/**************************************************************************/ /* rendering_device.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef RENDERING_DEVICE_H #define RENDERING_DEVICE_H #include "core/object/class_db.h" #include "core/object/worker_thread_pool.h" #include "core/os/thread_safe.h" #include "core/templates/local_vector.h" #include "core/templates/oa_hash_map.h" #include "core/templates/rid_owner.h" #include "core/variant/typed_array.h" #include "servers/display_server.h" #include "servers/rendering/rendering_device_commons.h" #include "servers/rendering/rendering_device_driver.h" #include "servers/rendering/rendering_device_graph.h" class RDTextureFormat; class RDTextureView; class RDAttachmentFormat; class RDSamplerState; class RDVertexAttribute; class RDShaderSource; class RDShaderSPIRV; class RDUniform; class RDPipelineRasterizationState; class RDPipelineMultisampleState; class RDPipelineDepthStencilState; class RDPipelineColorBlendState; class RDFramebufferPass; class RDPipelineSpecializationConstant; class RenderingDevice : public RenderingDeviceCommons { GDCLASS(RenderingDevice, Object) _THREAD_SAFE_CLASS_ public: enum ShaderLanguage { SHADER_LANGUAGE_GLSL, SHADER_LANGUAGE_HLSL }; typedef int64_t DrawListID; typedef int64_t ComputeListID; typedef String (*ShaderSPIRVGetCacheKeyFunction)(const RenderingDevice *p_render_device); typedef Vector (*ShaderCompileToSPIRVFunction)(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language, String *r_error, const RenderingDevice *p_render_device); typedef Vector (*ShaderCacheFunction)(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language); typedef void (*InvalidationCallback)(void *); private: static ShaderCompileToSPIRVFunction compile_to_spirv_function; static ShaderCacheFunction cache_function; static ShaderSPIRVGetCacheKeyFunction get_spirv_cache_key_function; static RenderingDevice *singleton; RenderingContextDriver *context = nullptr; RenderingDeviceDriver *driver = nullptr; RenderingContextDriver::Device device; protected: static void _bind_methods(); #ifndef DISABLE_DEPRECATED RID _shader_create_from_bytecode_bind_compat_79606(const Vector &p_shader_binary); static void _bind_compatibility_methods(); #endif /***************************/ /**** ID INFRASTRUCTURE ****/ /***************************/ public: //base numeric ID for all types enum { INVALID_FORMAT_ID = -1 }; enum IDType { ID_TYPE_FRAMEBUFFER_FORMAT, ID_TYPE_VERTEX_FORMAT, ID_TYPE_DRAW_LIST, ID_TYPE_COMPUTE_LIST = 4, ID_TYPE_MAX, ID_BASE_SHIFT = 58, // 5 bits for ID types. ID_MASK = (ID_BASE_SHIFT - 1), }; private: HashMap> dependency_map; // IDs to IDs that depend on it. HashMap> reverse_dependency_map; // Same as above, but in reverse. void _add_dependency(RID p_id, RID p_depends_on); void _free_dependencies(RID p_id); private: /***************************/ /**** BUFFER MANAGEMENT ****/ /***************************/ // These are temporary buffers on CPU memory that hold // the information until the CPU fetches it and places it // either on GPU buffers, or images (textures). It ensures // updates are properly synchronized with whatever the // GPU is doing. // // The logic here is as follows, only 3 of these // blocks are created at the beginning (one per frame) // they can each belong to a frame (assigned to current when // used) and they can only be reused after the same frame is // recycled. // // When CPU requires to allocate more than what is available, // more of these buffers are created. If a limit is reached, // then a fence will ensure will wait for blocks allocated // in previous frames are processed. If that fails, then // another fence will ensure everything pending for the current // frame is processed (effectively stalling). // // See the comments in the code to understand better how it works. struct StagingBufferBlock { RDD::BufferID driver_id; uint64_t frame_used = 0; uint32_t fill_amount = 0; }; Vector staging_buffer_blocks; int staging_buffer_current = 0; uint32_t staging_buffer_block_size = 0; uint64_t staging_buffer_max_size = 0; bool staging_buffer_used = false; enum StagingRequiredAction { STAGING_REQUIRED_ACTION_NONE, STAGING_REQUIRED_ACTION_FLUSH_AND_STALL_ALL, STAGING_REQUIRED_ACTION_STALL_PREVIOUS }; Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, StagingRequiredAction &r_required_action, bool p_can_segment = true); void _staging_buffer_execute_required_action(StagingRequiredAction p_required_action); Error _insert_staging_block(); struct Buffer { RDD::BufferID driver_id; uint32_t size = 0; BitField usage; RDG::ResourceTracker *draw_tracker = nullptr; }; Buffer *_get_buffer_from_owner(RID p_buffer); Error _buffer_update(Buffer *p_buffer, RID p_buffer_id, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_queue = false, uint32_t p_required_align = 32); RID_Owner uniform_buffer_owner; RID_Owner storage_buffer_owner; RID_Owner texture_buffer_owner; public: Error buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size); Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data); Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size); Vector buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0); // This causes stall, only use to retrieve large buffers for saving. /*****************/ /**** TEXTURE ****/ /*****************/ // In modern APIs, the concept of textures may not exist; // instead there is the image (the memory pretty much, // the view (how the memory is interpreted) and the // sampler (how it's sampled from the shader). // // Texture here includes the first two stages, but // It's possible to create textures sharing the image // but with different views. The main use case for this // is textures that can be read as both SRGB/Linear, // or slices of a texture (a mipmap, a