/**************************************************************************/ /* test_camera_3d.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_CAMERA_3D_H #define TEST_CAMERA_3D_H #include "scene/3d/camera_3d.h" #include "scene/main/viewport.h" #include "scene/main/window.h" #include "tests/test_macros.h" // Constants. #define SQRT3 (1.7320508f) TEST_CASE("[SceneTree][Camera3D] Getters and setters") { Camera3D *test_camera = memnew(Camera3D); SUBCASE("Cull mask") { constexpr int cull_mask = (1 << 5) | (1 << 7) | (1 << 9); constexpr int set_enable_layer = 3; constexpr int set_disable_layer = 5; test_camera->set_cull_mask(cull_mask); CHECK(test_camera->get_cull_mask() == cull_mask); test_camera->set_cull_mask_value(set_enable_layer, true); CHECK(test_camera->get_cull_mask_value(set_enable_layer)); test_camera->set_cull_mask_value(set_disable_layer, false); CHECK_FALSE(test_camera->get_cull_mask_value(set_disable_layer)); } SUBCASE("Attributes") { Ref attributes = memnew(CameraAttributes); test_camera->set_attributes(attributes); CHECK(test_camera->get_attributes() == attributes); Ref physical_attributes = memnew(CameraAttributesPhysical); test_camera->set_attributes(physical_attributes); CHECK(test_camera->get_attributes() == physical_attributes); } SUBCASE("Camera frustum properties") { constexpr float depth_near = 0.2f; constexpr float depth_far = 995.0f; constexpr float fov = 120.0f; constexpr float size = 7.0f; constexpr float h_offset = 1.1f; constexpr float v_offset = -1.6f; const Vector2 frustum_offset(5, 7); test_camera->set_near(depth_near); CHECK(test_camera->get_near() == depth_near); test_camera->set_far(depth_far); CHECK(test_camera->get_far() == depth_far); test_camera->set_fov(fov); CHECK(test_camera->get_fov() == fov); test_camera->set_size(size); CHECK(test_camera->get_size() == size); test_camera->set_h_offset(h_offset); CHECK(test_camera->get_h_offset() == h_offset); test_camera->set_v_offset(v_offset); CHECK(test_camera->get_v_offset() == v_offset); test_camera->set_frustum_offset(frustum_offset); CHECK(test_camera->get_frustum_offset() == frustum_offset); test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT); CHECK(test_camera->get_keep_aspect_mode() == Camera3D::KeepAspect::KEEP_HEIGHT); test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_WIDTH); CHECK(test_camera->get_keep_aspect_mode() == Camera3D::KeepAspect::KEEP_WIDTH); } SUBCASE("Projection mode") { test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_ORTHOGONAL); CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_ORTHOGONAL); test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_PERSPECTIVE); CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_PERSPECTIVE); } SUBCASE("Helper setters") { constexpr float fov = 90.0f, size = 6.0f; constexpr float near1 = 0.1f, near2 = 0.5f; constexpr float far1 = 1001.0f, far2 = 1005.0f; test_camera->set_perspective(fov, near1, far1); CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_PERSPECTIVE); CHECK(test_camera->get_near() == near1); CHECK(test_camera->get_far() == far1); CHECK(test_camera->get_fov() == fov); test_camera->set_orthogonal(size, near2, far2); CHECK(test_camera->get_projection() == Camera3D::ProjectionType::PROJECTION_ORTHOGONAL); CHECK(test_camera->get_near() == near2); CHECK(test_camera->get_far() == far2); CHECK(test_camera->get_size() == size); } SUBCASE("Doppler tracking") { test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_IDLE_STEP); CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_IDLE_STEP); test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_PHYSICS_STEP); CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_PHYSICS_STEP); test_camera->set_doppler_tracking(Camera3D::DopplerTracking::DOPPLER_TRACKING_DISABLED); CHECK(test_camera->get_doppler_tracking() == Camera3D::DopplerTracking::DOPPLER_TRACKING_DISABLED); } memdelete(test_camera); } TEST_CASE("[SceneTree][Camera3D] Position queries") { // Cameras need a viewport to know how to compute their frustums, so we make a fake one here. Camera3D *test_camera = memnew(Camera3D); SubViewport *mock_viewport = memnew(SubViewport); // 4:2. mock_viewport->set_size(Vector2(400, 200)); SceneTree::get_singleton()->get_root()->add_child(mock_viewport); mock_viewport->add_child(test_camera); test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_WIDTH); REQUIRE_MESSAGE(test_camera->is_current(), "Camera3D should be made current upon entering tree."); SUBCASE("Orthogonal projection") { test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_ORTHOGONAL); // The orthogonal case is simpler, so we test a more random position + rotation combination here. // For the other cases we'll use zero translation and rotation instead. test_camera->set_global_position(Vector3(1, 2, 3)); test_camera->look_at(Vector3(-4, 5, 1)); // Width = 5, Aspect Ratio = 