)); // RDD::LogicOperation == VkLogicOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_CLEAR, VK_LOGIC_OP_CLEAR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND, VK_LOGIC_OP_AND)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_AND_REVERSE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_COPY, VK_LOGIC_OP_COPY)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_AND_INVERTED)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NO_OP, VK_LOGIC_OP_NO_OP)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_XOR, VK_LOGIC_OP_XOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR, VK_LOGIC_OP_OR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NOR, VK_LOGIC_OP_NOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_EQUIVALENT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_INVERT, VK_LOGIC_OP_INVERT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR_REVERSE, VK_LOGIC_OP_OR_REVERSE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_COPY_INVERTED)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_OR_INVERTED)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_NAND, VK_LOGIC_OP_NAND)); static_assert(ENUM_MEMBERS_EQUAL(RDD::LOGIC_OP_SET, VK_LOGIC_OP_SET)); // RDD::BlendFactor == VkBlendFactor. static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ZERO)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE, VK_BLEND_FACTOR_ONE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_SRC_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_DST_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_DST_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_CONSTANT_ALPHA, VK_BLEND_FACTOR_CONSTANT_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC_ALPHA_SATURATE, VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC1_COLOR, VK_BLEND_FACTOR_SRC1_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_SRC1_ALPHA)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA)); // RDD::BlendOperation == VkBlendOp. static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_ADD, VK_BLEND_OP_ADD)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_SUBTRACT, VK_BLEND_OP_SUBTRACT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_REVERSE_SUBTRACT, VK_BLEND_OP_REVERSE_SUBTRACT)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_MINIMUM, VK_BLEND_OP_MIN)); static_assert(ENUM_MEMBERS_EQUAL(RDD::BLEND_OP_MAXIMUM, VK_BLEND_OP_MAX)); RDD::PipelineID RenderingDeviceDriverVulkan::render_pipeline_create( ShaderID p_shader, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, PipelineRasterizationState p_rasterization_state, PipelineMultisampleState p_multisample_state, PipelineDepthStencilState p_depth_stencil_state, PipelineColorBlendState p_blend_state, VectorView p_color_attachments, BitField p_dynamic_state, RenderPassID p_render_pass, uint32_t p_render_subpass, VectorView p_specialization_constants) { // Vertex. const VkPipelineVertexInputStateCreateInfo *vertex_input_state_create_info = nullptr; if (p_vertex_format.id) { const VertexFormatInfo *vf_info = (const VertexFormatInfo *)p_vertex_format.id; vertex_input_state_create_info = &vf_info->vk_create_info; } else { VkPipelineVertexInputStateCreateInfo *null_vertex_input_state = ALLOCA_SINGLE(VkPipelineVertexInputStateCreateInfo); *null_vertex_input_state = {}; null_vertex_input_state->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertex_input_state_create_info = null_vertex_input_state; } // Input assembly. VkPipelineInputAssemblyStateCreateInfo input_assembly_create_info = {}; input_assembly_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; input_assembly_create_info.topology = RD_TO_VK_PRIMITIVE[p_render_primitive]; input_assembly_create_info.primitiveRestartEnable = (p_render_primitive == RENDER_PRIMITIVE_TRIANGLE_STRIPS_WITH_RESTART_INDEX); // Tessellation. VkPipelineTessellationStateCreateInfo tessellation_create_info = {}; tessellation_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO; ERR_FAIL_COND_V(physical_device_properties.limits.maxTessellationPatchSize > 0 && (p_rasterization_state.patch_control_points < 1 || p_rasterization_state.patch_control_points > physical_device_properties.limits.maxTessellationPatchSize), PipelineID()); tessellation_create_info.patchControlPoints = p_rasterization_state.patch_control_points; // Viewport. VkPipelineViewportStateCreateInfo viewport_state_create_info = {}; viewport_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport_state_create_info.viewportCount = 1; // If VR extensions are supported at some point, this will have to be customizable in the framebuffer format. viewport_state_create_info.scissorCount = 1; // Rasterization. VkPipelineRasterizationStateCreateInfo rasterization_state_create_info = {}; rasterization_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterization_state_create_info.depthClampEnable = p_rasterization_state.enable_depth_clamp; rasterization_state_create_info.rasterizerDiscardEnable = p_rasterization_state.discard_primitives; rasterization_state_create_info.polygonMode = p_rasterization_state.wireframe ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL; rasterization_state_create_info.cullMode = (PolygonCullMode)p_rasterization_state.cull_mode; rasterization_state_create_info.frontFace = (p_rasterization_state.front_face == POLYGON_FRONT_FACE_CLOCKWISE ? VK_FRONT_FACE_CLOCKWISE : VK_FRONT_FACE_COUNTER_CLOCKWISE); rasterization_state_create_info.depthBiasEnable = p_rasterization_state.depth_bias_enabled; rasterization_state_create_info.depthBiasConstantFactor = p_rasterization_state.depth_bias_constant_factor; rasterization_state_create_info.depthBiasClamp = p_rasterization_state.depth_bias_clamp; rasterization_state_create_info.depthBiasSlopeFactor = p_rasterization_state.depth_bias_slope_factor; rasterization_state_create_info.lineWidth = p_rasterization_state.line_width; // Multisample. VkPipelineMultisampleStateCreateInfo multisample_state_create_info = {}; multisample_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisample_state_create_info.rasterizationSamples = _ensure_supported_sample_count(p_multisample_state.sample_count); multisample_state_create_info.sampleShadingEnable = p_multisample_state.enable_sample_shading; multisample_state_create_info.minSampleShading = p_multisample_state.min_sample_shading; if (p_multisample_state.sample_mask.size()) { static_assert(ARRAYS_COMPATIBLE(uint32_t, VkSampleMask)); multisample_state_create_info.pSampleMask = p_multisample_state.sample_mask.ptr(); } else { multisample_state_create_info.pSampleMask = nullptr; } multisample_state_create_info.alphaToCoverageEnable = p_multisample_state.enable_alpha_to_coverage; multisample_state_create_info.alphaToOneEnable = p_multisample_state.enable_alpha_to_one; // Depth stencil. VkPipelineDepthStencilStateCreateInfo depth_stencil_state_create_info = {}; depth_stencil_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; depth_stencil_state_create_info.depthTestEnable = p_depth_stencil_state.enable_depth_test; depth_stencil_state_create_info.depthWriteEnable = p_depth_stencil_state.enable_depth_write; depth_stencil_state_create_info.depthCompareOp = (VkCompareOp)p_depth_stencil_state.depth_compare_operator; depth_stencil_state_create_info.depthBoundsTestEnable = p_depth_stencil_state.enable_depth_range; depth_stencil_state_create_info.stencilTestEnable = p_depth_stencil_state.enable_stencil; depth_stencil_state_create_info.front.failOp = (VkStencilOp)p_depth_stencil_state.front_op.fail; depth_stencil_state_create_info.front.passOp = (VkStencilOp)p_depth_stencil_state.front_op.pass; depth_stencil_state_create_info.front.depthFailOp = (VkStencilOp)p_depth_stencil_state.front_op.depth_fail; depth_stencil_state_create_info.front.compareOp = (VkCompareOp)p_depth_stencil_state.front_op.compare; depth_stencil_state_create_info.front.compareMask = p_depth_stencil_state.front_op.compare_mask; depth_stencil_state_create_info.front.writeMask = p_depth_stencil_state.front_op.write_mask; depth_stencil_state_create_info.front.reference = p_depth_stencil_state.front_op.reference; depth_stencil_state_create_info.back.failOp = (VkStencilOp)p_depth_stencil_state.back_op.fail; depth_stencil_state_create_info.back.passOp = (VkStencilOp)p_depth_stencil_state.back_op.pass; depth_stencil_state_create_info.back.depthFailOp = (VkStencilOp)p_depth_stencil_state.back_op.depth_fail; depth_stencil_state_create_info.back.compareOp = (VkCompareOp)p_depth_stencil_state.back_op.compare; depth_stencil_state_create_info.back.compareMask = p_depth_stencil_state.back_op.compare_mask; depth_stencil_state_create_info.back.writeMask = p_depth_stencil_state.back_op.write_mask; depth_stencil_state_create_info.back.reference = p_depth_stencil_state.back_op.reference; depth_stencil_state_create_info.minDepthBounds = p_depth_stencil_state.depth_range_min; depth_stencil_state_create_info.maxDepthBounds = p_depth_stencil_state.depth_range_max; // Blend state. VkPipelineColorBlendStateCreateInfo color_blend_state_create_info = {}; color_blend_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; color_blend_state_create_info.logicOpEnable = p_blend_state.enable_logic_op; color_blend_state_create_info.logicOp = (VkLogicOp)p_blend_state.logic_op; VkPipelineColorBlendAttachmentState *vk_attachment_states = ALLOCA_ARRAY(VkPipelineColorBlendAttachmentState, p_color_attachments.size()); { for (uint32_t i = 0; i < p_color_attachments.size(); i++) { vk_attachment_states[i] = {}; if (p_color_attachments[i] != ATTACHMENT_UNUSED) { vk_attachment_states[i].blendEnable = p_blend_state.attachments[i].enable_blend; vk_attachment_states[i].srcColorBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].src_color_blend_factor; vk_attachment_states[i].dstColorBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].dst_color_blend_factor; vk_attachment_states[i].colorBlendOp = (VkBlendOp)p_blend_state.attachments[i].color_blend_op; vk_attachment_states[i].srcAlphaBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].src_alpha_blend_factor; vk_attachment_states[i].dstAlphaBlendFactor = (VkBlendFactor)p_blend_state.attachments[i].dst_alpha_blend_factor; vk_attachment_states[i].alphaBlendOp = (VkBlendOp)p_blend_state.attachments[i].alpha_blend_op; if (p_blend_state.attachments[i].write_r) { vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_R_BIT; } if (p_blend_state.attachments[i].write_g) { vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_G_BIT; } if (p_blend_state.attachments[i].write_b) { vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_B_BIT; } if (p_blend_state.attachments[i].write_a) { vk_attachment_states[i].colorWriteMask |= VK_COLOR_COMPONENT_A_BIT; } } } } color_blend_state_create_info.attachmentCount = p_color_attachments.size(); color_blend_state_create_info.pAttachments = vk_attachment_states; color_blend_state_create_info.blendConstants[0] = p_blend_state.blend_constant.r; color_blend_state_create_info.blendConstants[1] = p_blend_state.blend_constant.g; color_blend_state_create_info.blendConstants[2] = p_blend_state.blend_constant.b; color_blend_state_create_info.blendConstants[3] = p_blend_state.blend_constant.a; // Dynamic state. VkPipelineDynamicStateCreateInfo dynamic_state_create_info = {}; dynamic_state_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; static const uint32_t MAX_DYN_STATE_COUNT = 9; VkDynamicState *vk_dynamic_states = ALLOCA_ARRAY(VkDynamicState, MAX_DYN_STATE_COUNT); uint32_t vk_dynamic_states_count = 0; vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_VIEWPORT; // Viewport and scissor are always dynamic. vk_dynamic_states_count++; vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_SCISSOR; vk_dynamic_states_count++; if (p_dynamic_state.has_flag(DYNAMIC_STATE_LINE_WIDTH)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_LINE_WIDTH; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_DEPTH_BIAS)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_DEPTH_BIAS; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_BLEND_CONSTANTS)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_DEPTH_BOUNDS)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_DEPTH_BOUNDS; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_WRITE_MASK)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK; vk_dynamic_states_count++; } if (p_dynamic_state.has_flag(DYNAMIC_STATE_STENCIL_REFERENCE)) { vk_dynamic_states[vk_dynamic_states_count] = VK_DYNAMIC_STATE_STENCIL_REFERENCE; vk_dynamic_states_count++; } DEV_ASSERT(vk_dynamic_states_count <= MAX_DYN_STATE_COUNT); dynamic_state_create_info.dynamicStateCount = vk_dynamic_states_count; dynamic_state_create_info.pDynamicStates = vk_dynamic_states; // VRS. void *graphics_pipeline_nextptr = nullptr; if (vrs_capabilities.attachment_vrs_supported) { // If VRS is used, this defines how the different VRS types are combined. // combinerOps[0] decides how we use the output of pipeline and primitive (drawcall) VRS. // combinerOps[1] decides how we use the output of combinerOps[0] and our attachment VRS. VkPipelineFragmentShadingRateStateCreateInfoKHR *vrs_create_info = ALLOCA_SINGLE(VkPipelineFragmentShadingRateStateCreateInfoKHR); *vrs_create_info = {}; vrs_create_info->sType = VK_STRUCTURE_TYPE_PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR; vrs_create_info->fragmentSize = { 4, 4 }; vrs_create_info->combinerOps[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; // We don't use pipeline/primitive VRS so this really doesn't matter. vrs_create_info->combinerOps[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR; // Always use the outcome of attachment VRS if enabled. graphics_pipeline_nextptr = vrs_create_info; } // Finally, pipeline create info. const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; VkGraphicsPipelineCreateInfo pipeline_create_info = {}; pipeline_create_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline_create_info.pNext = graphics_pipeline_nextptr; pipeline_create_info.stageCount = shader_info->vk_stages_create_info.size(); VkPipelineShaderStageCreateInfo *vk_pipeline_stages = ALLOCA_ARRAY(VkPipelineShaderStageCreateInfo, shader_info->vk_stages_create_info.size()); for (uint32_t i = 0; i < shader_info->vk_stages_create_info.size(); i++) { vk_pipeline_stages[i] = shader_info->vk_stages_create_info[i]; if (p_specialization_constants.size()) { VkSpecializationMapEntry *specialization_map_entries = ALLOCA_ARRAY(VkSpecializationMapEntry, p_specialization_constants.size()); for (uint32_t j = 0; j < p_specialization_constants.size(); j++) { specialization_map_entries[j] = {}; specialization_map_entries[j].constantID = p_specialization_constants[j].constant_id; specialization_map_entries[j].offset = (const char *)&p_specialization_constants[j].int_value - (const char *)p_specialization_constants.ptr(); specialization_map_entries[j].size = sizeof(uint32_t); } VkSpecializationInfo *specialization_info = ALLOCA_SINGLE(VkSpecializationInfo); *specialization_info = {}; specialization_info->dataSize = p_specialization_constants.size() * sizeof(PipelineSpecializationConstant); specialization_info->pData = p_specialization_constants.ptr(); specialization_info->mapEntryCount = p_specialization_constants.size(); specialization_info->pMapEntries = specialization_map_entries; vk_pipeline_stages[i].pSpecializationInfo = specialization_info; } } pipeline_create_info.pStages = vk_pipeline_stages; pipeline_create_info.pVertexInputState = vertex_input_state_create_info; pipeline_create_info.pInputAssemblyState = &input_assembly_create_info; pipeline_create_info.pTessellationState = &tessellation_create_info; pipeline_create_info.pViewportState = &viewport_state_create_info; pipeline_create_info.pRasterizationState = &rasterization_state_create_info; pipeline_create_info.pMultisampleState = &multisample_state_create_info; pipeline_create_info.pDepthStencilState = &depth_stencil_state_create_info; pipeline_create_info.pColorBlendState = &color_blend_state_create_info; pipeline_create_info.pDynamicState = &dynamic_state_create_info; pipeline_create_info.layout = shader_info->vk_pipeline_layout; pipeline_create_info.renderPass = (VkRenderPass)p_render_pass.id; pipeline_create_info.subpass = p_render_subpass; // --- VkPipeline vk_pipeline = VK_NULL_HANDLE; VkResult err = vkCreateGraphicsPipelines(vk_device, pipelines_cache.vk_cache, 