layer, a 3D slice) // for a framebuffer to render into it. struct Texture { RDD::TextureID driver_id; TextureType type = TEXTURE_TYPE_MAX; DataFormat format = DATA_FORMAT_MAX; TextureSamples samples = TEXTURE_SAMPLES_MAX; TextureSliceType slice_type = TEXTURE_SLICE_MAX; Rect2i slice_rect; uint32_t width = 0; uint32_t height = 0; uint32_t depth = 0; uint32_t layers = 0; uint32_t mipmaps = 0; uint32_t usage_flags = 0; uint32_t base_mipmap = 0; uint32_t base_layer = 0; Vector allowed_shared_formats; bool is_resolve_buffer = false; bool has_initial_data = false; BitField read_aspect_flags; BitField barrier_aspect_flags; bool bound = false; // Bound to framebuffer. RID owner; RDG::ResourceTracker *draw_tracker = nullptr; HashMap slice_trackers; RDD::TextureSubresourceRange barrier_range() const { RDD::TextureSubresourceRange r; r.aspect = barrier_aspect_flags; r.base_mipmap = base_mipmap; r.mipmap_count = mipmaps; r.base_layer = base_layer; r.layer_count = layers; return r; } }; RID_Owner texture_owner; uint32_t texture_upload_region_size_px = 0; Vector _texture_get_data(Texture *tex, uint32_t p_layer, bool p_2d = false); Error _texture_update(RID p_texture, uint32_t p_layer, const Vector &p_data, bool p_use_setup_queue, bool p_validate_can_update); public: struct TextureView { DataFormat format_override = DATA_FORMAT_MAX; // // Means, use same as format. TextureSwizzle swizzle_r = TEXTURE_SWIZZLE_R; TextureSwizzle swizzle_g = TEXTURE_SWIZZLE_G; TextureSwizzle swizzle_b = TEXTURE_SWIZZLE_B; TextureSwizzle swizzle_a = TEXTURE_SWIZZLE_A; bool operator==(const TextureView &p_other) const { if (format_override != p_other.format_override) { return false; } else if (swizzle_r != p_other.swizzle_r) { return false; } else if (swizzle_g != p_other.swizzle_g) { return false; } else if (swizzle_b != p_other.swizzle_b) { return false; } else if (swizzle_a != p_other.swizzle_a) { return false; } else { return true; } } }; RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector> &p_data = Vector>()); RID texture_create_shared(const TextureView &p_view, RID p_with_texture); RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField p_usage, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers); RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0); Error texture_update(RID p_texture, uint32_t p_layer, const Vector &p_data); Vector texture_get_data(RID p_texture, uint32_t p_layer); // CPU textures will return immediately, while GPU textures will most likely force a flush bool texture_is_format_supported_for_usage(DataFormat p_format, BitField p_usage) const; bool texture_is_shared(RID p_texture); bool texture_is_valid(RID p_texture); TextureFormat texture_get_format(RID p_texture); Size2i texture_size(RID p_texture); #ifndef DISABLE_DEPRECATED uint64_t texture_get_native_handle(RID p_texture); #endif Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer); Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers); Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture); /************************/ /**** DRAW LISTS (I) ****/ /************************/ enum InitialAction { INITIAL_ACTION_LOAD, INITIAL_ACTION_CLEAR, INITIAL_ACTION_DISCARD, INITIAL_ACTION_MAX, #ifndef DISABLE_DEPRECATED INITIAL_ACTION_CLEAR_REGION = INITIAL_ACTION_CLEAR, INITIAL_ACTION_CLEAR_REGION_CONTINUE = INITIAL_ACTION_CLEAR, INITIAL_ACTION_KEEP = INITIAL_ACTION_LOAD, INITIAL_ACTION_DROP = INITIAL_ACTION_DISCARD, INITIAL_ACTION_CONTINUE = INITIAL_ACTION_LOAD, #endif }; enum FinalAction { FINAL_ACTION_STORE, FINAL_ACTION_DISCARD, FINAL_ACTION_MAX, #ifndef DISABLE_DEPRECATED FINAL_ACTION_READ = FINAL_ACTION_STORE, FINAL_ACTION_CONTINUE = FINAL_ACTION_STORE, #endif }; /*********************/ /**** FRAMEBUFFER ****/ /*********************/ // In modern APIs, generally, framebuffers work similar to how they // do in OpenGL, with the exception that // the "format" (RDD::RenderPassID) is not dynamic // and must be more or less the same as the one // used for the render pipelines. struct AttachmentFormat { enum { UNUSED_ATTACHMENT = 0xFFFFFFFF }; DataFormat format; TextureSamples samples; uint32_t usage_flags; AttachmentFormat() { format = DATA_FORMAT_R8G8B8A8_UNORM; samples = TEXTURE_SAMPLES_1; usage_flags = 0; } }; struct FramebufferPass { Vector color_attachments; Vector input_attachments; Vector resolve_attachments; Vector preserve_attachments; int32_t depth_attachment = ATTACHMENT_UNUSED; int32_t vrs_attachment = ATTACHMENT_UNUSED; // density map for VRS, only used if supported }; typedef int64_t FramebufferFormatID; private: struct FramebufferFormatKey { Vector attachments; Vector passes; uint32_t view_count = 1; bool operator<(const FramebufferFormatKey &p_key) const { if (view_count != p_key.view_count) { return view_count < p_key.view_count; } uint32_t pass_size = passes.size(); uint32_t key_pass_size = p_key.passes.size(); if (pass_size != key_pass_size) { return pass_size < key_pass_size; } const FramebufferPass *pass_ptr = passes.ptr(); const FramebufferPass *key_pass_ptr = p_key.passes.ptr(); for (uint32_t i = 0; i < pass_size; i++) { { // Compare color attachments. uint32_t attachment_size = pass_ptr[i].color_attachments.size(); uint32_t key_attachment_size = key_pass_ptr[i].color_attachments.size(); if (attachment_size != key_attachment_size) { return attachment_size < key_attachment_size; } const int32_t *pass_attachment_ptr = pass_ptr[i].color_attachments.ptr(); const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].color_attachments.ptr(); for (uint32_t j = 0; j < attachment_size; j++) { if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) { return pass_attachment_ptr[j] < key_pass_attachment_ptr[j]; } } } { // Compare input attachments. uint32_t attachment_size = pass_ptr[i].input_attachments.size(); uint32_t