/*************************************************************************/ /* rasterizer_scene_gles2.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_gles2.h" #include "core/math/math_funcs.h" #include "core/math/transform.h" #include "core/os/os.h" #include "core/project_settings.h" #include "core/vmap.h" #include "rasterizer_canvas_gles2.h" #include "servers/visual/visual_server_raster.h" #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif #ifndef GLES_OVER_GL #ifdef IPHONE_ENABLED #include //void *glResolveMultisampleFramebufferAPPLE; #define GL_READ_FRAMEBUFFER 0x8CA8 #define GL_DRAW_FRAMEBUFFER 0x8CA9 #endif #endif static const GLenum _cube_side_enum[6] = { GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, }; /* SHADOW ATLAS API */ RID RasterizerSceneGLES2::shadow_atlas_create() { ShadowAtlas *shadow_atlas = memnew(ShadowAtlas); shadow_atlas->fbo = 0; shadow_atlas->depth = 0; shadow_atlas->color = 0; shadow_atlas->size = 0; shadow_atlas->smallest_subdiv = 0; for (int i = 0; i < 4; i++) { shadow_atlas->size_order[i] = i; } return shadow_atlas_owner.make_rid(shadow_atlas); } void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size) return; // erase the old atlast if (shadow_atlas->fbo) { if (storage->config.use_rgba_3d_shadows) { glDeleteRenderbuffers(1, &shadow_atlas->depth); } else { glDeleteTextures(1, &shadow_atlas->depth); } glDeleteFramebuffers(1, &shadow_atlas->fbo); if (shadow_atlas->color) { glDeleteTextures(1, &shadow_atlas->color); } shadow_atlas->fbo = 0; shadow_atlas->depth = 0; shadow_atlas->color = 0; } // erase shadow atlast references from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; if (shadow_atlas->size) { glGenFramebuffers(1, &shadow_atlas->fbo); glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); // create a depth texture glActiveTexture(GL_TEXTURE0); if (storage->config.use_rgba_3d_shadows) { //maximum compatibility, renderbuffer and RGBA shadow glGenRenderbuffers(1, &shadow_atlas->depth); glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth); glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, shadow_atlas->depth); glGenTextures(1, &shadow_atlas->color); glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0); } else { //just depth texture glGenTextures(1, &shadow_atlas->depth); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0); } glViewport(0, 0, shadow_atlas->size, shadow_atlas->size); glDepthMask(GL_TRUE); glClearDepth(0.0f); glClear(GL_DEPTH_BUFFER_BIT); glBindFramebuffer(GL_FRAMEBUFFER, 0); } } void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); if (shadow_atlas->quadrants[p_quadrant].shadows.size() == (int)subdiv) return; // erase all data from the quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; // cache the smallest subdivision for faster allocations shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } // re-sort the quadrants int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } // look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; // found a free one int found_used_idx = -1; // found an existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { // was just allocated, don't kill it so soon, wait a bit... if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) { continue; // nothing found } if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; int best_subdiv = -1; for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) { continue; } int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) { break; // what we asked for is bigger than this. } valid_quadrants[valid_quadrant_count] = q; valid_quadrant_count++; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available uint64_t tick = OS::get_singleton()->get_ticks_msec(); if (shadow_atlas->shadow_owners.has(p_light_intance)) { // light was already known! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant; int new_shadow; // find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { // found a better place ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { // it is take but invalid, so we can take it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.get(sh->owner); sli->shadow_atlases.erase(p_atlas); } // erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); // make a new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; // update it in the map shadow_atlas->shadow_owners[p_light_intance] = key; // make it dirty, so we redraw return true; } // no better place found, so we keep the current place shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant; int new_shadow; if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { // found a better place ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { // it is take but invalid, so we can take it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.get(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); // make a new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; // update it in the map shadow_atlas->shadow_owners[p_light_intance] = key; // make it dirty, so we redraw return true; } return false; } void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); int shadow_size; if (directional_shadow.light_count == 1) { shadow_size = directional_shadow.size; } else { shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway } LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (light_instance->light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size /= 2; break; } return shadow_size; } ////////////////////////////////////////////////////// RID RasterizerSceneGLES2::reflection_atlas_create() { return RID(); } void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) { } void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) { } //////////////////////////////////////////////////// RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) { RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!probe, RID()); ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance); rpi->probe_ptr = probe; rpi->self = reflection_probe_instance_owner.make_rid(rpi); rpi->probe = p_probe; rpi->reflection_atlas_index = -1; rpi->render_step = -1; rpi->last_pass = 0; rpi->current_resolution = 0; rpi->dirty = true; rpi->index = 0; for (int i = 0; i < 6; i++) { glGenFramebuffers(1, &rpi->fbo[i]); glGenTextures(1, &rpi->color[i]); } glGenRenderbuffers(1, &rpi->depth); rpi->cubemap = 0; //glGenTextures(1, &rpi->cubemap); return rpi->self; } void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; } void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) { } bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) { const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS; rpi->dirty = false; return need_redraw; } bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) { return true; } bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); rpi->render_step = 0; if (rpi->probe_ptr->resolution != rpi->current_resolution) { //update cubemap if resolution changed int size = rpi->probe_ptr->resolution; rpi->current_resolution = size; GLenum internal_format = GL_RGB; GLenum format = GL_RGB; GLenum type = GL_UNSIGNED_BYTE; glActiveTexture(GL_TEXTURE0); glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth); glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, size, size); if (rpi->cubemap != 0) { glDeleteTextures(1, &rpi->cubemap); } glGenTextures(1, &rpi->cubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); #if 1 //Mobile hardware (PowerVR specially) prefers this approach, the other one kills the game for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); //Generate framebuffers for rendering for (int i = 0; i < 6; i++) { glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); glBindTexture(GL_TEXTURE_2D, rpi->color[i]); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); } #else int lod = 0; //the approach below is fatal for powervr // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if later wont be used. while (size >= 1) { for (int i = 0; i < 6; i++) { glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL); if (size == rpi->current_resolution) { //adjust framebuffer glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); #endif } } lod++; size >>= 1; } #endif glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo); } return true; } bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); ERR_FAIL_COND_V(rpi->current_resolution == 0, false); int size = rpi->probe_ptr->resolution; { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glDepthMask(GL_FALSE); for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { glDisableVertexAttribArray(i); } } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to //first of all, copy rendered textures to cubemap for (int i = 0; i < 6; i++) { glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]); glViewport(0, 0, size, size); glCopyTexSubImage2D(_cube_side_enum[i], 0, 0, 0, 0, 0, size, size); } //do filtering //vdc cache glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex); // now render to the framebuffer, mipmap level for mipmap level int lod = 1; size >>= 1; int mipmaps = 6; storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false); storage->shaders.cubemap_filter.bind(); glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo); //blur while (size >= 1) { glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0); glViewport(0, 0, size, size); glActiveTexture(GL_TEXTURE0); for (int i = 0; i < 6; i++) { storage->bind_quad_array(); storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i); float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1); storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness); storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size); } size >>= 1; lod++; } // restore ranges glActiveTexture(GL_TEXTURE0); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE3); //back to panorama glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo); return true; } /* ENVIRONMENT API */ RID RasterizerSceneGLES2::environment_create() { Environment *env = memnew(Environment); return environment_owner.make_rid(env); } void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_mode = p_bg; } void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ambient_color = p_color; env->ambient_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; } void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_enabled = p_enable; env->fog_color = p_color; env->fog_sun_color = p_sun_color; env->fog_sun_amount = p_sun_amount; } void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_depth_enabled = p_enable; env->fog_depth_begin = p_depth_begin; env->fog_depth_end = p_depth_end; env->fog_depth_curve = p_depth_curve; env->fog_transmit_enabled = p_transmit; env->fog_transmit_curve = p_transmit_curve; } void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_height_enabled = p_enable; env->fog_height_min = p_min_height; env->fog_height_max = p_max_height; env->fog_height_curve = p_height_curve; } bool RasterizerSceneGLES2::is_environment(RID p_env) { return environment_owner.owns(p_env); } VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX); return env->bg_mode; } int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, -1); return env->canvas_max_layer; } RID RasterizerSceneGLES2::light_instance_create(RID p_light) { LightInstance *light_instance = memnew(LightInstance); light_instance->last_scene_pass = 0; light_instance->light = p_light; light_instance->light_ptr = storage->light_owner.getornull(p_light); light_instance->light_index = 0xFFFF; ERR_FAIL_COND_V(!light_instance->light_ptr, RID()); light_instance->self = light_instance_owner.make_rid(light_instance); return light_instance->self; } void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) { p_pass = 0; } ERR_FAIL_INDEX(p_pass, 4); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; } void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } ////////////////////// RID RasterizerSceneGLES2::gi_probe_instance_create() { return RID(); } void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) { } void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { } void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) { } //////////////////////////// //////////////////////////// //////////////////////////// void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) { RasterizerStorageGLES2::Material *material = NULL; RID material_src; if (p_instance->material_override.is_valid()) { material_src = p_instance->material_override; } else if (p_material >= 0) { material_src = p_instance->materials[p_material]; } else { material_src = p_geometry->material; } if (material_src.is_valid()) { material = storage->material_owner.getornull(material_src); if (!material->shader || !material->shader->valid) { material = NULL; } } if (!material) { material = storage->material_owner.getptr(default_material); } ERR_FAIL_COND(!material); _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass); while (material->next_pass.is_valid()) { material = storage->material_owner.getornull(material->next_pass); if (!material || !material->shader || !material->shader->valid) { break; } _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass); } } void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) { bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture; bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX; bool has_alpha = has_base_alpha || has_blend_alpha; bool mirror = p_instance->mirror; if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) { mirror = false; } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) { mirror = !mirror; } //if (p_material->shader->spatial.uses_sss) { // state.used_sss = true; //} if (p_material->shader->spatial.uses_screen_texture) { state.used_screen_texture = true; } if (p_depth_pass) { if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS)) return; //bye if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { //shader does not use discard and does not write a vertex position, use generic material if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided); mirror = false; } else { p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material); } } has_alpha = false; } RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); if (!e) { return; } e->geometry = p_geometry; e->material = p_material; e->instance = p_instance; e->owner = p_owner; e->sort_key = 0; e->depth_key = 0; e->use_accum = false; e->light_index = RenderList::MAX_LIGHTS; e->use_accum_ptr = &e->use_accum; e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0; if (e->geometry->last_pass != render_pass) { e->geometry->last_pass = render_pass; e->geometry->index = current_geometry_index++; } e->geometry_index = e->geometry->index; if (e->material->last_pass != render_pass) { e->material->last_pass = render_pass; e->material->index = current_material_index++; if (e->material->shader->last_pass != render_pass) { e->material->shader->index = current_shader_index++; } } e->material_index = e->material->index; e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default if (!p_depth_pass) { e->depth_layer = e->instance->depth_layer; e->priority = p_material->render_priority; if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { //add element to opaque RenderList::Element *eo = render_list.add_element(); *eo = *e; eo->use_accum_ptr = &eo->use_accum; } int rpsize = e->instance->reflection_probe_instances.size(); if (rpsize > 0) { bool first = true; rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable for (int i = 0; i < rpsize; i++) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]); if (rpi->last_pass != render_pass) { continue; } if (first) { e->refprobe_0_index = rpi->index; first = false; } else { e->refprobe_1_index = rpi->index; break; } } /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible uint64_t tmp = e->refprobe_0_index; e->refprobe_0_index = e->refprobe_1_index; e->refprobe_1_index = tmp; }*/ } //add directional lights if (p_material->shader->spatial.unshaded) { e->light_mode = LIGHTMODE_UNSHADED; } else { bool copy = false; for (int i = 0; i < render_directional_lights; i++) { if (copy) { RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); if (!e2) { break; } *e2 = *e; //this includes accum ptr :) e = e2; } //directional sort key e->light_type1 = 0; e->light_type2 = 1; e->light_index = i; copy = true; } //add omni / spots for (int i = 0; i < e->instance->light_instances.size(); i++) { LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]); if (li->light_index >= render_light_instance_count) { continue; // too many } if (copy) { RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); if (!e2) { break; } *e2 = *e; //this includes accum ptr :) e = e2; } //directional sort key e->light_type1 = 1; e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1; e->light_index = li->light_index; copy = true; } if (e->instance->lightmap.is_valid()) { e->light_mode = LIGHTMODE_LIGHTMAP; } else if (!e->instance->lightmap_capture_data.empty()) { e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE; } else { e->light_mode = LIGHTMODE_NORMAL; } } } // do not add anything here, as lights are duplicated elements.. if (p_material->shader->spatial.uses_time) { VisualServerRaster::redraw_request(); } } void RasterizerSceneGLES2::_copy_texture_to_front_buffer(GLuint p_texture) { //copy to front buffer glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, p_texture); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); storage->shaders.copy.bind(); storage->bind_quad_array(); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindBuffer(GL_ARRAY_BUFFER, 0); } void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) { render_pass++; current_material_index = 0; current_geometry_index = 0; current_light_index = 0; current_refprobe_index = 0; current_shader_index = 0; for (int i = 0; i < p_cull_count; i++) { InstanceBase *instance = p_cull_result[i]; switch (instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base); ERR_CONTINUE(!mesh); int num_surfaces = mesh->surfaces.size(); for (int j = 0; j < num_surfaces; j++) { int material_index = instance->materials[j].is_valid() ? j : -1; RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j]; _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass); } } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base); ERR_CONTINUE(!multi_mesh); if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0) continue; RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh); if (!mesh) continue; int ssize = mesh->surfaces.size(); for (int j = 0; j < ssize; j++) { RasterizerStorageGLES2::Surface *s = mesh->surfaces[j]; _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass); } } break; case VS::INSTANCE_IMMEDIATE: { RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base); ERR_CONTINUE(!im); _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass); } break; default: { } } } } static const GLenum gl_primitive[] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) { // material parameters state.scene_shader.set_custom_shader(p_material->shader->custom_code_id); if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color); } if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); } bool shader_rebind = state.scene_shader.bind(); if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) { glDisable(GL_DEPTH_TEST); } else { glEnable(GL_DEPTH_TEST); } switch (p_material->shader->spatial.depth_draw_mode) { case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS: case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: { glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture); } break; case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: { glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture); } break; case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: { glDepthMask(GL_FALSE); } break; } switch (p_material->shader->spatial.cull_mode) { case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED: { glDisable(GL_CULL_FACE); } break; case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_BACK: { glEnable(GL_CULL_FACE); glCullFace(p_reverse_cull ? GL_FRONT : GL_BACK); } break; case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT: { glEnable(GL_CULL_FACE); glCullFace(p_reverse_cull ? GL_BACK : GL_FRONT); } break; } int tc = p_material->textures.size(); const Pair *textures = p_material->textures.ptr(); const ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptr(); state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size); state.current_main_tex = 0; for (int i = 0; i < tc; i++) { glActiveTexture(GL_TEXTURE0 + i); RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second); if (!t) { switch (texture_hints[i]) { case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: { glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex); } break; default: { glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex); } break; } continue; } if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies VisualServerRaster::redraw_request(); } t = t->get_ptr(); #ifdef TOOLS_ENABLED if (t->detect_3d) { t->detect_3d(t->detect_3d_ud); } #endif #ifdef TOOLS_ENABLED if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) { t->detect_normal(t->detect_normal_ud); } #endif if (t->render_target) t->render_target->used_in_frame = true; glBindTexture(t->target, t->tex_id); if (i == 0) { state.current_main_tex = t->tex_id; } } state.scene_shader.use_material((void *)p_material); return shader_rebind; } void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) { switch (p_element->instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES2::Surface *s = static_cast(p_element->geometry); glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); if (s->index_array_len > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); } for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (s->attribs[i].enabled) { glEnableVertexAttribArray(i); glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset)); } else { glDisableVertexAttribArray(i); switch (i) { case VS::ARRAY_NORMAL: { glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); } break; case VS::ARRAY_COLOR: { glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); } break; default: { } } } } bool clear_skeleton_buffer = !storage->config.float_texture_supported; if (p_skeleton) { if (storage->config.float_texture_supported) { //use float texture workflow glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1); glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id); } else { //use transform buffer workflow ERR_FAIL_COND(p_skeleton->use_2d); PoolVector &transform_buffer = storage->resources.skeleton_transform_cpu_buffer; if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) { break; // the whole instance has a skeleton, but this surface is not affected by it. } // 3 * vec4 per vertex if (transform_buffer.size() < s->array_len * 12) { transform_buffer.resize(s->array_len * 12); } const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset; const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride; const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset; const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride; { PoolVector::Write write = transform_buffer.write(); float *buffer = write.ptr(); PoolVector::Read vertex_array_read = s->data.read(); const uint8_t *vertex_data = vertex_array_read.ptr(); for (int i = 0; i < s->array_len; i++) { // do magic size_t bones[4]; float bone_weight[4]; if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) { // read as byte const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride); bones[0] = bones_ptr[0]; bones[1] = bones_ptr[1]; bones[2] = bones_ptr[2]; bones[3] = bones_ptr[3]; } else { // read as short const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride)); bones[0] = bones_ptr[0]; bones[1] = bones_ptr[1]; bones[2] = bones_ptr[2]; bones[3] = bones_ptr[3]; } if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) { // read as float const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); bone_weight[0] = weight_ptr[0]; bone_weight[1] = weight_ptr[1]; bone_weight[2] = weight_ptr[2]; bone_weight[3] = weight_ptr[3]; } else { // read as half const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride)); bone_weight[0] = (weight_ptr[0] / (float)0xFFFF); bone_weight[1] = (weight_ptr[1] / (float)0xFFFF); bone_weight[2] = (weight_ptr[2] / (float)0xFFFF); bone_weight[3] = (weight_ptr[3] / (float)0xFFFF); } Transform transform; Transform bone_transforms[4] = { storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]), storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]), storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]), storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]), }; transform.origin = bone_weight[0] * bone_transforms[0].origin + bone_weight[1] * bone_transforms[1].origin + bone_weight[2] * bone_transforms[2].origin + bone_weight[3] * bone_transforms[3].origin; transform.basis = bone_transforms[0].basis * bone_weight[0] + bone_transforms[1].basis * bone_weight[1] + bone_transforms[2].basis * bone_weight[2] + bone_transforms[3].basis * bone_weight[3]; float row[3][4] = { { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] }, { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] }, { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] }, }; size_t transform_buffer_offset = i * 12; copymem(&buffer[transform_buffer_offset], row, sizeof(row)); } } storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12); //enable transform buffer and bind it glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0); glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1); glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2); glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0)); glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1)); glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2)); clear_skeleton_buffer = false; } } if (clear_skeleton_buffer) { glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); } } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES2::Surface *s = static_cast(p_element->geometry); glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id); if (s->index_array_len > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); } for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { if (s->attribs[i].enabled) { glEnableVertexAttribArray(i); glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset)); } else { glDisableVertexAttribArray(i); switch (i) { case VS::ARRAY_NORMAL: { glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1); } break; case VS::ARRAY_COLOR: { glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); } break; default: { } } } } // prepare multimesh (disable) glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0); glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1); glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2); glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3); glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4); glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0); glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1); glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2); } break; case VS::INSTANCE_IMMEDIATE: { } break; default: { } } } void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) { switch (p_element->instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES2::Surface *s = static_cast(p_element->geometry); // drawing if (s->index_array_len > 0) { glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); storage->info.render.vertices_count += s->index_array_len; } else { glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); storage->info.render.vertices_count += s->array_len; } /* if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) { //clean up after skeleton glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer); glDisableVertexAttribArray(VS::ARRAY_MAX + 0); glDisableVertexAttribArray(VS::ARRAY_MAX + 1); glDisableVertexAttribArray(VS::ARRAY_MAX + 2); glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0); glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0); glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0); } */ } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast(p_element->owner); RasterizerStorageGLES2::Surface *s = static_cast(p_element->geometry); int amount = MIN(multi_mesh->size, multi_mesh->visible_instances); if (amount == -1) { amount = multi_mesh->size; } int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats; int color_ofs = multi_mesh->xform_floats; int custom_data_ofs = color_ofs + multi_mesh->color_floats; // drawing const float *base_buffer = multi_mesh->data.ptr(); for (int i = 0; i < amount; i++) { const float *buffer = base_buffer + i * stride; { glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]); glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]); glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]); } if (multi_mesh->color_floats) { if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) { uint8_t *color_data = (uint8_t *)(buffer + color_ofs); glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0); } else { glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs); } } else { glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0); } if (multi_mesh->custom_data_floats) { if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) { uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs); glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0); } else { glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs); } } if (s->index_array_len > 0) { glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); storage->info.render.vertices_count += s->index_array_len; } else { glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); storage->info.render.vertices_count += s->array_len; } } } break; case VS::INSTANCE_IMMEDIATE: { const RasterizerStorageGLES2::Immediate *im = static_cast(p_element->geometry); if (im->building) { return; } bool restore_tex = false; glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); for (const List::Element *E = im->chunks.front(); E; E = E->next()) { const RasterizerStorageGLES2::Immediate::Chunk &c = E->get(); if (c.vertices.empty()) { continue; } int vertices = c.vertices.size(); uint32_t buf_ofs = 0; storage->info.render.vertices_count += vertices; if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) { RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture); if (t->redraw_if_visible) { VisualServerRaster::redraw_request(); } t = t->get_ptr(); #ifdef TOOLS_ENABLED if (t->detect_3d) { t->detect_3d(t->detect_3d_ud); } #endif if (t->render_target) { t->render_target->used_in_frame = true; } glActiveTexture(GL_TEXTURE0); glBindTexture(t->target, t->tex_id); restore_tex = true; } else if (restore_tex) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, state.current_main_tex); restore_tex = false; } if (!c.normals.empty()) { glEnableVertexAttribArray(VS::ARRAY_NORMAL); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr()); glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs)); buf_ofs += sizeof(Vector3) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_NORMAL); } if (!c.tangents.empty()) { glEnableVertexAttribArray(VS::ARRAY_TANGENT); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr()); glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), CAST_INT_TO_UCHAR_PTR(buf_ofs)); buf_ofs += sizeof(Plane) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TANGENT); } if (!c.colors.empty()) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr()); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), CAST_INT_TO_UCHAR_PTR(buf_ofs)); buf_ofs += sizeof(Color) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (!c.uvs.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr()); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs)); buf_ofs += sizeof(Vector2) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } if (!c.uv2s.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV2); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr()); glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs)); buf_ofs += sizeof(Vector2) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV2); } glEnableVertexAttribArray(VS::ARRAY_VERTEX); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr()); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs)); glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size()); } if (restore_tex) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, state.current_main_tex); restore_tex = false; } } break; default: { } } } void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) { //turn off all by default state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false); state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false); state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false); if (!p_light) { //no light, return off return; } //turn on lighting