1, &pipeline_create_info, nullptr, &vk_pipeline); ERR_FAIL_COND_V_MSG(err, PipelineID(), "vkCreateGraphicsPipelines failed with error " + itos(err) + "."); return PipelineID(vk_pipeline); } /*****************/ /**** COMPUTE ****/ /*****************/ // ----- COMMANDS ----- void RenderingDeviceDriverVulkan::command_bind_compute_pipeline(CommandBufferID p_cmd_buffer, PipelineID p_pipeline) { vkCmdBindPipeline((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_COMPUTE, (VkPipeline)p_pipeline.id); } void RenderingDeviceDriverVulkan::command_bind_compute_uniform_set(CommandBufferID p_cmd_buffer, UniformSetID p_uniform_set, ShaderID p_shader, uint32_t p_set_index) { const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; const UniformSetInfo *usi = (const UniformSetInfo *)p_uniform_set.id; vkCmdBindDescriptorSets((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_BIND_POINT_COMPUTE, shader_info->vk_pipeline_layout, p_set_index, 1, &usi->vk_descriptor_set, 0, nullptr); } void RenderingDeviceDriverVulkan::command_compute_dispatch(CommandBufferID p_cmd_buffer, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) { vkCmdDispatch((VkCommandBuffer)p_cmd_buffer.id, p_x_groups, p_y_groups, p_z_groups); } void RenderingDeviceDriverVulkan::command_compute_dispatch_indirect(CommandBufferID p_cmd_buffer, BufferID p_indirect_buffer, uint64_t p_offset) { const BufferInfo *buf_info = (const BufferInfo *)p_indirect_buffer.id; vkCmdDispatchIndirect((VkCommandBuffer)p_cmd_buffer.id, buf_info->vk_buffer, p_offset); } // ----- PIPELINE ----- RDD::PipelineID RenderingDeviceDriverVulkan::compute_pipeline_create(ShaderID p_shader, VectorView p_specialization_constants) { const ShaderInfo *shader_info = (const ShaderInfo *)p_shader.id; VkComputePipelineCreateInfo pipeline_create_info = {}; pipeline_create_info.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO; pipeline_create_info.stage = shader_info->vk_stages_create_info[0]; pipeline_create_info.layout = shader_info->vk_pipeline_layout; if (p_specialization_constants.size()) { VkSpecializationMapEntry *specialization_map_entries = ALLOCA_ARRAY(VkSpecializationMapEntry, p_specialization_constants.size()); for (uint32_t i = 0; i < p_specialization_constants.size(); i++) { specialization_map_entries[i] = {}; specialization_map_entries[i].constantID = p_specialization_constants[i].constant_id; specialization_map_entries[i].offset = (const char *)&p_specialization_constants[i].int_value - (const char *)p_specialization_constants.ptr(); specialization_map_entries[i].size = sizeof(uint32_t); } VkSpecializationInfo *specialization_info = ALLOCA_SINGLE(VkSpecializationInfo); *specialization_info = {}; specialization_info->dataSize = p_specialization_constants.size() * sizeof(PipelineSpecializationConstant); specialization_info->pData = p_specialization_constants.ptr(); specialization_info->mapEntryCount = p_specialization_constants.size(); specialization_info->pMapEntries = specialization_map_entries; pipeline_create_info.stage.pSpecializationInfo = specialization_info; } VkPipeline vk_pipeline = VK_NULL_HANDLE; VkResult err = vkCreateComputePipelines(vk_device, pipelines_cache.vk_cache, 1, &pipeline_create_info, nullptr, &vk_pipeline); ERR_FAIL_COND_V_MSG(err, PipelineID(), "vkCreateComputePipelines failed with error " + itos(err) + "."); return PipelineID(vk_pipeline); } /*****************/ /**** QUERIES ****/ /*****************/ // ----- TIMESTAMP ----- RDD::QueryPoolID RenderingDeviceDriverVulkan::timestamp_query_pool_create(uint32_t p_query_count) { VkQueryPoolCreateInfo query_pool_create_info = {}; query_pool_create_info.