key_attachment_size = key_pass_ptr[i].input_attachments.size(); if (attachment_size != key_attachment_size) { return attachment_size < key_attachment_size; } const int32_t *pass_attachment_ptr = pass_ptr[i].input_attachments.ptr(); const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].input_attachments.ptr(); for (uint32_t j = 0; j < attachment_size; j++) { if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) { return pass_attachment_ptr[j] < key_pass_attachment_ptr[j]; } } } { // Compare resolve attachments. uint32_t attachment_size = pass_ptr[i].resolve_attachments.size(); uint32_t key_attachment_size = key_pass_ptr[i].resolve_attachments.size(); if (attachment_size != key_attachment_size) { return attachment_size < key_attachment_size; } const int32_t *pass_attachment_ptr = pass_ptr[i].resolve_attachments.ptr(); const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].resolve_attachments.ptr(); for (uint32_t j = 0; j < attachment_size; j++) { if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) { return pass_attachment_ptr[j] < key_pass_attachment_ptr[j]; } } } { // Compare preserve attachments. uint32_t attachment_size = pass_ptr[i].preserve_attachments.size(); uint32_t key_attachment_size = key_pass_ptr[i].preserve_attachments.size(); if (attachment_size != key_attachment_size) { return attachment_size < key_attachment_size; } const int32_t *pass_attachment_ptr = pass_ptr[i].preserve_attachments.ptr(); const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].preserve_attachments.ptr(); for (uint32_t j = 0; j < attachment_size; j++) { if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) { return pass_attachment_ptr[j] < key_pass_attachment_ptr[j]; } } } if (pass_ptr[i].depth_attachment != key_pass_ptr[i].depth_attachment) { return pass_ptr[i].depth_attachment < key_pass_ptr[i].depth_attachment; } } int as = attachments.size(); int bs = p_key.attachments.size(); if (as != bs) { return as < bs; } const AttachmentFormat *af_a = attachments.ptr(); const AttachmentFormat *af_b = p_key.attachments.ptr(); for (int i = 0; i < as; i++) { const AttachmentFormat &a = af_a[i]; const AttachmentFormat &b = af_b[i]; if (a.format != b.format) { return a.format < b.format; } if (a.samples != b.samples) { return a.samples < b.samples; } if (a.usage_flags != b.usage_flags) { return a.usage_flags < b.usage_flags; } } return false; // Equal. } }; RDD::RenderPassID _render_pass_create(const Vector &p_attachments, const Vector &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count = 1, Vector *r_samples = nullptr); // This is a cache and it's never freed, it ensures // IDs for a given format are always unique. RBMap framebuffer_format_cache; struct FramebufferFormat { const RBMap::Element *E; RDD::RenderPassID render_pass; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec). Vector pass_samples; uint32_t view_count = 1; // Number of views. }; HashMap framebuffer_formats; struct Framebuffer { FramebufferFormatID format_id; struct VersionKey { InitialAction initial_color_action; FinalAction final_color_action; InitialAction initial_depth_action; FinalAction final_depth_action; uint32_t view_count; bool operator<(const VersionKey &p_key) const { if (initial_color_action == p_key.initial_color_action) { if (final_color_action == p_key.final_color_action) { if (initial_depth_action == p_key.initial_depth_action) { if (final_depth_action == p_key.final_depth_action) { return view_count < p_key.view_count; } else { return final_depth_action < p_key.final_depth_action; } } else { return initial_depth_action < p_key.initial_depth_action; } } else { return final_color_action < p_key.final_color_action; } } else { return initial_color_action < p_key.initial_color_action; } } }; uint32_t storage_mask = 0; Vector texture_ids; InvalidationCallback invalidated_callback = nullptr; void *invalidated_callback_userdata = nullptr; struct Version { RDD::FramebufferID framebuffer; RDD::RenderPassID render_pass; // This one is owned. uint32_t subpass_count = 1; }; RBMap framebuffers; Size2 size; uint32_t view_count; }; RID_Owner framebuffer_owner; public: // This ID is warranted to be unique for the same formats, does not need to be freed FramebufferFormatID framebuffer_format_create(const Vector &p_format, uint32_t p_view_count = 1); FramebufferFormatID framebuffer_format_create_multipass(const Vector &p_attachments, const Vector &p_passes, uint32_t p_view_count = 1); FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1); TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0); RID framebuffer_create(const Vector &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1); RID framebuffer_create_multipass(const Vector &p_texture_attachments, const Vector &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1); RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID); bool framebuffer_is_valid(RID p_framebuffer) const; void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata); FramebufferFormatID framebuffer_get_format(RID p_framebuffer); /*****************/ /**** SAMPLER ****/ /*****************/ private: RID_Owner sampler_owner; public: RID sampler_create(const SamplerState &p_state); bool sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const; /**********************/ /**** VERTEX ARRAY ****/ /**********************/ typedef int64_t VertexFormatID; private: // Vertex buffers in Vulkan are similar to how // they work in OpenGL, except that instead of // an attribute index, there is a buffer binding // index (for binding the buffers in real-time) // and a location index (what is used in the shader). // // This mapping is done here internally, and it's not // exposed. RID_Owner vertex_buffer_owner; struct VertexDescriptionKey { Vector vertex_formats; bool