/**************************************************************************/ /* renderer_scene_render_rd.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "renderer_scene_render_rd.h" #include "core/config/project_settings.h" #include "core/os/os.h" #include "renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/environment/fog.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h" #include "servers/rendering/rendering_server_default.h" #include "servers/rendering/storage/camera_attributes_storage.h" void get_vogel_disk(float *r_kernel, int p_sample_count) { const float golden_angle = 2.4; for (int i = 0; i < p_sample_count; i++) { float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count)); float theta = float(i) * golden_angle; r_kernel[i * 4] = Math::cos(theta) * r; r_kernel[i * 4 + 1] = Math::sin(theta) * r; } } RID RendererSceneRenderRD::sky_allocate() { return sky.allocate_sky_rid(); } void RendererSceneRenderRD::sky_initialize(RID p_rid) { sky.initialize_sky_rid(p_rid); } void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { sky.sky_set_radiance_size(p_sky, p_radiance_size); } void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { sky.sky_set_mode(p_sky, p_mode); } void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) { sky.sky_set_material(p_sky, p_material); } Ref RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size); } void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { volumetric_fog_size = p_size; volumetric_fog_depth = p_depth; } void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) { volumetric_fog_filter_active = p_enable; } void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { gi.sdfgi_ray_count = p_ray_count; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { gi.sdfgi_frames_to_converge = p_frames; } void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { gi.sdfgi_frames_to_update_light = p_update; } Ref RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { ERR_FAIL_COND_V(p_env.is_null(), Ref()); RS::EnvironmentBG environment_background = environment_get_background(p_env); if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) { return Ref(); //nothing to bake } RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env); bool use_ambient_light = false; bool use_cube_map = false; if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) { use_ambient_light = true; } else { use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY; use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR; } use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid()); Color ambient_color; float ambient_color_sky_mix = 0.0; if (use_ambient_light) { ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env); const float ambient_energy = environment_get_ambient_light_energy(p_env); ambient_color = environment_get_ambient_light(p_env); ambient_color = ambient_color.srgb_to_linear(); ambient_color.r *= ambient_energy; ambient_color.g *= ambient_energy; ambient_color.b *= ambient_energy; } if (use_cube_map) { Ref panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size); if (use_ambient_light) { for (int x = 0; x < p_size.width; x++) { for (int y = 0; y < p_size.height; y++) { panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix)); } } } return panorama; } else { const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env); Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env)); panorama_color = panorama_color.srgb_to_linear(); panorama_color.r *= bg_energy_multiplier; panorama_color.g *= bg_energy_multiplier; panorama_color.b *= bg_energy_multiplier; if (use_ambient_light) { panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix); } Ref panorama = Image::create_empty(p_size.width, p_size.height, false, Image::FORMAT_RGBAF); panorama->fill(panorama_color); return panorama; } } /* REFLECTION PROBE */ RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) { Vector fb; fb.push_back(p_color); fb.push_back(p_depth); return RD::get_singleton()->framebuffer_create(fb); } /* FOG VOLUME INSTANCE */ RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) { return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume); } void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) { RendererRD::Fog::get_singleton()->fog_volume_instance_set_transform(p_fog_volume_instance, p_transform); } void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) { RendererRD::Fog::get_singleton()->fog_volume_instance_set_active(p_fog_volume_instance, p_active); } RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const { return RendererRD::Fog::get_singleton()->fog_volume_instance_get_volume(p_fog_volume_instance); } Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const { return RendererRD::Fog::get_singleton()->fog_volume_instance_get_position(p_fog_volume_instance); } /* VOXEL GI */ RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) { return gi.voxel_gi_instance_create(p_base); } void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { if (!is_dynamic_gi_supported()) { return; } gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform); } bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const { if (!is_dynamic_gi_supported()) { return false; } return