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO; query_pool_create_info.queryType = VK_QUERY_TYPE_TIMESTAMP; query_pool_create_info.queryCount = p_query_count; VkQueryPool vk_query_pool = VK_NULL_HANDLE; vkCreateQueryPool(vk_device, &query_pool_create_info, nullptr, &vk_query_pool); return RDD::QueryPoolID(vk_query_pool); } void RenderingDeviceDriverVulkan::timestamp_query_pool_free(QueryPoolID p_pool_id) { vkDestroyQueryPool(vk_device, (VkQueryPool)p_pool_id.id, nullptr); } void RenderingDeviceDriverVulkan::timestamp_query_pool_get_results(QueryPoolID p_pool_id, uint32_t p_query_count, uint64_t *r_results) { vkGetQueryPoolResults(vk_device, (VkQueryPool)p_pool_id.id, 0, p_query_count, sizeof(uint64_t) * p_query_count, r_results, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT); } uint64_t RenderingDeviceDriverVulkan::timestamp_query_result_to_time(uint64_t p_result) { // This sucks because timestampPeriod multiplier is a float, while the timestamp is 64 bits nanosecs. // So, in cases like nvidia which give you enormous numbers and 1 as multiplier, multiplying is next to impossible. // Need to do 128 bits fixed point multiplication to get the right value. auto mult64to128 = [](uint64_t u, uint64_t v, uint64_t &h, uint64_t &l) { uint64_t u1 = (u & 0xffffffff); uint64_t v1 = (v & 0xffffffff); uint64_t t = (u1 * v1); uint64_t w3 = (t & 0xffffffff); uint64_t k = (t >> 32); u >>= 32; t = (u * v1) + k; k = (t & 0xffffffff); uint64_t w1 = (t >> 32); v >>= 32; t = (u1 * v) + k; k = (t >> 32); h = (u * v) + w1 + k; l = (t << 32) + w3; }; uint64_t shift_bits = 16; uint64_t h = 0, l = 0; mult64to128(p_result, uint64_t(double(physical_device_properties.limits.timestampPeriod) * double(1 << shift_bits)), h, l); l >>= shift_bits; l |= h << (64 - shift_bits); return l; } void RenderingDeviceDriverVulkan::command_timestamp_query_pool_reset(CommandBufferID p_cmd_buffer, QueryPoolID p_pool_id, uint32_t p_query_count) { vkCmdResetQueryPool((VkCommandBuffer)p_cmd_buffer.id, (VkQueryPool)p_pool_id.id, 0, p_query_count); } void RenderingDeviceDriverVulkan::command_timestamp_write(CommandBufferID p_cmd_buffer, QueryPoolID p_pool_id, uint32_t p_index) { vkCmdWriteTimestamp((VkCommandBuffer)p_cmd_buffer.id, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, (VkQueryPool)p_pool_id.id, p_index); } /****************/ /**** LABELS ****/ /****************/ void RenderingDeviceDriverVulkan::command_begin_label(CommandBufferID p_cmd_buffer, const char *p_label_name, const Color &p_color) { const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); VkDebugUtilsLabelEXT label; label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT; label.pNext = nullptr; label.pLabelName = p_label_name; label.color[0] = p_color[0]; label.color[1] = p_color[1]; label.color[2] = p_color[2]; label.color[3] = p_color[3]; functions.CmdBeginDebugUtilsLabelEXT((VkCommandBuffer)p_cmd_buffer.id, &label); } void RenderingDeviceDriverVulkan::command_end_label(CommandBufferID p_cmd_buffer) { const RenderingContextDriverVulkan::Functions &functions = context_driver->functions_get(); functions.CmdEndDebugUtilsLabelEXT((VkCommandBuffer)p_cmd_buffer.id); } /********************/ /**** SUBMISSION ****/ /********************/ void RenderingDeviceDriverVulkan::begin_segment(uint32_t p_frame_index, uint32_t p_frames_drawn) { // Per-frame segments are not required in Vulkan. } void RenderingDeviceDriverVulkan::end_segment() { // Per-frame segments are not required in Vulkan. } /**************/ /**** MISC ****/ /**************/ void RenderingDeviceDriverVulkan::set_object_name(ObjectType p_type, ID p_driver_id, const String &p_name) { switch (p_type) { case OBJECT_TYPE_TEXTURE: { const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id; if (tex_info->allocation.handle) { _set_object_name(VK_OBJECT_TYPE_IMAGE, (uint64_t)tex_info->vk_view_create_info.image, p_name); } _set_object_name(VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t)tex_info->vk_view, p_name + " View"); } break; case OBJECT_TYPE_SAMPLER: { _set_object_name(VK_OBJECT_TYPE_SAMPLER, p_driver_id.id, p_name); } break; case OBJECT_TYPE_BUFFER: { const BufferInfo *buf_info = (const BufferInfo *)p_driver_id.id; _set_object_name(VK_OBJECT_TYPE_BUFFER, (uint64_t)buf_info->vk_buffer, p_name); if (buf_info->vk_view) { _set_object_name(VK_OBJECT_TYPE_BUFFER_VIEW, (uint64_t)buf_info->vk_view, p_name + " View"); } } break; case OBJECT_TYPE_SHADER: { const ShaderInfo *shader_info = (const ShaderInfo *)p_driver_id.id; for (uint32_t i = 0; i < shader_info->vk_descriptor_set_layouts.size(); i++) { _set_object_name(VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, (uint64_t)shader_info->vk_descriptor_set_layouts[i], p_name); } _set_object_name(VK_OBJECT_TYPE_PIPELINE_LAYOUT, (uint64_t)shader_info->vk_pipeline_layout, p_name + " Pipeline Layout"); } break; case OBJECT_TYPE_UNIFORM_SET: { const UniformSetInfo *usi = (const UniformSetInfo *)p_driver_id.id; _set_object_name(VK_OBJECT_TYPE_DESCRIPTOR_SET, (uint64_t)usi->vk_descriptor_set, p_name); } break; case OBJECT_TYPE_PIPELINE: { _set_object_name(VK_OBJECT_TYPE_PIPELINE, (uint64_t)p_driver_id.id, p_name); } break; default: { DEV_ASSERT(false); } } } uint64_t RenderingDeviceDriverVulkan::get_resource_native_handle(DriverResource p_type, ID p_driver_id) { switch (p_type) { case DRIVER_RESOURCE_LOGICAL_DEVICE: { return (uint64_t)vk_device; } case DRIVER_RESOURCE_PHYSICAL_DEVICE: { return (uint64_t)physical_device; } case DRIVER_RESOURCE_TOPMOST_OBJECT: { return (uint64_t)context_driver->instance_get(); } case DRIVER_RESOURCE_COMMAND_QUEUE: { const CommandQueue *queue_info = (const CommandQueue *)p_driver_id.id; return (uint64_t)queue_families[queue_info->queue_family][queue_info->queue_index].queue; } case DRIVER_RESOURCE_QUEUE_FAMILY: { return uint32_t(p_driver_id.id) - 1; } case DRIVER_RESOURCE_TEXTURE: { const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id; return (uint64_t)tex_info->vk_view_create_info.image; } case DRIVER_RESOURCE_TEXTURE_VIEW: { const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id; return (uint64_t)tex_info->vk_view; } case DRIVER_RESOURCE_TEXTURE_DATA_FORMAT: { const TextureInfo *tex_info = (const TextureInfo *)p_driver_id.id; return (uint64_t)tex_info->vk_view_create_info.format; } case DRIVER_RESOURCE_SAMPLER: case DRIVER_RESOURCE_UNIFORM_SET: case DRIVER_RESOURCE_BUFFER: case DRIVER_RESOURCE_COMPUTE_PIPELINE: case DRIVER_RESOURCE_RENDER_PIPELINE: { return p_driver_id.id; } default: { return 0; } } } uint64_t RenderingDeviceDriverVulkan::get_total_memory_used() { VmaTotalStatistics stats = {}; vmaCalculateStatistics(allocator, &stats); return stats.total.statistics.allocationBytes; } uint64_t RenderingDeviceDriverVulkan::limit_get(Limit p_limit) { const VkPhysicalDeviceLimits &limits = physical_device_properties.limits; switch (p_limit) { case LIMIT_MAX_BOUND_UNIFORM_SETS: return limits.maxBoundDescriptorSets; case LIMIT_MAX_FRAMEBUFFER_COLOR_ATTACHMENTS: return limits.maxColorAttachments; case LIMIT_MAX_TEXTURES_PER_UNIFORM_SET: return limits.maxDescriptorSetSampledImages; case LIMIT_MAX_SAMPLERS_PER_UNIFORM_SET: return limits.maxDescriptorSetSamplers; case LIMIT_MAX_STORAGE_BUFFERS_PER_UNIFORM_SET: return limits.maxDescriptorSetStorageBuffers; case LIMIT_MAX_STORAGE_IMAGES_PER_UNIFORM_SET: return limits.maxDescriptorSetStorageImages; case LIMIT_MAX_UNIFORM_BUFFERS_PER_UNIFORM_SET: return limits.maxDescriptorSetUniformBuffers; case LIMIT_MAX_DRAW_INDEXED_INDEX: return limits.maxDrawIndexedIndexValue; case LIMIT_MAX_FRAMEBUFFER_HEIGHT: return limits.maxFramebufferHeight; case LIMIT_MAX_FRAMEBUFFER_WIDTH: return limits.maxFramebufferWidth; case LIMIT_MAX_TEXTURE_ARRAY_LAYERS: return limits.maxImageArrayLayers; case LIMIT_MAX_TEXTURE_SIZE_1D: return limits.maxImageDimension1D; case LIMIT_MAX_TEXTURE_SIZE_2D: return limits.maxImageDimension2D; case LIMIT_MAX_TEXTURE_SIZE_3D: return limits.maxImageDimension3D; case LIMIT_MAX_TEXTURE_SIZE_CUBE: return limits.maxImageDimensionCube; case LIMIT_MAX_TEXTURES_PER_SHADER_STAGE: return limits.maxPerStageDescriptorSampledImages; case LIMIT_MAX_SAMPLERS_PER_SHADER_STAGE: return limits.maxPerStageDescriptorSamplers; case LIMIT_MAX_STORAGE_BUFFERS_PER_SHADER_STAGE: return limits.maxPerStageDescriptorStorageBuffers; case LIMIT_MAX_STORAGE_IMAGES_PER_SHADER_STAGE: return limits.maxPerStageDescriptorStorageImages; case LIMIT_MAX_UNIFORM_BUFFERS_PER_SHADER_STAGE: return limits.maxPerStageDescriptorUniformBuffers; case LIMIT_MAX_PUSH_CONSTANT_SIZE: return limits.maxPushConstantsSize; case LIMIT_MAX_UNIFORM_BUFFER_SIZE: return limits.maxUniformBufferRange; case