operator==(const VertexDescriptionKey &p_key) const { int vdc = vertex_formats.size(); int vdck = p_key.vertex_formats.size(); if (vdc != vdck) { return false; } else { const VertexAttribute *a_ptr = vertex_formats.ptr(); const VertexAttribute *b_ptr = p_key.vertex_formats.ptr(); for (int i = 0; i < vdc; i++) { const VertexAttribute &a = a_ptr[i]; const VertexAttribute &b = b_ptr[i]; if (a.location != b.location) { return false; } if (a.offset != b.offset) { return false; } if (a.format != b.format) { return false; } if (a.stride != b.stride) { return false; } if (a.frequency != b.frequency) { return false; } } return true; // They are equal. } } uint32_t hash() const { int vdc = vertex_formats.size(); uint32_t h = hash_murmur3_one_32(vdc); const VertexAttribute *ptr = vertex_formats.ptr(); for (int i = 0; i < vdc; i++) { const VertexAttribute &vd = ptr[i]; h = hash_murmur3_one_32(vd.location, h); h = hash_murmur3_one_32(vd.offset, h); h = hash_murmur3_one_32(vd.format, h); h = hash_murmur3_one_32(vd.stride, h); h = hash_murmur3_one_32(vd.frequency, h); } return hash_fmix32(h); } }; struct VertexDescriptionHash { static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) { return p_key.hash(); } }; // This is a cache and it's never freed, it ensures that // ID used for a specific format always remain the same. HashMap vertex_format_cache; struct VertexDescriptionCache { Vector vertex_formats; RDD::VertexFormatID driver_id; }; HashMap vertex_formats; struct VertexArray { RID buffer; VertexFormatID description; int vertex_count = 0; uint32_t max_instances_allowed = 0; Vector buffers; // Not owned, just referenced. Vector draw_trackers; // Not owned, just referenced. Vector offsets; HashSet untracked_buffers; }; RID_Owner vertex_array_owner; struct IndexBuffer : public Buffer { uint32_t max_index = 0; // Used for validation. uint32_t index_count = 0; IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16; bool supports_restart_indices = false; }; RID_Owner index_buffer_owner; struct IndexArray { uint32_t max_index = 0; // Remember the maximum index here too, for validation. RDD::BufferID driver_id; // Not owned, inherited from index buffer. RDG::ResourceTracker *draw_tracker = nullptr; // Not owned, inherited from index buffer. uint32_t offset = 0; uint32_t indices = 0; IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16; bool supports_restart_indices = false; }; RID_Owner index_array_owner; public: RID vertex_buffer_create(uint32_t p_size_bytes, const Vector &p_data = Vector(), bool p_use_as_storage = false); // This ID is warranted to be unique for the same formats, does not need to be freed VertexFormatID vertex_format_create(const Vector &p_vertex_descriptions); RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector &p_src_buffers, const Vector &p_offsets = Vector()); RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector &p_data = Vector(), bool p_use_restart_indices = false); RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count); /****************/ /**** SHADER ****/ /****************/ // Some APIs (e.g., Vulkan) specifies a really complex behavior for the application // in order to tell when descriptor sets need to be re-bound (or not). // "When binding a descriptor set (see Descriptor Set Binding) to set // number N, if the previously bound descriptor sets for sets zero // through N-1 were all bound using compatible pipeline layouts, // then performing this binding does not disturb any of the lower numbered sets. // If, additionally, the previous bound descriptor set for set N was // bound using a pipeline layout compatible for set N, then the bindings // in sets numbered greater than N are also not disturbed." // As a result, we need to figure out quickly when something is no longer "compatible". // in order to avoid costly rebinds. private: struct UniformSetFormat { Vector uniforms; _FORCE_INLINE_ bool operator<(const UniformSetFormat &p_other) const { if (uniforms.size() != p_other.uniforms.size()) { return uniforms.size() < p_other.uniforms.size(); } for (int i = 0; i < uniforms.size(); i++) { if (uniforms[i] < p_other.uniforms[i]) { return true; } else if (p_other.uniforms[i] < uniforms[i]) { return false; } } return false; } }; // Always grows, never shrinks, ensuring unique IDs, but we assume // the amount of formats will never be a problem, as the amount of shaders // in a game is limited. RBMap uniform_set_format_cache; // Shaders in Vulkan are just pretty much // precompiled blocks of SPIR-V bytecode. They // are most likely not really compiled to host // assembly until a pipeline is created. // // When supplying the shaders, this implementation // will use the reflection abilities of glslang to // understand and cache everything required to // create and use the descriptor sets (Vulkan's // biggest pain). // // Additionally, hashes are created for every set // to do quick validation and ensuring the user // does not submit something invalid. struct Shader : public ShaderDescription { String name; // Used for debug. RDD::ShaderID driver_id; uint32_t layout_hash = 0; BitField stage_bits; Vector set_formats; }; String _shader_uniform_debug(RID p_shader, int p_set = -1); RID_Owner shader_owner; #ifndef DISABLE_DEPRECATED public: enum BarrierMask{ BARRIER_MASK_VERTEX = 1, BARRIER_MASK_FRAGMENT = 8, BARRIER_MASK_COMPUTE = 2, BARRIER_MASK_TRANSFER = 4, BARRIER_MASK_RASTER = BARRIER_MASK_VERTEX | BARRIER_MASK_FRAGMENT, // 9, BARRIER_MASK_ALL_BARRIERS = 0x7FFF, // all flags set BARRIER_MASK_NO_BARRIER = 0x8000, }; void barrier(BitField p_from = BARRIER_MASK_ALL_BARRIERS, BitField p_to = BARRIER_MASK_ALL_BARRIERS); void full_barrier(); void draw_command_insert_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1)); Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values = Vector(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector &p_storage_textures = Vector()); Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids); Vector _draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values = Vector(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const TypedArray &p_storage_textures = TypedArray()); Vector _draw_list_switch_to_next_pass_split(uint32_t p_splits); private: void _draw_list_end_bind_compat_81356(BitField p_post_barrier); void _compute_list_end_bind_compat_81356(BitField p_post_barrier); void _barrier_bind_compat_81356(BitField p_from, BitField p_to); void _draw_list_end_bind_compat_84976(BitField p_post_barrier); void _compute_list_end_bind_compat_84976(BitField p_post_barrier); InitialAction _convert_initial_action_84976(InitialAction p_old_initial_action); FinalAction _convert_final_action_84976(FinalAction p_old_final_action); DrawListID _draw_list_begin_bind_compat_84976(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const TypedArray &p_storage_textures); ComputeListID _compute_list_begin_bind_compat_84976(bool p_allow_draw_overlap); Error _buffer_update_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector &p_data, BitField p_post_barrier); Error _buffer_clear_bind_compat_84976(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField p_post_barrier); Error _texture_update_bind_compat_84976(RID p_texture, uint32_t p_layer, const Vector &p_data, BitField p_post_barrier); Error _texture_copy_bind_compat_84976(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField p_post_barrier); Error _texture_clear_bind_compat_84976(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField p_post_barrier); Error _texture_resolve_multisample_bind_compat_84976(RID p_from_texture, RID p_to_texture, BitField p_post_barrier); FramebufferFormatID _screen_get_framebuffer_format_bind_compat_87340() const; #endif public: const RDD::Capabilities &get_device_capabilities() const { return driver->get_capabilities(); } bool has_feature(const Features p_feature) const; Vector shader_compile_spirv_from_source(ShaderStage p_stage, const String &p_source_code, ShaderLanguage p_language = SHADER_LANGUAGE_GLSL, String *r_error = nullptr, bool p_allow_cache = true); String shader_get_spirv_cache_key() const; static void shader_set_compile_to_spirv_function(ShaderCompileToSPIRVFunction p_function); static void shader_set_spirv_cache_function(ShaderCacheFunction p_function); static void shader_set_get_cache_key_function(ShaderSPIRVGetCacheKeyFunction p_function); String shader_get_binary_cache_key() const; Vector shader_compile_binary_from_spirv(const Vector &p_spirv, const String &p_shader_name = ""); RID shader_create_from_spirv(const Vector &p_spirv, const String &p_shader_name = ""); RID shader_create_from_bytecode(const Vector &p_shader_binary, RID p_placeholder = RID()); RID shader_create_placeholder(); uint64_t shader_get_vertex_input_attribute_mask(RID p_shader); /******************/ /**** UNIFORMS ****/ /******************/ enum StorageBufferUsage { STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT = 1, }; RID uniform_buffer_create(uint32_t p_size_bytes, const Vector &p_data = Vector()); RID storage_buffer_create(uint32_t p_size, const Vector &p_data = Vector(), BitField p_usage = 0); RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector &p_data = Vector()); struct Uniform { UniformType uniform_type = UNIFORM_TYPE_IMAGE; uint32_t binding = 0; // Binding index as specified in shader. private: // In most cases only one ID is provided per binding, so avoid allocating memory unnecessarily for performance. RID id; // If only one is provided, this is used. Vector ids; // If multiple ones are provided, this is used instead. public: _FORCE_INLINE_ uint32_t get_id_count() const { return (id.is_valid() ? 1 : ids.size()); } _FORCE_INLINE_ RID get_id(uint32_t p_idx) const { if (id.is_valid()) { ERR_FAIL_COND_V(p_idx != 0, RID()); return id; } else { return ids[p_idx]; } } _FORCE_INLINE_ void set_id(uint32_t p_idx, RID p_id) { if (id.is_valid()) { ERR_FAIL_COND(p_idx != 0); id = p_id; } else { ids.write[p_idx] = p_id; } } _FORCE_INLINE_ void append_id(RID p_id) { if (ids.is_empty()) { if (id == RID()) { id = p_id; } else { ids.push_back(id); ids.push_back(p_id); id = RID(); } } else { ids.push_back(p_id); } } _FORCE_INLINE_ void clear_ids() { id = RID(); ids.clear(); } _FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, RID p_id) { uniform_type = p_type; binding = p_binding; id = p_id; } _FORCE_INLINE_ Uniform(UniformType p_type, int p_binding, const Vector &p_ids) { uniform_type = p_type; binding = p_binding; ids = p_ids; } _FORCE_INLINE_ Uniform() = default; }; private: static const uint32_t MAX_UNIFORM_SETS = 16; static const uint32_t MAX_PUSH_CONSTANT_SIZE = 128; // This structure contains the descriptor set. They _need_ to be allocated // for a shader (and will be erased when this shader is erased), but should // work for other shaders as long as the hash matches. This covers using // them in shader variants. // // Keep also in mind that you can share buffers between descriptor sets, so // the above restriction is not too serious. struct UniformSet { uint32_t format = 0; RID shader_id; uint32_t shader_set = 0; RDD::UniformSetID driver_id; struct AttachableTexture { uint32_t bind = 0; RID texture; }; LocalVector attachable_textures; // Used for validation. Vector draw_trackers; Vector draw_trackers_usage; HashMap untracked_usage; InvalidationCallback invalidated_callback = nullptr; void *invalidated_callback_userdata = nullptr; }; RID_Owner uniform_set_owner; public: RID uniform_set_create(const Vector &p_uniforms, RID p_shader, uint32_t p_shader_set); bool uniform_set_is_valid(RID