gi.voxel_gi_needs_update(p_probe); } void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) { if (!is_dynamic_gi_supported()) { return; } gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects); } void RendererSceneRenderRD::_debug_sdfgi_probes(Ref p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms) { ERR_FAIL_COND(p_render_buffers.is_null()); if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return; //nothing to debug } Ref sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI); sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms); } //////////////////////////////// Ref RendererSceneRenderRD::render_buffers_create() { Ref rb; rb.instantiate(); rb->set_can_be_storage(_render_buffers_can_be_storage()); rb->set_max_cluster_elements(max_cluster_elements); rb->set_base_data_format(_render_buffers_get_color_format()); if (vrs) { rb->set_vrs(vrs); } setup_render_buffer_data(rb); return rb; } void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) { Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); if (!rb->has_internal_texture()) { // We're likely rendering reflection probes where we can't use our backbuffers. return; } RD::get_singleton()->draw_command_begin_label("Copy screen texture"); StringName texture_name; bool can_use_storage = _render_buffers_can_be_storage(); Size2i size = rb->get_internal_size(); // When upscaling, the blur texture needs to be at the target size for post-processing to work. We prefer to use a // dedicated backbuffer copy texture instead if the blur texture is not an option so shader effects work correctly. Size2i target_size = rb->get_target_size(); bool internal_size_matches = (size.width == target_size.width) && (size.height == target_size.height); bool reuse_blur_texture = !rb->has_upscaled_texture() || internal_size_matches; if (reuse_blur_texture) { rb->allocate_blur_textures(); texture_name = RB_TEX_BLUR_0; } else { uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; usage_bits |= can_use_storage ? RD::TEXTURE_USAGE_STORAGE_BIT : RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_COLOR, rb->get_base_data_format(), usage_bits); texture_name = RB_TEX_BACK_COLOR; } for (uint32_t v = 0; v < rb->get_view_count(); v++) { RID texture = rb->get_internal_texture(v); int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, texture_name).mipmaps); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, texture_name, v, 0); if (can_use_storage) { copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y)); } else { RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest); copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y)); } for (int i = 1; i < mipmaps; i++) { RID source = dest; dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, texture_name, v, i); Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, texture_name, i); if (can_use_storage) { copy_effects->make_mipmap(source, dest, msize); } else { copy_effects->make_mipmap_raster(source, dest, msize); } } } RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) { Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); if (!rb->has_depth_texture()) { // We're likely rendering reflection probes where we can't use our backbuffers. return; } RD::get_singleton()->draw_command_begin_label("Copy depth texture"); // note, this only creates our back depth texture if we haven't already created it. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT; usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1); bool can_use_storage = _render_buffers_can_be_storage(); Size2i size = rb->get_internal_size(); for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) { RID depth_texture = rb->get_depth_texture(v); RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0); if (can_use_storage) { copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y)); } else { RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture); copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y)); } } RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); ERR_FAIL_NULL(p_render_data); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); ERR_FAIL_COND_MSG(p_render_data->reflection_probe.is_valid(), "Post processes should not be applied on reflection probes."); // Glow, auto exposure and DoF (if enabled). Size2i target_size = rb->get_target_size(); bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size... bool can_use_storage = _render_buffers_can_be_storage(); bool use_fsr = fsr && can_use_effects && rb->get_scaling_3d_mode() == RS::VIEWPORT_SCALING_3D_MODE_FSR; bool use_upscaled_texture = rb->has_upscaled_texture() && rb->get_scaling_3d_mode() == RS::VIEWPORT_SCALING_3D_MODE_FSR2; RID render_target = rb->get_render_target(); RID color_texture = use_upscaled_texture ? rb->get_upscaled_texture() : rb->get_internal_texture(); Size2i color_size = use_upscaled_texture ? target_size : rb->get_internal_size(); bool dest_is_msaa_2d = rb->get_view_count() == 1 && texture_storage->render_target_get_msaa(render_target) != RS::VIEWPORT_MSAA_DISABLED; if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) { RENDER_TIMESTAMP("Depth of Field"); RD::get_singleton()->draw_command_begin_label("DOF"); rb->allocate_blur_textures(); RendererRD::BokehDOF::BokehBuffers buffers; // Textures we use buffers.base_texture_size = color_size; buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0); buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0); buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1); if (can_use_storage) { for (uint32_t i = 0; i < rb->get_view_count(); i++) { buffers.base_texture = use_upscaled_texture ? rb->get_upscaled_texture(i) : rb->get_internal_texture(i); buffers.depth_texture = rb->get_depth_texture(i); // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustum. float z_near = p_render_data->scene_data->view_projection[i].get_z_near(); float z_far = p_render_data->scene_data->view_projection[i].get_z_far(); bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal); }; } else { // Set framebuffers. buffers.secondary_fb = rb->weight_buffers[1].fb; buffers.half_fb[0] = rb->weight_buffers[2].fb; buffers.half_fb[1] = rb->weight_buffers[3].fb; buffers.weight_texture[0] = rb->weight_buffers[0].weight; buffers.weight_texture[1] = rb->weight_buffers[1].weight; buffers.weight_texture[2] = rb->weight_buffers[2].weight; buffers.weight_texture[3] = rb->weight_buffers[3].weight; // Set weight buffers. buffers.base_weight_fb = rb->weight_buffers[0].fb; for (uint32_t i = 0; i < rb->get_view_count(); i++) { buffers.base_texture = use_upscaled_texture ? rb->get_upscaled_texture(i) : rb->get_internal_texture(i); buffers.depth_texture = rb->get_depth_texture(i); buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustum. float z_near = p_render_data->scene_data->view_projection[i].get_z_near(); float z_far = p_render_data->scene_data->view_projection[i].get_z_far(); bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal); } } RD::get_singleton()->draw_command_end_label(); } float auto_exposure_scale = 1.0; if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) { RENDER_TIMESTAMP("Auto exposure"); RD::get_singleton()->draw_command_begin_label("Auto exposure"); Ref luminance_buffers = luminance->get_luminance_buffers(rb); uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes); bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version(); rb->set_auto_exposure_version(auto_exposure_version); double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step; float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes); float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes); luminance->luminance_reduction(rb->get_internal_texture(), rb->get_internal_size(), luminance_buffers, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate); // Swap final reduce with prev luminance. auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes); RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on. RD::get_singleton()->draw_command_end_label(); } int max_glow_level = -1; if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { RENDER_TIMESTAMP("Glow"); RD::get_singleton()->draw_command_begin_label("Gaussian Glow"); rb->allocate_blur_textures(); for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) { int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps); if (i >= mipmaps) { max_glow_level = mipmaps - 1; } else { max_glow_level = i; } } } float luminance_multiplier = _render_buffers_get_luminance_multiplier(); for (uint32_t l = 0; l < rb->get_view_count(); l++) { for (int i = 0; i < (max_glow_level + 1); i++) { Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, i); if (i == 0) { RID luminance_texture; if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) { luminance_texture = luminance->get_current_luminance_buffer(rb); // this will return and empty RID if we don't have an auto exposure buffer } RID source = rb->get_internal_texture(l); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i); if (can_use_storage) { copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale); } else { RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale); } } else { RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1); RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i); if (can_use_storage) { copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment)); } else { RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment)); } } } } RD::get_singleton()->draw_command_end_label(); } { RENDER_TIMESTAMP("Tonemap"); RD::get_singleton()->draw_command_begin_label("Tonemap"); RendererRD::ToneMapper::TonemapSettings tonemap; tonemap.exposure_texture = luminance->get_current_luminance_buffer(rb); if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && tonemap.exposure_texture.is_valid()) { tonemap.use_auto_exposure = true; tonemap.auto_exposure_scale = auto_exposure_scale; } else { tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { tonemap.use_glow = true; tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment)); tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment); for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i]; } Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0); tonemap.glow_texture_size.x = msize.width; tonemap.glow_texture_size.y = msize.height; tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale; tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1); if (environment_get_glow_map(p_render_data->environment).is_valid()) { tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment); tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment)); } else { tonemap.glow_map_strength = 0.0f; tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } } else { tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); } if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) { tonemap.use_fxaa = true; } tonemap.use_debanding = rb->get_use_debanding(); tonemap.texture_size = Vector2i(color_size.x, color_size.y); if (p_render_data->environment.is_valid()) { tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment); tonemap.white = environment_get_white(p_render_data->environment); tonemap.exposure = environment_get_exposure(p_render_data->environment); } tonemap.use_color_correction = false; tonemap.use_1d_color_correction = false; tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && p_render_data->environment.is_valid()) { tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment); tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment); tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment); tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment); if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) { tonemap.use_color_correction = true; tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment); tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment)); } } tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier(); tonemap.view_count = rb->get_view_count(); tonemap.convert_to_srgb = !texture_storage->render_target_is_using_hdr(render_target); RID dest_fb; bool use_intermediate_fb = use_fsr; if (use_intermediate_fb) { // If we use FSR to upscale we need to write our result into an intermediate buffer. // Note that this is cached so we only create the texture the first time. RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT); dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture); } else { // If we do a bilinear upscale we just render into our render target and our shader will upscale automatically. // Target size in this case is lying as we never get our real target size communicated. // Bit nasty but... if (dest_is_msaa_2d) { dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target)); texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved. } else { dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target); } } tone_mapper->tonemapper(color_texture, dest_fb, tonemap); RD::get_singleton()->draw_command_end_label(); } if (use_fsr) { RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale"); for (uint32_t v = 0; v < rb->get_view_count(); v++) { RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0); RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v); fsr->fsr_upscale(rb, source_texture, dest_texture); } if (dest_is_msaa_2d) { // We can't upscale directly into our MSAA buffer so we need to do a copy RID source_texture = texture_storage->render_target_get_rd_texture(render_target); RID dest_fb = FramebufferCacheRD::get_singleton()->get_cache(texture_storage->render_target_get_rd_texture_msaa(render_target)); copy_effects->copy_to_fb_rect(source_texture, dest_fb, Rect2i(Point2i(), rb->get_target_size())); texture_storage->render_target_set_msaa_needs_resolve(render_target, true); // Make sure this gets resolved. } RD::get_singleton()->draw_command_end_label(); } texture_storage->render_target_disable_clear_request(render_target); } void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RD::get_singleton()->draw_command_begin_label("Post Process Subpass"); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); // FIXME: Our input it our internal_texture, shouldn't this be using internal_size ?? // Seeing we don't support FSR in our mobile renderer right now target_size = internal_size... Size2i target_size = rb->get_target_size(); bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass(); RendererRD::ToneMapper::TonemapSettings tonemap; if (p_render_data->environment.is_valid()) { tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment); tonemap.exposure = environment_get_exposure(p_render_data->environment); tonemap.white = environment_get_white(p_render_data->environment); } // We don't support glow or auto exposure here, if they are needed, don't use subpasses! // The problem is that we need to use the result so far and process them before we can // apply this to our results. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) { ERR_FAIL_MSG("Glow is not supported when using subpasses."); } if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) { ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses."); } tonemap.use_glow = false; tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); tonemap.use_auto_exposure = false; tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE); tonemap.use_color_correction = false; tonemap.use_1d_color_correction = false; tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE); if (can_use_effects && p_render_data->environment.is_valid()) { tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment); tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment); tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment); tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment); if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) { tonemap.use_color_correction = true; tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment); tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment)); } } tonemap.use_debanding = rb->get_use_debanding(); tonemap.texture_size = Vector2i(target_size.x, target_size.y); tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier(); tonemap.view_count = rb->get_view_count(); tonemap.convert_to_srgb = !texture_storage->render_target_is_using_hdr(rb->get_render_target()); tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap); RD::get_singleton()->draw_command_end_label(); } void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) { ERR_FAIL_COND(p_render_data->render_buffers.is_null()); RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target()); } void RendererSceneRenderRD::_render_buffers_debug_draw(const RenderDataRD *p_render_data) { RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); Ref rb = p_render_data->render_buffers; ERR_FAIL_COND(rb.is_null()); RID render_target = rb->get_render_target(); if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_render_data->shadow_atlas.is_valid()) { RID shadow_atlas_texture = RendererRD::LightStorage::get_singleton()->shadow_atlas_get_texture(p_render_data->shadow_atlas); if (shadow_atlas_texture.is_null()) { shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK); } Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (RendererRD::LightStorage::get_singleton()->directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = RendererRD::LightStorage::get_singleton()->directional_shadow_get_texture(); Size2i rtsize = texture_storage->render_target_get_size(render_target); RID dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target); // Determine our display size, try and keep square by using the smallest edge. Size2i size = 2 * rtsize / 3; if (size.x < size.y) { size.y = size.x; } else if (size.y < size.x) { size.x = size.y; } copy_effects->copy_to_fb_rect(shadow_atlas_texture, dest_fb, Rect2i(Vector2(), size), false, true); // Visualize our view frustum to show coverage. for (int i = 0; i < p_render_data->render_shadow_count; i++) { RID light = p_render_data->render_shadows[i].light; RID base = light_storage->light_instance_get_base_light(light); if (light_storage->light_get_type(base) == RS::LIGHT_DIRECTIONAL) { debug_effects->draw_shadow_frustum(light, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, dest_fb, Rect2(Size2(), size)); } } } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) { RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture(); if (decal_atlas.is_valid()) { Size2i rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { RID luminance_texture = luminance->get_current_luminance_buffer(rb); if (luminance_texture.is_valid()) { Size2i rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(luminance_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_INTERNAL_BUFFER) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(rb->get_internal_texture(), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(rb).is_valid()) { Size2 rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(rb), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, false, RID(), false, false, false, true); } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) { if (p_render_data->occluder_debug_tex.is_valid()) { Size2i rtsize = texture_storage->render_target_get_size(render_target); copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_render_data->occluder_debug_tex), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false); } } if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(rb).is_valid()) { RID velocity = _render_buffers_get_velocity_texture(rb); RID depth = rb->get_depth_texture(); RID dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target); Size2i resolution = rb->get_internal_size(); debug_effects->draw_motion_vectors(velocity, depth, dest_fb, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_projection, p_render_data->scene_data->prev_cam_transform, resolution); } } RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() { return gi.default_voxel_gi_buffer; } float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() { return 1.0; } RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() { return RD::DATA_FORMAT_R16G16B16A16_SFLOAT; } bool RendererSceneRenderRD::_render_buffers_can_be_storage() { return true; } void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) { gi.half_resolution = p_enable; } void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (shadows_quality != p_quality) { shadows_quality = p_quality; switch (shadows_quality) { case RS::SHADOW_QUALITY_HARD: { penumbra_shadow_samples = 4; soft_shadow_samples = 0; shadows_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_VERY_LOW: { penumbra_shadow_samples = 4; soft_shadow_samples = 1; shadows_quality_radius = 1.5; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { penumbra_shadow_samples = 8; soft_shadow_samples = 4; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { penumbra_shadow_samples = 12; soft_shadow_samples = 8; shadows_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { penumbra_shadow_samples = 24; soft_shadow_samples = 16; shadows_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { penumbra_shadow_samples = 32; soft_shadow_samples = 32; shadows_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples); get_vogel_disk(soft_shadow_kernel, soft_shadow_samples); } _update_shader_quality_settings(); } void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum"); if (directional_shadow_quality != p_quality) { directional_shadow_quality = p_quality; switch (directional_shadow_quality) { case RS::SHADOW_QUALITY_HARD: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 0; directional_shadow_quality_radius = 1.0; } break; case RS::SHADOW_QUALITY_SOFT_VERY_LOW: { directional_penumbra_shadow_samples = 4; directional_soft_shadow_samples = 1; directional_shadow_quality_radius = 1.5; } break; case RS::SHADOW_QUALITY_SOFT_LOW: { directional_penumbra_shadow_samples = 8; directional_soft_shadow_samples = 4; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_MEDIUM: { directional_penumbra_shadow_samples = 12; directional_soft_shadow_samples = 8; directional_shadow_quality_radius = 2.0; } break; case RS::SHADOW_QUALITY_SOFT_HIGH: { directional_penumbra_shadow_samples = 24; directional_soft_shadow_samples = 16; directional_shadow_quality_radius = 3.0; } break; case RS::SHADOW_QUALITY_SOFT_ULTRA: { directional_penumbra_shadow_samples = 32; directional_soft_shadow_samples = 32; directional_shadow_quality_radius = 4.0; } break; case RS::SHADOW_QUALITY_MAX: break; } get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples); get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples); } _update_shader_quality_settings(); } void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) { if (decals_filter == p_filter) { return; } decals_filter = p_filter; _update_shader_quality_settings(); } void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) { if (light_projectors_filter == p_filter) { return; } light_projectors_filter = p_filter; _update_shader_quality_settings(); } int RendererSceneRenderRD::get_roughness_layers() const { return sky.roughness_layers; } bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const { return sky.sky_use_cubemap_array; } void RendererSceneRenderRD::_update_vrs(Ref p_render_buffers) { if (p_render_buffers.is_null()) { return; } RID render_target = p_render_buffers->get_render_target(); if (render_target.is_null()) { // must be rendering reflection probes return; } if (vrs) { RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(render_target); if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) { RID vrs_texture = p_render_buffers->get_texture(RB_SCOPE_VRS, RB_TEXTURE); // We use get_cache_multipass instead of get_cache_multiview because the default behavior is for // our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it // so it needs to be set as our color attachment Vector textures; textures.push_back(vrs_texture); Vector passes; RD::FramebufferPass pass; pass.color_attachments.push_back(0); passes.push_back(pass); RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, p_render_buffers->get_view_count()); vrs->update_vrs_texture(vrs_fb, p_render_buffers->get_render_target()); } } } bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid()) { if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return true; } } return false; } void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) { if (p_render_data->render_buffers.is_valid() && p_use_gi) { if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) { return; } Ref sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI); sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment))); } } void RendererSceneRenderRD::render_scene(const Ref &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, const PagedArray &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) { RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); // getting this here now so we can direct call a bunch of things more easily ERR_FAIL_COND(p_render_buffers.is_null()); Ref rb = p_render_buffers; ERR_FAIL_COND(rb.is_null()); // setup scene data RenderSceneDataRD scene_data; { // Our first camera is used by default scene_data.cam_transform = p_camera_data->main_transform; scene_data.cam_projection = p_camera_data->main_projection; scene_data.cam_orthogonal = p_camera_data->is_orthogonal; scene_data.camera_visible_layers = p_camera_data->visible_layers; scene_data.taa_jitter = p_camera_data->taa_jitter; scene_data.main_cam_transform = p_camera_data->main_transform; scene_data.view_count = p_camera_data->view_count; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin; scene_data.view_projection[v] = p_camera_data->view_projection[v]; } scene_data.prev_cam_transform = p_prev_camera_data->main_transform; scene_data.prev_cam_projection = p_prev_camera_data->main_projection; scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v]; } scene_data.z_near = p_camera_data->main_projection.get_z_near(); scene_data.z_far = p_camera_data->main_projection.get_z_far(); // this should be the same for all cameras.. const float lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); // Also, take into account resolution scaling for the multiplier, since we have more leeway with quality // degradation visibility. Conversely, allow upwards scaling, too, for increased mesh detail at high res. const float