400 / 200 = 2, so Height is 2.5. test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); const Basis basis = test_camera->get_global_basis(); // Subtract near so offset starts from the near plane. const Vector3 offset1 = basis.xform(Vector3(-1.5f, 3.5f, 0.2f - test_camera->get_near())); const Vector3 offset2 = basis.xform(Vector3(2.0f, -0.5f, -0.6f - test_camera->get_near())); const Vector3 offset3 = basis.xform(Vector3(-3.0f, 1.0f, -0.6f - test_camera->get_near())); const Vector3 offset4 = basis.xform(Vector3(-2.0f, 1.5f, -0.6f - test_camera->get_near())); const Vector3 offset5 = basis.xform(Vector3(0, 0, 10000.0f - test_camera->get_near())); SUBCASE("is_position_behind") { CHECK(test_camera->is_position_behind(test_camera->get_global_position() + offset1)); CHECK_FALSE(test_camera->is_position_behind(test_camera->get_global_position() + offset2)); SUBCASE("h/v offset should have no effect on the result of is_position_behind") { test_camera->set_h_offset(-11.0f); test_camera->set_v_offset(22.1f); CHECK(test_camera->is_position_behind(test_camera->get_global_position() + offset1)); test_camera->set_h_offset(4.7f); test_camera->set_v_offset(-3.0f); CHECK_FALSE(test_camera->is_position_behind(test_camera->get_global_position() + offset2)); } // Reset h/v offsets. test_camera->set_h_offset(0); test_camera->set_v_offset(0); } SUBCASE("is_position_in_frustum") { // If the point is behind the near plane, it is outside the camera frustum. // So offset1 is not in frustum. CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset1)); // If |right| > 5 / 2 or |up| > 2.5 / 2, the point is outside the camera frustum. // So offset2 is in frustum and offset3 and offset4 are not. CHECK(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset2)); CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset3)); CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset4)); // offset5 is beyond the far plane, so it is not in frustum. CHECK_FALSE(test_camera->is_position_in_frustum(test_camera->get_global_position() + offset5)); } } SUBCASE("Perspective projection") { test_camera->set_projection(Camera3D::ProjectionType::PROJECTION_PERSPECTIVE); // Camera at origin, looking at +Z. test_camera->set_global_position(Vector3(0, 0, 0)); test_camera->set_global_rotation(Vector3(0, 0, 0)); // Keep width, so horizontal fov = 120. // Since the near plane distance is 1, // with trig we know the near plane's width is 2 * sqrt(3), so its height is sqrt(3). test_camera->set_perspective(120.0f, 1.0f, 1000.0f); SUBCASE("is_position_behind") { CHECK_FALSE(test_camera->is_position_behind(Vector3(0, 0, -1.5f))); CHECK(test_camera->is_position_behind(Vector3(2, 0, -0.2f))); } SUBCASE("is_position_in_frustum") { CHECK(test_camera->is_position_in_frustum(Vector3(-1.3f, 0, -1.1f))); CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(2, 0, -1.1f))); CHECK(test_camera->is_position_in_frustum(Vector3(1, 0.5f, -1.1f))); CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(1, 1, -1.1f))); CHECK(test_camera->is_position_in_frustum(Vector3(0, 0, -1.5f))); CHECK_FALSE(test_camera->is_position_in_frustum(Vector3(0, 0, -0.5f))); } } memdelete(test_camera); memdelete(mock_viewport); } TEST_CASE("[SceneTree][Camera3D] Project/Unproject position") { // Cameras need a viewport to know how to compute their frustums, so we make a fake one here. Camera3D *test_camera = memnew(Camera3D); SubViewport *mock_viewport = memnew(SubViewport); // 4:2. mock_viewport->set_size(Vector2(400, 200)); SceneTree::get_singleton()->get_root()->add_child(mock_viewport); mock_viewport->add_child(test_camera); test_camera->set_global_position(Vector3(0, 0, 0)); test_camera->set_global_rotation(Vector3(0, 0, 0)); test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT); SUBCASE("project_position") { SUBCASE("Orthogonal projection") { test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_position(Vector2(200, 100), 0.5f).is_equal_approx(Vector3(0, 0, -0.5f))); // Top left. CHECK(test_camera->project_position(Vector2(0, 0), 1.5f).is_equal_approx(Vector3(-5.0f, 2.5f, -1.5f))); // Bottom right. CHECK(test_camera->project_position(Vector2(400, 200), 5.0f).is_equal_approx(Vector3(5.0f, -2.5f, -5.0f))); } SUBCASE("Perspective projection") { test_camera->set_perspective(120.