p_uniform_set); void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata); /*******************/ /**** PIPELINES ****/ /*******************/ // Render pipeline contains ALL the // information required for drawing. // This includes all the rasterizer state // as well as shader used, framebuffer format, // etc. // While the pipeline is just a single object // (VkPipeline) a lot of values are also saved // here to do validation (vulkan does none by // default) and warn the user if something // was not supplied as intended. private: struct RenderPipeline { // Cached values for validation. #ifdef DEBUG_ENABLED struct Validation { FramebufferFormatID framebuffer_format; uint32_t render_pass = 0; uint32_t dynamic_state = 0; VertexFormatID vertex_format; bool uses_restart_indices = false; uint32_t primitive_minimum = 0; uint32_t primitive_divisor = 0; } validation; #endif // Actual pipeline. RID shader; RDD::ShaderID shader_driver_id; uint32_t shader_layout_hash = 0; Vector set_formats; RDD::PipelineID driver_id; BitField stage_bits; uint32_t push_constant_size = 0; }; RID_Owner render_pipeline_owner; bool pipeline_cache_enabled = false; size_t pipeline_cache_size = 0; String pipeline_cache_file_path; WorkerThreadPool::TaskID pipeline_cache_save_task = WorkerThreadPool::INVALID_TASK_ID; Vector _load_pipeline_cache(); void _update_pipeline_cache(bool p_closing = false); static void _save_pipeline_cache(void *p_data); struct ComputePipeline { RID shader; RDD::ShaderID shader_driver_id; uint32_t shader_layout_hash = 0; Vector set_formats; RDD::PipelineID driver_id; uint32_t push_constant_size = 0; uint32_t local_group_size[3] = { 0, 0, 0 }; }; RID_Owner compute_pipeline_owner; public: RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector &p_specialization_constants = Vector()); bool render_pipeline_is_valid(RID p_pipeline); RID compute_pipeline_create(RID p_shader, const Vector &p_specialization_constants = Vector()); bool compute_pipeline_is_valid(RID p_pipeline); private: /****************/ /**** SCREEN ****/ /****************/ HashMap screen_swap_chains; HashMap screen_framebuffers; uint32_t _get_swap_chain_desired_count() const; public: Error screen_create(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID); Error screen_prepare_for_drawing(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID); int screen_get_width(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const; int screen_get_height(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const; FramebufferFormatID screen_get_framebuffer_format(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID) const; Error screen_free(DisplayServer::WindowID p_screen = DisplayServer::MAIN_WINDOW_ID); /*************************/ /**** DRAW LISTS (II) ****/ /*************************/ private: // Draw list contains both the command buffer // used for drawing as well as a LOT of // information used for validation. This // validation is cheap so most of it can // also run in release builds. struct DrawList { Rect2i viewport; bool viewport_set = false; struct SetState { uint32_t pipeline_expected_format = 0; uint32_t uniform_set_format = 0; RDD::UniformSetID uniform_set_driver_id; RID uniform_set; bool bound = false; }; struct State { SetState sets[MAX_UNIFORM_SETS]; uint32_t set_count = 0; RID pipeline; RID pipeline_shader; RDD::ShaderID pipeline_shader_driver_id; uint32_t pipeline_shader_layout_hash = 0; RID vertex_array; RID index_array; } state; #ifdef DEBUG_ENABLED struct Validation { bool active = true; // Means command buffer was not closed, so you can keep adding things. // Actual render pass values. uint32_t dynamic_state = 0; VertexFormatID vertex_format = INVALID_ID; uint32_t vertex_array_size = 0; uint32_t vertex_max_instances_allowed = 0xFFFFFFFF; bool index_buffer_uses_restart_indices = false; uint32_t index_array_count = 0; uint32_t index_array_max_index = 0; Vector set_formats; Vector set_bound; Vector set_rids; // Last pipeline set values. bool pipeline_active = false; uint32_t pipeline_dynamic_state = 0; VertexFormatID pipeline_vertex_format = INVALID_ID; RID pipeline_shader; bool pipeline_uses_restart_indices = false; uint32_t pipeline_primitive_divisor = 0; uint32_t pipeline_primitive_minimum = 0; uint32_t pipeline_push_constant_size = 0; bool pipeline_push_constant_supplied = false; } validation; #else struct Validation { uint32_t vertex_array_size = 0; uint32_t index_array_count = 0; } validation; #endif }; DrawList *draw_list = nullptr; uint32_t draw_list_subpass_count = 0; RDD::RenderPassID draw_list_render_pass; RDD::FramebufferID draw_list_vkframebuffer; #ifdef DEBUG_ENABLED FramebufferFormatID draw_list_framebuffer_format = INVALID_ID; #endif uint32_t draw_list_current_subpass = 0; Vector draw_list_bound_textures; void _draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil); Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, RDD::FramebufferID *r_framebuffer, RDD::RenderPassID *r_render_pass, uint32_t *r_subpass_count); Error _draw_list_render_pass_begin(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i p_viewport_offset, Point2i p_viewport_size, RDD::FramebufferID p_framebuffer_driver_id, RDD::RenderPassID p_render_pass); void _draw_list_set_viewport(Rect2i p_rect); void _draw_list_set_scissor(Rect2i p_rect); _FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id); Error _draw_list_allocate(const Rect2i &p_viewport, uint32_t p_subpass); void _draw_list_free(Rect2i *r_last_viewport = nullptr); public: DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color()); DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector &p_clear_color_values = Vector(), float p_clear_depth = 0.