state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true); switch (p_light->light_ptr->type) { case VS::LIGHT_DIRECTIONAL: { state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true); switch (p_light->light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { //no need } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true); } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true); } break; } state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits); if (!state.render_no_shadows && p_light->light_ptr->shadow) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); if (storage->config.use_rgba_3d_shadows) { glBindTexture(GL_TEXTURE_2D, directional_shadow.color); } else { glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); } state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); } } break; case VS::LIGHT_OMNI: { state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true); if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); if (storage->config.use_rgba_3d_shadows) { glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); } else { glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); } state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); } } break; case VS::LIGHT_SPOT: { state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true); if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true); glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); if (storage->config.use_rgba_3d_shadows) { glBindTexture(GL_TEXTURE_2D, shadow_atlas->color); } else { glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); } state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); } } break; } } void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) { RasterizerStorageGLES2::Light *light_ptr = light->light_ptr; //common parameters float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY]; float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; float sign = light_ptr->negative ? -1 : 1; state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular); Color color = light_ptr->color * sign * energy * Math_PI; state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color); Color shadow_color = light_ptr->shadow_color.to_linear(); state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, shadow_color); //specific parameters switch (light_ptr->type) { case VS::LIGHT_DIRECTIONAL: { //not using inverse for performance, view should be normalized anyway Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); CameraMatrix matrices[4]; if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) { int shadow_count = 0; Color split_offsets; switch (light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { shadow_count = 1; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { shadow_count = 2; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { shadow_count = 4; } break; } for (int k = 0; k < shadow_count; k++) { uint32_t x = light->directional_rect.position.x; uint32_t y = light->directional_rect.position.y; uint32_t width = light->directional_rect.size.x; uint32_t height = light->directional_rect.size.y; if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { width /= 2; height /= 2; if (k == 0) { } else if (k == 1) { x += width; } else if (k == 2) { y += height; } else if (k == 3) { x += width; y += height; } } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { height /= 2; if (k == 0) { } else { y += height; } } split_offsets[k] = light->shadow_transform[k].split; Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size); rectm.set_light_atlas_rect(atlas_rect); CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview; matrices[k] = shadow_mtx; /*Color light_clamp; light_clamp[0] = atlas_rect.position.x; light_clamp[1] = atlas_rect.position.y; light_clamp[2] = atlas_rect.size.x; light_clamp[3] = atlas_rect.size.y;*/ } // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size)); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]); } } break; case VS::LIGHT_OMNI: { Vector3 position = p_view_transform.xform_inv(light->transform.origin); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { uint32_t key = shadow_atlas->shadow_owners[light->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { height /= 2; } else { width /= 2; } Transform proj = (p_view_transform.inverse() * light->transform).inverse(); Color light_clamp; light_clamp[0] = float(x) / atlas_size; light_clamp[1] = float(y) / atlas_size; light_clamp[2] = float(width) / atlas_size; light_clamp[3] = float(height) / atlas_size; state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); } } break; case VS::LIGHT_SPOT: { Vector3 position = p_view_transform.xform_inv(light->transform.origin); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position); Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized(); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction); float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; float range = light_ptr->param[VS::LIGHT_PARAM_RANGE]; float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION]; float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]; angle = Math::cos(Math::deg2rad(angle)); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range); if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) { uint32_t key = shadow_atlas->shadow_owners[light->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size); Color light_clamp; light_clamp[0] = rect.position.x; light_clamp[1] = rect.position.y; light_clamp[2] = rect.size.x; light_clamp[3] = rect.size.y; Transform modelview = (p_view_transform.inverse() * light->transform).inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(rect); CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview; state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size)); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp); } } break; default: { } } } void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) { if (p_refprobe1) { state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity); Color ambient; if (p_refprobe1->probe_ptr->interior) { ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy; ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib; } else if (p_env) { ambient = p_env->ambient_color * p_env->ambient_energy; ambient.a = p_env->ambient_sky_contribution; } state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient); Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse(); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj); } if (p_refprobe2) { state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, p_refprobe2->probe_ptr->interior); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity); Color