scaling_3d_scale = GLOBAL_GET("rendering/scaling_3d/scale"); scene_data.lod_distance_multiplier = lod_distance_multiplier * (1.0 / scaling_3d_scale); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { scene_data.screen_mesh_lod_threshold = 0.0; } else { scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; } if (p_shadow_atlas.is_valid()) { int shadow_atlas_size = light_storage->shadow_atlas_get_size(p_shadow_atlas); scene_data.shadow_atlas_pixel_size.x = 1.0 / shadow_atlas_size; scene_data.shadow_atlas_pixel_size.y = 1.0 / shadow_atlas_size; } { int directional_shadow_size = light_storage->directional_shadow_get_size(); scene_data.directional_shadow_pixel_size.x = 1.0 / directional_shadow_size; scene_data.directional_shadow_pixel_size.y = 1.0 / directional_shadow_size; } scene_data.time = time; scene_data.time_step = time_step; } //assign render data RenderDataRD render_data; { render_data.render_buffers = rb; render_data.scene_data = &scene_data; render_data.instances = &p_instances; render_data.lights = &p_lights; render_data.reflection_probes = &p_reflection_probes; render_data.voxel_gi_instances = &p_voxel_gi_instances; render_data.decals = &p_decals; render_data.lightmaps = &p_lightmaps; render_data.fog_volumes = &p_fog_volumes; render_data.environment = p_environment; render_data.camera_attributes = p_camera_attributes; render_data.shadow_atlas = p_shadow_atlas; render_data.occluder_debug_tex = p_occluder_debug_tex; render_data.reflection_atlas = p_reflection_atlas; render_data.reflection_probe = p_reflection_probe; render_data.reflection_probe_pass = p_reflection_probe_pass; render_data.render_shadows = p_render_shadows; render_data.render_shadow_count = p_render_shadow_count; render_data.render_sdfgi_regions = p_render_sdfgi_regions; render_data.render_sdfgi_region_count = p_render_sdfgi_region_count; render_data.sdfgi_update_data = p_sdfgi_update_data; render_data.render_info = r_render_info; } PagedArray empty; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { render_data.lights = ∅ render_data.reflection_probes = ∅ render_data.voxel_gi_instances = ∅ } Color clear_color; if (p_render_buffers.is_valid() && p_reflection_probe.is_null()) { clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target()); } else { clear_color = RSG::texture_storage->get_default_clear_color(); } //calls _pre_opaque_render between depth pre-pass and opaque pass _render_scene(&render_data, clear_color); } void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { _render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0); } void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) { RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton(); ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider)); Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale(); Projection cm; cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0); Vector3 cam_pos = p_transform.origin; cam_pos.y += extents.y; Transform3D cam_xform; cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized()); RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider); _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances); } bool RendererSceneRenderRD::free(RID p_rid) { if (is_environment(p_rid)) { environment_free(p_rid); } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) { RSG::camera_attributes->camera_attributes_free(p_rid); } else if (gi.voxel_gi_instance_owns(p_rid)) { gi.voxel_gi_instance_free(p_rid); } else if (sky.sky_owner.owns(p_rid)) { sky.update_dirty_skys(); sky.free_sky(p_rid); } else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) { RendererRD::Fog::get_singleton()->fog_instance_free(p_rid); } else { return false; } return true; } void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } void RendererSceneRenderRD::update() { sky.update_dirty_skys(); } void RendererSceneRenderRD::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) { screen_space_roughness_limiter = p_enable; screen_space_roughness_limiter_amount = p_amount; screen_space_roughness_limiter_limit = p_limit; } bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const { return screen_space_roughness_limiter; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const { return screen_space_roughness_limiter_amount; } float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const { return screen_space_roughness_limiter_limit; } TypedArray RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray &p_material_overrides, const Size2i &p_image_size) { ERR_FAIL_COND_V_MSG(p_image_size.width <= 0, TypedArray(), "Image width must be greater than 0."); ERR_FAIL_COND_V_MSG(p_image_size.height <= 0, TypedArray(), "Image height must be greater than 0."); RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tf.width = p_image_size.width; // Always 64x64 tf.height = p_image_size.height; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32_SFLOAT; RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView()); Vector fb_tex; fb_tex.push_back(albedo_alpha_tex); fb_tex.push_back(normal_tex); fb_tex.push_back(orm_tex); fb_tex.push_back(emission_tex); fb_tex.push_back(depth_write_tex); fb_tex.push_back(depth_tex); RID fb = RD::get_singleton()->framebuffer_create(fb_tex); //RID sampled_light; RenderGeometryInstance *gi_inst = geometry_instance_create(p_base); ERR_FAIL_NULL_V(gi_inst, TypedArray()); uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base); Vector materials; materials.resize(sc); for (uint32_t i = 0; i < sc; i++) { if (i < (uint32_t)p_material_overrides.size()) { materials.write[i] = p_material_overrides[i]; } } gi_inst->set_surface_materials(materials); if (cull_argument.size() == 0) { cull_argument.push_back(nullptr); } cull_argument[0] = gi_inst; _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height)); geometry_instance_free(gi_inst); TypedArray ret; { PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0); Ref img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(albedo_alpha_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0); Ref img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(normal_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0); Ref img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data); RD::get_singleton()->free(orm_tex); ret.push_back(img); } { PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0); Ref img = Image::create_from_data(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data); RD::get_singleton()->free(emission_tex); ret.push_back(img); } RD::get_singleton()->free(depth_write_tex); RD::get_singleton()->free(depth_tex); return ret; } void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { gi.sdfgi_debug_probe_pos = p_position; gi.sdfgi_debug_probe_dir = p_dir; } RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr; bool RendererSceneRenderRD::is_vrs_supported() const { return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS); } bool RendererSceneRenderRD::is_dynamic_gi_supported() const { // usable by default (unless low end = true) return true; } bool RendererSceneRenderRD::is_volumetric_supported() const { // usable by default (unless low end = true) return true; } uint32_t RendererSceneRenderRD::get_max_elements() const { return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements"); } RendererSceneRenderRD::RendererSceneRenderRD() { singleton = this; } void RendererSceneRenderRD::init() { max_cluster_elements = get_max_elements(); RendererRD::LightStorage::get_singleton()->set_max_cluster_elements(max_cluster_elements); /* Forward ID */ forward_id_storage = create_forward_id_storage(); /* SKY SHADER */ sky.init(); /* GI */ if (is_dynamic_gi_supported()) { gi.init(&sky); } { //decals RendererRD::TextureStorage::get_singleton()->set_max_decals(max_cluster_elements); } { //lights } if (is_volumetric_supported()) { RendererRD::Fog::get_singleton()->init_fog_shader(RendererRD::LightStorage::get_singleton()->get_max_directional_lights(), get_roughness_layers(), is_using_radiance_cubemap_array()); } RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape")))); RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter")); use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units"); screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled"); screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount"); screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit"); glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0; directional_penumbra_shadow_kernel = memnew_arr(float, 128); directional_soft_shadow_kernel = memnew_arr(float, 128); penumbra_shadow_kernel = memnew_arr(float, 128); soft_shadow_kernel = memnew_arr(float, 128); positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality")))); directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality")))); environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth")); environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter")); decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter")))); light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter")))); cull_argument.set_page_pool(&cull_argument_pool); bool can_use_storage = _render_buffers_can_be_storage(); bool can_use_vrs = is_vrs_supported(); bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage)); copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage)); debug_effects = memnew(RendererRD::DebugEffects); luminance = memnew(RendererRD::Luminance(!can_use_storage)); tone_mapper = memnew(RendererRD::ToneMapper); if (can_use_vrs) { vrs = memnew(RendererRD::VRS); } if (can_use_storage) { fsr = memnew(RendererRD::FSR); } } RendererSceneRenderRD::~RendererSceneRenderRD() { if (forward_id_storage) { memdelete(forward_id_storage); } if (bokeh_dof) { memdelete(bokeh_dof); } if (copy_effects) { memdelete(copy_effects); } if (debug_effects) { memdelete(debug_effects); } if (luminance) { memdelete(luminance); } if (tone_mapper) { memdelete(tone_mapper); } if (vrs) { memdelete(vrs); } if (fsr) { memdelete(fsr); } if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) { RD::get_singleton()->free(sky.sky_scene_state.uniform_set); } if (is_dynamic_gi_supported()) { gi.free(); } if (is_volumetric_supported()) { RendererRD::Fog::get_singleton()->free_fog_shader(); } memdelete_arr(directional_penumbra_shadow_kernel); memdelete_arr(directional_soft_shadow_kernel); memdelete_arr(penumbra_shadow_kernel); memdelete_arr(soft_shadow_kernel); RSG::light_storage->directional_shadow_atlas_set_size(0); cull_argument.reset(); //avoid exit error }