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2()); void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color); void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline); void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index); void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array); void draw_list_bind_index_array(DrawListID p_list, RID p_index_array); void draw_list_set_line_width(DrawListID p_list, float p_width); void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size); void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0); void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect); void draw_list_disable_scissor(DrawListID p_list); uint32_t draw_list_get_current_pass(); DrawListID draw_list_switch_to_next_pass(); void draw_list_end(); private: /***********************/ /**** COMPUTE LISTS ****/ /***********************/ struct ComputeList { struct SetState { uint32_t pipeline_expected_format = 0; uint32_t uniform_set_format = 0; RDD::UniformSetID uniform_set_driver_id; RID uniform_set; bool bound = false; }; struct State { SetState sets[MAX_UNIFORM_SETS]; uint32_t set_count = 0; RID pipeline; RID pipeline_shader; RDD::ShaderID pipeline_shader_driver_id; uint32_t pipeline_shader_layout_hash = 0; uint32_t local_group_size[3] = { 0, 0, 0 }; uint8_t push_constant_data[MAX_PUSH_CONSTANT_SIZE] = {}; uint32_t push_constant_size = 0; } state; #ifdef DEBUG_ENABLED struct Validation { bool active = true; // Means command buffer was not closed, so you can keep adding things. Vector set_formats; Vector set_bound; Vector set_rids; // Last pipeline set values. bool pipeline_active = false; RID pipeline_shader; uint32_t invalid_set_from = 0; uint32_t pipeline_push_constant_size = 0; bool pipeline_push_constant_supplied = false; } validation; #endif }; ComputeList *compute_list = nullptr; ComputeList::State compute_list_barrier_state; public: ComputeListID compute_list_begin(); void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline); void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index); void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size); void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups); void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads); void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset); void compute_list_add_barrier(ComputeListID p_list); void compute_list_end(); private: /***********************/ /**** COMMAND GRAPH ****/ /***********************/ bool _texture_make_mutable(Texture *p_texture, RID p_texture_id); bool _buffer_make_mutable(Buffer *p_buffer, RID p_buffer_id); bool _vertex_array_make_mutable(VertexArray *p_vertex_array, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker); bool _index_array_make_mutable(IndexArray *p_index_array, RDG::ResourceTracker *p_resource_tracker); bool _uniform_set_make_mutable(UniformSet *p_uniform_set, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker); bool _dependency_make_mutable(RID p_id, RID p_resource_id, RDG::ResourceTracker *p_resource_tracker); bool _dependencies_make_mutable(RID p_id, RDG::ResourceTracker *p_resource_tracker); RenderingDeviceGraph draw_graph; /**************************/ /**** QUEUE MANAGEMENT ****/ /**************************/ RDD::CommandQueueFamilyID main_queue_family; RDD::CommandQueueFamilyID present_queue_family; RDD::CommandQueueID main_queue; RDD::CommandQueueID present_queue; /**************************/ /**** FRAME MANAGEMENT ****/ /**************************/ // This is the frame structure. There are normally // 3 of these (used for triple buffering), or 2 // (double buffering). They are cycled constantly. // // It contains two command buffers, one that is // used internally for setting up (creating stuff) // and another used mostly for drawing. // // They also contains a list of things that need // to be disposed of when deleted, which can't // happen immediately due to the asynchronous // nature of the GPU. They will get deleted // when the frame is cycled. struct Frame { // List in usage order, from last to free to first to free. List buffers_to_dispose_of; List textures_to_dispose_of; List framebuffers_to_dispose_of; List samplers_to_dispose_of; List shaders_to_dispose_of; List uniform_sets_to_dispose_of; List render_pipelines_to_dispose_of; List compute_pipelines_to_dispose_of; RDD::CommandPoolID command_pool; // Used at the beginning of every frame for set-up. // Used for filling up newly created buffers with data provided on creation. // Primarily intended to be accessed by worker threads. // Ideally this command buffer should use an async transfer queue. RDD::CommandBufferID setup_command_buffer; // The main command buffer for drawing and compute. // Primarily intended to be used by the main thread to do most stuff. RDD::CommandBufferID draw_command_buffer; // Signaled by the setup submission. Draw must wait on this semaphore. RDD::SemaphoreID setup_semaphore; // Signaled by the draw submission. Present must wait on this semaphore. RDD::SemaphoreID draw_semaphore; // Signaled by the draw submission. Must wait on this fence before beginning // command recording for the frame. RDD::FenceID draw_fence; bool draw_fence_signaled = false; // Swap chains prepared for drawing during the frame that must be presented. LocalVector swap_chains_to_present; struct Timestamp { String description; uint64_t value = 0; }; RDD::QueryPoolID timestamp_pool; TightLocalVector timestamp_names; TightLocalVector timestamp_cpu_values; uint32_t timestamp_count = 0; TightLocalVector timestamp_result_names; TightLocalVector timestamp_cpu_result_values; TightLocalVector timestamp_result_values; uint32_t timestamp_result_count = 0; uint64_t index = 0; }; uint32_t max_timestamp_query_elements = 0; int frame = 0; TightLocalVector frames; uint64_t frames_drawn = 0; void _free_pending_resources(int