LIMIT_MAX_VERTEX_INPUT_ATTRIBUTE_OFFSET: return limits.maxVertexInputAttributeOffset; case LIMIT_MAX_VERTEX_INPUT_ATTRIBUTES: return limits.maxVertexInputAttributes; case LIMIT_MAX_VERTEX_INPUT_BINDINGS: return limits.maxVertexInputBindings; case LIMIT_MAX_VERTEX_INPUT_BINDING_STRIDE: return limits.maxVertexInputBindingStride; case LIMIT_MIN_UNIFORM_BUFFER_OFFSET_ALIGNMENT: return limits.minUniformBufferOffsetAlignment; case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X: return limits.maxComputeWorkGroupCount[0]; case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Y: return limits.maxComputeWorkGroupCount[1]; case LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_Z: return limits.maxComputeWorkGroupCount[2]; case LIMIT_MAX_COMPUTE_WORKGROUP_INVOCATIONS: return limits.maxComputeWorkGroupInvocations; case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_X: return limits.maxComputeWorkGroupSize[0]; case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Y: return limits.maxComputeWorkGroupSize[1]; case LIMIT_MAX_COMPUTE_WORKGROUP_SIZE_Z: return limits.maxComputeWorkGroupSize[2]; case LIMIT_MAX_VIEWPORT_DIMENSIONS_X: return limits.maxViewportDimensions[0]; case LIMIT_MAX_VIEWPORT_DIMENSIONS_Y: return limits.maxViewportDimensions[1]; case LIMIT_SUBGROUP_SIZE: return subgroup_capabilities.size; case LIMIT_SUBGROUP_MIN_SIZE: return subgroup_capabilities.min_size; case LIMIT_SUBGROUP_MAX_SIZE: return subgroup_capabilities.max_size; case LIMIT_SUBGROUP_IN_SHADERS: return subgroup_capabilities.supported_stages_flags_rd(); case LIMIT_SUBGROUP_OPERATIONS: return subgroup_capabilities.supported_operations_flags_rd(); case LIMIT_VRS_TEXEL_WIDTH: return vrs_capabilities.texel_size.x; case LIMIT_VRS_TEXEL_HEIGHT: return vrs_capabilities.texel_size.y; default: ERR_FAIL_V(0); } } uint64_t RenderingDeviceDriverVulkan::api_trait_get(ApiTrait p_trait) { switch (p_trait) { case API_TRAIT_TEXTURE_TRANSFER_ALIGNMENT: return (uint64_t)MAX((uint64_t)16, physical_device_properties.limits.optimalBufferCopyOffsetAlignment); case API_TRAIT_SHADER_CHANGE_INVALIDATION: return (uint64_t)SHADER_CHANGE_INVALIDATION_INCOMPATIBLE_SETS_PLUS_CASCADE; default: return RenderingDeviceDriver::api_trait_get(p_trait); } } bool RenderingDeviceDriverVulkan::has_feature(Features p_feature) { switch (p_feature) { case SUPPORTS_MULTIVIEW: return multiview_capabilities.is_supported && multiview_capabilities.max_view_count > 1; case SUPPORTS_FSR_HALF_FLOAT: return shader_capabilities.shader_float16_is_supported && physical_device_features.shaderInt16 && storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported; case SUPPORTS_ATTACHMENT_VRS: return vrs_capabilities.attachment_vrs_supported && physical_device_features.shaderStorageImageExtendedFormats; case SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS: return true; default: return false; } } const RDD::MultiviewCapabilities &RenderingDeviceDriverVulkan::get_multiview_capabilities() { return multiview_capabilities; } String RenderingDeviceDriverVulkan::get_api_name() const { return "Vulkan"; } String RenderingDeviceDriverVulkan::get_api_version() const { uint32_t api_version = physical_device_properties.apiVersion; return vformat("%d.%d.%d", VK_API_VERSION_MAJOR(api_version), VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version)); } String RenderingDeviceDriverVulkan::get_pipeline_cache_uuid() const { return pipeline_cache_id; } const RDD::Capabilities &RenderingDeviceDriverVulkan::get_capabilities() const { return device_capabilities; } /******************/ RenderingDeviceDriverVulkan::RenderingDeviceDriverVulkan(RenderingContextDriverVulkan *p_context_driver) { DEV_ASSERT(p_context_driver != nullptr); context_driver = p_context_driver; } RenderingDeviceDriverVulkan::~RenderingDeviceDriverVulkan() { while (small_allocs_pools.size()) { HashMap::Iterator E = small_allocs_pools.begin(); vmaDestroyPool(allocator, E->value); small_allocs_pools.remove(E); } vmaDestroyAllocator(allocator); if (vk_device != VK_NULL_HANDLE) { vkDestroyDevice(vk_device, nullptr); } }