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_position(Vector2(200, 100), 0.5f).is_equal_approx(Vector3(0, 0, -0.5f))); CHECK(test_camera->project_position(Vector2(200, 100), 100.0f).is_equal_approx(Vector3(0, 0, -100.0f))); // 3/4th way to Top left. CHECK(test_camera->project_position(Vector2(100, 50), 0.5f).is_equal_approx(Vector3(-SQRT3 * 0.5f, SQRT3 * 0.25f, -0.5f))); CHECK(test_camera->project_position(Vector2(100, 50), 1.0f).is_equal_approx(Vector3(-SQRT3, SQRT3 * 0.5f, -1.0f))); // 3/4th way to Bottom right. CHECK(test_camera->project_position(Vector2(300, 150), 0.5f).is_equal_approx(Vector3(SQRT3 * 0.5f, -SQRT3 * 0.25f, -0.5f))); CHECK(test_camera->project_position(Vector2(300, 150), 1.0f).is_equal_approx(Vector3(SQRT3, -SQRT3 * 0.5f, -1.0f))); } } // Uses cases that are the inverse of the above sub-case. SUBCASE("unproject_position") { SUBCASE("Orthogonal projection") { test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); // Center CHECK(test_camera->unproject_position(Vector3(0, 0, -0.5f)).is_equal_approx(Vector2(200, 100))); // Top left CHECK(test_camera->unproject_position(Vector3(-5.0f, 2.5f, -1.5f)).is_equal_approx(Vector2(0, 0))); // Bottom right CHECK(test_camera->unproject_position(Vector3(5.0f, -2.5f, -5.0f)).is_equal_approx(Vector2(400, 200))); } SUBCASE("Perspective projection") { test_camera->set_perspective(120.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->unproject_position(Vector3(0, 0, -0.5f)).is_equal_approx(Vector2(200, 100))); CHECK(test_camera->unproject_position(Vector3(0, 0, -100.0f)).is_equal_approx(Vector2(200, 100))); // 3/4th way to Top left. WARN(test_camera->unproject_position(Vector3(-SQRT3 * 0.5f, SQRT3 * 0.25f, -0.5f)).is_equal_approx(Vector2(100, 50))); WARN(test_camera->unproject_position(Vector3(-SQRT3, SQRT3 * 0.5f, -1.0f)).is_equal_approx(Vector2(100, 50))); // 3/4th way to Bottom right. CHECK(test_camera->unproject_position(Vector3(SQRT3 * 0.5f, -SQRT3 * 0.25f, -0.5f)).is_equal_approx(Vector2(300, 150))); CHECK(test_camera->unproject_position(Vector3(SQRT3, -SQRT3 * 0.5f, -1.0f)).is_equal_approx(Vector2(300, 150))); } } memdelete(test_camera); memdelete(mock_viewport); } TEST_CASE("[SceneTree][Camera3D] Project ray") { // Cameras need a viewport to know how to compute their frustums, so we make a fake one here. Camera3D *test_camera = memnew(Camera3D); SubViewport *mock_viewport = memnew(SubViewport); // 4:2. mock_viewport->set_size(Vector2(400, 200)); SceneTree::get_singleton()->get_root()->add_child(mock_viewport); mock_viewport->add_child(test_camera); test_camera->set_global_position(Vector3(0, 0, 0)); test_camera->set_global_rotation(Vector3(0, 0, 0)); test_camera->set_keep_aspect_mode(Camera3D::KeepAspect::KEEP_HEIGHT); SUBCASE("project_ray_origin") { SUBCASE("Orthogonal projection") { test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_ray_origin(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -0.5f))); // Top left. CHECK(test_camera->project_ray_origin(Vector2(0, 0)).is_equal_approx(Vector3(-5.0f, 2.5f, -0.5f))); // Bottom right. CHECK(test_camera->project_ray_origin(Vector2(400, 200)).is_equal_approx(Vector3(5.0f, -2.5f, -0.5f))); } SUBCASE("Perspective projection") { test_camera->set_perspective(120.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_ray_origin(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, 0))); // Top left. CHECK(test_camera->project_ray_origin(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, 0))); // Bottom right. CHECK(test_camera->project_ray_origin(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, 0))); } } SUBCASE("project_ray_normal") { SUBCASE("Orthogonal projection") { test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1))); // Top left. CHECK(test_camera->project_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, -1))); // Bottom right. CHECK(test_camera->project_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, -1))); } SUBCASE("Perspective projection") { test_camera->set_perspective(120.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1))); // Top left. CHECK(test_camera->project_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(-SQRT3, SQRT3 / 2, -0.5f).normalized())); // Bottom right. CHECK(test_camera->project_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(SQRT3, -SQRT3 / 2, -0.5f).normalized())); } } SUBCASE("project_local_ray_normal") { test_camera->set_rotation_degrees(Vector3(60, 60, 60)); SUBCASE("Orthogonal projection") { test_camera->set_orthogonal(5.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_local_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1))); // Top left. CHECK(test_camera->project_local_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(0, 0, -1))); // Bottom right. CHECK(test_camera->project_local_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(0, 0, -1))); } SUBCASE("Perspective projection") { test_camera->set_perspective(120.0f, 0.5f, 1000.0f); // Center. CHECK(test_camera->project_local_ray_normal(Vector2(200, 100)).is_equal_approx(Vector3(0, 0, -1))); // Top left. CHECK(test_camera->project_local_ray_normal(Vector2(0, 0)).is_equal_approx(Vector3(-SQRT3, SQRT3 / 2, -0.5f).normalized())); // Bottom right. CHECK(test_camera->project_local_ray_normal(Vector2(400, 200)).is_equal_approx(Vector3(SQRT3, -SQRT3 / 2, -0.5f).normalized())); } } memdelete(test_camera); memdelete(mock_viewport); } #undef SQRT3 #endif // TEST_CAMERA_3D_H