p_frame); uint64_t texture_memory = 0; uint64_t buffer_memory = 0; void _free_internal(RID p_id); void _begin_frame(); void _end_frame(); void _execute_frame(bool p_present); void _stall_for_previous_frames(); void _flush_and_stall_for_all_frames(); template void _free_rids(T &p_owner, const char *p_type); #ifdef DEV_ENABLED HashMap resource_names; #endif public: Error initialize(RenderingContextDriver *p_context, DisplayServer::WindowID p_main_window = DisplayServer::INVALID_WINDOW_ID); void finalize(); void free(RID p_id); /****************/ /**** Timing ****/ /****************/ void capture_timestamp(const String &p_name); uint32_t get_captured_timestamps_count() const; uint64_t get_captured_timestamps_frame() const; uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const; uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const; String get_captured_timestamp_name(uint32_t p_index) const; /****************/ /**** LIMITS ****/ /****************/ uint64_t limit_get(Limit p_limit) const; void swap_buffers(); uint32_t get_frame_delay() const; void submit(); void sync(); enum MemoryType { MEMORY_TEXTURES, MEMORY_BUFFERS, MEMORY_TOTAL }; uint64_t get_memory_usage(MemoryType p_type) const; RenderingDevice *create_local_device(); void set_resource_name(RID p_id, const String &p_name); void draw_command_begin_label(String p_label_name, const Color &p_color = Color(1, 1, 1, 1)); void draw_command_end_label(); String get_device_vendor_name() const; String get_device_name() const; DeviceType get_device_type() const; String get_device_api_name() const; String get_device_api_version() const; String get_device_pipeline_cache_uuid() const; uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0); static RenderingDevice *get_singleton(); RenderingDevice(); ~RenderingDevice(); private: /*****************/ /**** BINDERS ****/ /*****************/ RID _texture_create(const Ref &p_format, const Ref &p_view, const TypedArray &p_data = Array()); RID _texture_create_shared(const Ref &p_view, RID p_with_texture); RID _texture_create_shared_from_slice(const Ref &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D); Ref _texture_get_format(RID p_rd_texture); FramebufferFormatID _framebuffer_format_create(const TypedArray &p_attachments, uint32_t p_view_count); FramebufferFormatID _framebuffer_format_create_multipass(const TypedArray &p_attachments, const TypedArray &p_passes, uint32_t p_view_count); RID _framebuffer_create(const TypedArray &p_textures, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1); RID _framebuffer_create_multipass(const TypedArray &p_textures, const TypedArray &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1); RID _sampler_create(const Ref &p_state); VertexFormatID _vertex_format_create(const TypedArray &p_vertex_formats); RID _vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const TypedArray &p_src_buffers, const Vector &p_offsets = Vector()); Ref _shader_compile_spirv_from_source(const Ref &p_source, bool p_allow_cache = true); Vector _shader_compile_binary_from_spirv(const Ref &p_bytecode, const String &p_shader_name = ""); RID _shader_create_from_spirv(const Ref &p_spirv, const String &p_shader_name = ""); RID _uniform_set_create(const TypedArray &p_uniforms, RID p_shader, uint32_t p_shader_set); Error _buffer_update_bind(RID p_buffer, uint32_t p_offset, uint32_t p_size, const Vector &p_data); RID _render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const Ref &p_rasterization_state, const Ref &p_multisample_state, const Ref &p_depth_stencil_state, const Ref &p_blend_state, BitField p_dynamic_state_flags, uint32_t p_for_render_pass, const TypedArray &p_specialization_constants); RID _compute_pipeline_create(RID p_shader, const TypedArray &p_specialization_constants); void _draw_list_set_push_constant(DrawListID p_list, const Vector &p_data, uint32_t p_data_size); void _compute_list_set_push_constant(ComputeListID p_list, const Vector &p_data, uint32_t p_data_size); }; VARIANT_ENUM_CAST(RenderingDevice::DeviceType) VARIANT_ENUM_CAST(RenderingDevice::DriverResource) VARIANT_ENUM_CAST(RenderingDevice::ShaderStage) VARIANT_ENUM_CAST(RenderingDevice::ShaderLanguage) VARIANT_ENUM_CAST(RenderingDevice::CompareOperator) VARIANT_ENUM_CAST(RenderingDevice::DataFormat) VARIANT_ENUM_CAST(RenderingDevice::TextureType) VARIANT_ENUM_CAST(RenderingDevice::TextureSamples) VARIANT_BITFIELD_CAST(RenderingDevice::TextureUsageBits) VARIANT_ENUM_CAST(RenderingDevice::TextureSwizzle) VARIANT_ENUM_CAST(RenderingDevice::TextureSliceType) VARIANT_ENUM_CAST(RenderingDevice::SamplerFilter) VARIANT_ENUM_CAST(RenderingDevice::SamplerRepeatMode) VARIANT_ENUM_CAST(RenderingDevice::SamplerBorderColor) VARIANT_ENUM_CAST(RenderingDevice::VertexFrequency) VARIANT_ENUM_CAST(RenderingDevice::IndexBufferFormat) VARIANT_BITFIELD_CAST(RenderingDevice::StorageBufferUsage) VARIANT_ENUM_CAST(RenderingDevice::UniformType) VARIANT_ENUM_CAST(RenderingDevice::RenderPrimitive) VARIANT_ENUM_CAST(RenderingDevice::PolygonCullMode) VARIANT_ENUM_CAST(RenderingDevice::PolygonFrontFace) VARIANT_ENUM_CAST(RenderingDevice::StencilOperation) VARIANT_ENUM_CAST(RenderingDevice::LogicOperation) VARIANT_ENUM_CAST(RenderingDevice::BlendFactor) VARIANT_ENUM_CAST(RenderingDevice::BlendOperation) VARIANT_BITFIELD_CAST(RenderingDevice::PipelineDynamicStateFlags) VARIANT_ENUM_CAST(RenderingDevice::PipelineSpecializationConstantType) VARIANT_ENUM_CAST(RenderingDevice::InitialAction) VARIANT_ENUM_CAST(RenderingDevice::FinalAction) VARIANT_ENUM_CAST(RenderingDevice::Limit) VARIANT_ENUM_CAST(RenderingDevice::MemoryType) VARIANT_ENUM_CAST(RenderingDevice::Features) #ifndef DISABLE_DEPRECATED VARIANT_BITFIELD_CAST(RenderingDevice::BarrierMask); #endif typedef RenderingDevice RD; #endif // RENDERING_DEVICE_H