/*************************************************************************/ /* main_timer_sync.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "main_timer_sync.h" #include "core/math/math_funcs.h" #include "core/os/os.h" void MainFrameTime::clamp_idle(float min_idle_step, float max_idle_step) { if (idle_step < min_idle_step) { idle_step = min_idle_step; } else if (idle_step > max_idle_step) { idle_step = max_idle_step; } } ///////////////////////////////// void MainTimerSync::DeltaSmoother::update_refresh_rate_estimator(int64_t p_delta) { // the calling code should prevent 0 or negative values of delta // (preventing divide by zero) // note that if the estimate gets locked, and something external changes this // (e.g. user changes to non-vsync in the OS), then the results may be less than ideal, // but usually it will detect this via the FPS measurement and not attempt smoothing. // This should be a rare occurrence anyway, and will be cured next time user restarts game. if (_estimate_locked) { return; } // First average the delta over NUM_READINGS _estimator_total_delta += p_delta; _estimator_delta_readings++; const int NUM_READINGS = 60; if (_estimator_delta_readings < NUM_READINGS) { return; } // use average p_delta = _estimator_total_delta / NUM_READINGS; // reset the averager for next time _estimator_delta_readings = 0; _estimator_total_delta = 0; /////////////////////////////// int fps = Math::round(1000000.0 / p_delta); // initial estimation, to speed up converging, special case we will estimate the refresh rate // from the first average FPS reading if (_estimated_fps == 0) { // below 50 might be chugging loading stuff, or else // dropping loads of frames, so the estimate will be inaccurate if (fps >= 50) { _estimated_fps = fps; #ifdef GODOT_DEBUG_DELTA_SMOOTHER print_line("initial guess (average measured) refresh rate: " + itos(fps)); #endif } else { // can't get started until above 50 return; } } // we hit our exact estimated refresh rate. // increase our confidence in the estimate. if (fps == _estimated_fps) { // note that each hit is an average of NUM_READINGS frames _hits_at_estimated++; if (_estimate_complete && _hits_at_estimated == 20) { _estimate_locked = true; #ifdef GODOT_DEBUG_DELTA_SMOOTHER print_line("estimate LOCKED at " + itos(_estimated_fps) + " fps"); #endif return; } // if we are getting pretty confident in this estimate, decide it is complete // (it can still be increased later, and possibly lowered but only for a short time) if ((!_estimate_complete) && (_hits_at_estimated > 2)) { // when the estimate is complete we turn on smoothing if (_estimated_fps) { _estimate_complete = true; _vsync_delta = 1000000 / _estimated_fps; #ifdef GODOT_DEBUG_DELTA_SMOOTHER print_line("estimate complete. vsync_delta " + itos(_vsync_delta) + ", fps " + itos(_estimated_fps)); #endif } } #ifdef GODOT_DEBUG_DELTA_SMOOTHER if ((_hits_at_estimated % (400 / NUM_READINGS)) == 0) { String sz = "hits at estimated : " + itos(_hits_at_estimated) + ", above : " + itos(_hits_above_estimated) + "( " + itos(_hits_one_above_estimated) + " ), below : " + itos(_hits_below_estimated) + " (" + itos(_hits_one_below_estimated) + " )"; print_line(sz); } #endif return; } const int SIGNIFICANCE_UP = 1; const int SIGNIFICANCE_DOWN = 2; // we are not usually interested in slowing the estimate // but we may have overshot, so make it possible to reduce if (fps < _estimated_fps) { // micro changes if (fps == (_estimated_fps - 1)) { _hits_one_below_estimated++; if ((_hits_one_below_estimated > _hits_at_estimated) && (_hits_one_below_estimated > SIGNIFICANCE_DOWN)) { _estimated_fps--; made_new_estimate(); } return; } else { _hits_below_estimated++; // don't allow large lowering if we are established at a refresh rate, as it will probably be dropped frames bool established = _estimate_complete && (_hits_at_estimated > 10); // macro changes // note there is a large barrier to macro lowering. That is because it is more likely to be dropped frames // than mis-estimation of the refresh rate. if (!established) { if (((_hits_below_estimated / 8) > _hits_at_estimated) && (_hits_below_estimated > SIGNIFICANCE_DOWN)) { // decrease the estimate _estimated_fps--; made_new_estimate(); } } return; } } // Changes increasing the estimate. // micro changes if (fps == (_estimated_fps + 1)) { _hits_one_above_estimated++; if ((_hits_one_above_estimated > _hits_at_estimated) && (_hits_one_above_estimated > SIGNIFICANCE_UP)) { _estimated_fps++; made_new_estimate(); } return; } else { _hits_above_estimated++; // macro changes if ((_hits_above_estimated > _hits_at_estimated) && (_hits_above_estimated > SIGNIFICANCE_UP)) { // increase the estimate int change = fps - _estimated_fps; change /= 2; change = MAX(1, change); _estimated_fps += change; made_new_estimate(); } return; } } bool MainTimerSync::DeltaSmoother::fps_allows_smoothing(int64_t p_delta) { _measurement_time += p_delta; _measurement_frame_count++; if (_measurement_frame_count == _measurement_end_frame) { // only switch on or off if the estimate is complete if (_estimate_complete) { int64_t time_passed = _measurement_time - _measurement_start_time; // average delta time_passed /= MEASURE_FPS_OVER_NUM_FRAMES; // estimate fps if (time_passed) { double fps = 1000000.0 / time_passed; double ratio = fps / (double)_estimated_fps; //print_line("ratio : " + String(Variant(ratio))); if ((ratio > 0.95) && (ratio < 1.05)) { _measurement_allows_smoothing = true; } else { _measurement_allows_smoothing = false; } } } // estimate complete // new start time for next iteration _measurement_start_time = _measurement_time; _measurement_end_frame += MEASURE_FPS_OVER_NUM_FRAMES; } return _measurement_allows_smoothing; } int64_t MainTimerSync::DeltaSmoother::smooth_delta(int64_t p_delta) { // Conditions to disable smoothing. // Note that vsync is a request, it cannot be relied on, the OS may override this. // If the OS turns vsync on without vsync in the app, smoothing will not be enabled. // If the OS turns vsync off with sync enabled in the app, the smoothing must detect this // via the error metric and switch off. if (!OS::get_singleton()->is_delta_smoothing_enabled() || !OS::get_singleton()->is_vsync_enabled() || Engine::get_singleton()->is_editor_hint()) { return p_delta; } // Very important, ignore long deltas and pass them back unmodified. // This is to deal with resuming after suspend for long periods. if (p_delta > 1000000) { return p_delta; } // keep a running guesstimate of the FPS, and turn off smoothing if // conditions not close to the estimated FPS if (!fps_allows_smoothing(p_delta)) { return p_delta; } // we can't cope with negative deltas .. OS bug on some hardware // and also very small deltas caused by vsync being off. // This could possibly be part of a hiccup, this value isn't fixed in stone... if (p_delta < 1000) { return p_delta; } // note still some vsync off will still get through to this point... // and we need to cope with it by not converging the estimator / and / or not smoothing update_refresh_rate_estimator(p_delta); // no smoothing until we know what the refresh rate is if (!_estimate_complete) { return p_delta; } // accumulate the time we have available to use _leftover_time += p_delta; // how many vsyncs units can we fit? int64_t units = _leftover_time / _vsync_delta; // a delta must include minimum 1 vsync // (if it is less than that, it is either random error or we are no longer running at the vsync rate, // in which case we should switch off delta smoothing, or re-estimate the refresh rate) units = MAX(units, 1); _leftover_time -= units * _vsync_delta; // print_line("units " + itos(units) + ", leftover " + itos(_leftover_time/1000) + " ms"); return units * _vsync_delta; } ///////////////////////////////////// // returns the fraction of p_frame_slice required for the timer to overshoot // before advance_core considers changing the physics_steps return from // the typical values as defined by typical_physics_steps float MainTimerSync::get_physics_jitter_fix() { // Turn off jitter fix when using fixed timestep interpolation // Note this shouldn't be on UNTIL 2d interpolation is implemented, // otherwise we will get people making 2d games with the physics_interpolation // set to on getting jitter fix disabled unexpectedly. #if 0 if (Engine::get_singleton()->is_physics_interpolation_enabled()) { // would be better to write a simple bypass for jitter fix but this will do to get started return 0.0; } #endif return Engine::get_singleton()->get_physics_jitter_fix(); } // gets our best bet for the average number of physics steps per render frame // return value: number of frames back this data is consistent int MainTimerSync::get_average_physics_steps(float &p_min, float &p_max) { p_min = typical_physics_steps[0]; p_max = p_min + 1; for (int i = 1; i < CONTROL_STEPS; ++i) { const float typical_lower = typical_physics_steps[i]; const float current_min = typical_lower / (i + 1); if (current_min > p_max) { return i; // bail out if further restrictions would void the interval } else if (current_min > p_min) { p_min = current_min; } const float current_max = (typical_lower + 1) / (i + 1); if (current_max < p_min) { return i; } else if (current_max < p_max) { p_max = current_max; } } return CONTROL_STEPS; } // advance physics clock by p_idle_step, return appropriate number of steps to simulate MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_per_second, float p_idle_step) { MainFrameTime ret; ret.idle_step = p_idle_step; // simple determination of number of physics iteration time_accum += ret.idle_step; ret.physics_steps = floor(time_accum * p_iterations_per_second); int min_typical_steps = typical_physics_steps[0]; int max_typical_steps = min_typical_steps + 1; // given the past recorded steps and typical steps to match, calculate bounds for this // step to be typical bool update_typical = false; for (int i = 0; i < CONTROL_STEPS - 1; ++i) { int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i]; if (steps_left_to_match_typical > max_typical_steps || steps_left_to_match_typical + 1 < min_typical_steps) { update_typical = true; break; } if (steps_left_to_match_typical > min_typical_steps) { min_typical_steps = steps_left_to_match_typical; } if (steps_left_to_match_typical + 1 < max_typical_steps) { max_typical_steps = steps_left_to_match_typical + 1; } } #ifdef DEBUG_ENABLED if (max_typical_steps < 0) { WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration."); } #endif // try to keep it consistent with previous iterations if (ret.physics_steps < min_typical_steps) { const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix()); if (max_possible_steps < min_typical_steps) { ret.physics_steps = max_possible_steps; update_typical = true; } else { ret.physics_steps = min_typical_steps; } } else if (ret.physics_steps > max_typical_steps) { const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix()); if (min_possible_steps > max_typical_steps) { ret.physics_steps = min_possible_steps; update_typical = true; } else { ret.physics_steps = max_typical_steps; } } if (ret.physics_steps < 0) { ret.physics_steps = 0; } time_accum -= ret.physics_steps * p_frame_slice; // keep track of accumulated step counts for (int i = CONTROL_STEPS - 2; i >= 0; --i) { accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps; } accumulated_physics_steps[0] = ret.physics_steps; if (update_typical) { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { if (typical_physics_steps[i] > accumulated_physics_steps[i]) { typical_physics_steps[i] = accumulated_physics_steps[i]; } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) { typical_physics_steps[i] = accumulated_physics_steps[i] - 1; } } } return ret; } // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero MainFrameTime MainTimerSync::advance_checked(float p_frame_slice, int p_iterations_per_second, float p_idle_step) { if (fixed_fps != -1) { p_idle_step = 1.0 / fixed_fps; } float min_output_step = p_idle_step / 8; min_output_step = MAX(min_output_step, 1E-6); // compensate for last deficit p_idle_step += time_deficit; MainFrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_idle_step); // we will do some clamping on ret.idle_step and need to sync those changes to time_accum, // that's easiest if we just remember their fixed difference now const double idle_minus_accum = ret.idle_step - time_accum; // first, least important clamping: keep ret.idle_step consistent with typical_physics_steps. // this smoothes out the idle steps and culls small but quick variations. { float min_average_physics_steps, max_average_physics_steps; int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps); if (consistent_steps > 3) { ret.clamp_idle(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice); } } // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice; ret.clamp_idle(p_idle_step - max_clock_deviation, p_idle_step + max_clock_deviation); // last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and idle ret.clamp_idle(idle_minus_accum, idle_minus_accum + p_frame_slice); // all the operations above may have turned ret.idle_step negative or zero, keep a minimal value if (ret.idle_step < min_output_step) { ret.idle_step = min_output_step; } // restore time_accum time_accum = ret.idle_step - idle_minus_accum; // forcing ret.idle_step to be positive may trigger a violation of the // promise that time_accum is between 0 and p_frame_slice #ifdef DEBUG_ENABLED if (time_accum < -1E-7) { WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration."); } #endif if (time_accum > p_frame_slice) { const int extra_physics_steps = floor(time_accum * p_iterations_per_second); time_accum -= extra_physics_steps * p_frame_slice; ret.physics_steps += extra_physics_steps; } #ifdef DEBUG_ENABLED if (time_accum < -1E-7) { WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug."); } if (time_accum > p_frame_slice + 1E-7) { WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_frame_slice`. It should always be between 0 and `p_frame_slice`. This hints at an engine bug."); } #endif // track deficit time_deficit = p_idle_step - ret.idle_step; // p_frame_slice is 1.0 / iterations_per_sec // i.e. the time in seconds taken by a physics tick ret.interpolation_fraction = time_accum / p_frame_slice; return ret; } // determine wall clock step since last iteration float MainTimerSync::get_cpu_idle_step() { uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec; last_cpu_ticks_usec = current_cpu_ticks_usec; cpu_ticks_elapsed = _delta_smoother.smooth_delta(cpu_ticks_elapsed); return cpu_ticks_elapsed / 1000000.0; } MainTimerSync::MainTimerSync() : last_cpu_ticks_usec(0), current_cpu_ticks_usec(0), time_accum(0), time_deficit(0), fixed_fps(0) { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { typical_physics_steps[i] = i; accumulated_physics_steps[i] = i; } } // start the clock void MainTimerSync::init(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec; } // set measured wall clock time void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = p_cpu_ticks_usec; } void MainTimerSync::set_fixed_fps(int p_fixed_fps) { fixed_fps = p_fixed_fps; } // advance one frame, return timesteps to take MainFrameTime MainTimerSync::advance(float p_frame_slice, int p_iterations_per_second) { float cpu_idle_step = get_cpu_idle_step(); return advance_checked(p_frame_slice, p_iterations_per_second, cpu_idle_step); }