ambient; if (p_refprobe2->probe_ptr->interior) { ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy; ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib; } else if (p_env) { ambient = p_env->ambient_color * p_env->ambient_energy; ambient.a = p_env->ambient_sky_contribution; } state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient); Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse(); state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj); } } void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); Vector2 viewport_size = state.viewport_size; Vector2 screen_pixel_size = state.screen_pixel_size; bool use_radiance_map = false; if (!p_shadow && p_base_env) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2); glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env); use_radiance_map = true; state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists } bool prev_unshaded = false; bool prev_instancing = false; bool prev_depth_prepass = false; state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); RasterizerStorageGLES2::Material *prev_material = NULL; RasterizerStorageGLES2::Geometry *prev_geometry = NULL; RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL; RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL; Transform view_transform_inverse = p_view_transform.inverse(); CameraMatrix projection_inverse = p_projection.inverse(); bool prev_base_pass = false; LightInstance *prev_light = NULL; bool prev_vertex_lit = false; ReflectionProbeInstance *prev_refprobe_1 = NULL; ReflectionProbeInstance *prev_refprobe_2 = NULL; int prev_blend_mode = -2; //will always catch the first go if (p_alpha_pass) { glEnable(GL_BLEND); } else { glDisable(GL_BLEND); } float fog_max_distance = 0; bool using_fog = false; if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) { state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled); state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled); if (p_env->fog_depth_end > 0) { fog_max_distance = p_env->fog_depth_end; } else { fog_max_distance = p_projection.get_z_far(); } using_fog = true; } RasterizerStorageGLES2::Texture *prev_lightmap = NULL; float lightmap_energy = 1.0; bool prev_use_lightmap_capture = false; storage->info.render.draw_call_count += p_element_count; for (int i = 0; i < p_element_count; i++) { RenderList::Element *e = p_elements[i]; RasterizerStorageGLES2::Material *material = e->material; bool rebind = false; bool accum_pass = *e->use_accum_ptr; *e->use_accum_ptr = true; //set to accum for next time this is found LightInstance *light = NULL; ReflectionProbeInstance *refprobe_1 = NULL; ReflectionProbeInstance *refprobe_2 = NULL; RasterizerStorageGLES2::Texture *lightmap = NULL; bool use_lightmap_capture = false; bool rebind_light = false; bool rebind_reflection = false; bool rebind_lightmap = false; if (!p_shadow) { bool unshaded = material->shader->spatial.unshaded; if (unshaded != prev_unshaded) { rebind = true; if (unshaded) { state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false); } else { state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map); } prev_unshaded = unshaded; } bool depth_prepass = false; if (!p_alpha_pass && material->shader && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { depth_prepass = true; } if (depth_prepass != prev_depth_prepass) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass); prev_depth_prepass = depth_prepass; rebind = true; } bool base_pass = !accum_pass && !unshaded; //conditions for a base pass if (base_pass != prev_base_pass) { state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass); rebind = true; prev_base_pass = base_pass; } if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) { light = render_light_instances[e->light_index]; } if (light != prev_light) { _setup_light_type(light, shadow_atlas); rebind = true; rebind_light = true; } int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix if (accum_pass) { //accum pass force pass blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD; } if (prev_blend_mode != blend_mode) { if (prev_blend_mode == -1 && blend_mode != -1) { //does blend glEnable(GL_BLEND); } else if (blend_mode == -1 && prev_blend_mode != -1) { //do not blend glDisable(GL_BLEND); } switch (blend_mode) { //-1 not handled because not blend is enabled anyway case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); } break; case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; } prev_blend_mode = blend_mode; } //condition to enable vertex lighting on this object bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog if (vertex_lit != prev_vertex_lit) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit); prev_vertex_lit = vertex_lit; } if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) { ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count); refprobe_1 = reflection_probe_instances[e->refprobe_0_index]; } if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) { ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count); refprobe_2 = reflection_probe_instances[e->refprobe_1_index]; } if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL); state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL); if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap); } if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6); glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap); } rebind = true; rebind_reflection = true; } use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty(); if (use_lightmap_capture != prev_use_lightmap_capture) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture); rebind = true; } if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) { lightmap = storage->texture_owner.getornull(e->instance->lightmap); lightmap_energy = 1.0; if (lightmap) { RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base); if (capture) { lightmap_energy = capture->energy; } } } if (lightmap != prev_lightmap) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL); if (lightmap != NULL) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, lightmap->tex_id); } rebind = true; rebind_lightmap = true; } } bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH; if (instancing != prev_instancing) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing); rebind = true; } RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton); if (skeleton != prev_skeleton) { if (skeleton) { state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true); state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported); } else { state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false); } rebind = true; } if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) { _setup_geometry(e, skeleton); storage->info.render.surface_switch_count++; } bool shader_rebind = false; if (rebind || material != prev_material) { storage->info.render.material_switch_count++; shader_rebind = _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0)); if (shader_rebind) { storage->info.render.shader_rebind_count++; } } if (i == 0 || shader_rebind) { //first time must rebind if (p_shadow) { state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias); if (state.shadow_is_dual_parabolloid) { state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction); state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar); } } else { if (use_radiance_map) { if (p_env) { Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0)); state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform); } else { // would be a bit weird if we don't have this... state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform); } } if (p_env) { state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy); } else { state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient); state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0); } //rebind all these rebind_light = true; rebind_reflection = true; rebind_lightmap = true; if (using_fog) { state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color); Color sun_color_amount = p_env->fog_sun_color; sun_color_amount.a = p_env->fog_sun_amount; state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve); if (p_env->fog_depth_enabled) { state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance); } if (p_env->fog_height_enabled) { state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max); state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve); } } } state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform); state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse); state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection); state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse); state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]); state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size); state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size); } if (rebind_light && light) { _setup_light(light, shadow_atlas, p_view_transform); } if (rebind_reflection && (refprobe_1 || refprobe_2)) { _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env); } if (rebind_lightmap && lightmap) { state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy); } state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform); if (skeleton) { state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_IN_WORLD_COORDS, skeleton->use_world_transform); state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM, skeleton->world_transform); state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM_INVERSE, skeleton->world_transform_inverse); } if (use_lightmap_capture) { //this is per instance, must be set always if present glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr()); state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false); } _render_geometry(e); prev_geometry = e->geometry; prev_owner = e->owner; prev_material = material; prev_skeleton = skeleton; prev_instancing = instancing; prev_light = light; prev_refprobe_1 = refprobe_1; prev_refprobe_2 = refprobe_2; prev_lightmap = lightmap; prev_use_lightmap_capture = use_lightmap_capture; } _setup_light_type(NULL, NULL); //clear light stuff state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false); state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false); state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false); state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false); state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, false); } void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) { ERR_FAIL_COND(!p_sky); RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama); ERR_FAIL_COND(!tex); glActiveTexture(GL_TEXTURE0); glBindTexture(tex->target, tex->tex_id); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); // Camera CameraMatrix camera; if (p_custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } float flip_sign = p_vflip ? -1 : 1; // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR). // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced. // It also means the uv coordinates are ignored in this mode and we don't need our loop. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0)); Vector3 vertices[8] = { Vector3(-1, -1 * flip_sign, 1), Vector3(0, 1, 0), Vector3(1, -1 * flip_sign, 1), Vector3(1, 1, 0), Vector3(1, 1 * flip_sign, 1), Vector3(1, 0, 0), Vector3(-1, 1 * flip_sign, 1), Vector3(0, 0, 0), }; if (!asymmetrical) { float vw, vh, zn; camera.get_viewport_size(vw, vh); zn = p_projection.get_z_near(); for (int i = 0; i < 4; i++) { Vector3 uv = vertices[i * 2 + 1]; uv.x = (uv.x * 2.0 - 1.0) * vw; uv.y = -(uv.y * 2.0 - 1.0) * vh; uv.z = -zn; vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized(); vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z; } } glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices); // bind sky vertex array.... glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0); glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, CAST_INT_TO_UCHAR_PTR(sizeof(Vector3))); glEnableVertexAttribArray(VS::ARRAY_VERTEX); glEnableVertexAttribArray(VS::ARRAY_TEX_UV); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); storage->shaders.copy.bind(); storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy); // don't know why but I always have problems setting a uniform mat3, so we're using a transform storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse()); if (asymmetrical) { // pack the bits we need from our projection matrix storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]); ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform); } glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glDisableVertexAttribArray(VS::ARRAY_VERTEX); glDisableVertexAttribArray(VS::ARRAY_TEX_UV); glBindBuffer(GL_ARRAY_BUFFER, 0); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); } void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { Transform cam_transform = p_cam_transform; storage->info.render.object_count += p_cull_count; GLuint current_fb = 0; Environment *env = NULL; int viewport_width, viewport_height; int viewport_x, viewport_y; bool probe_interior = false; bool reverse_cull = false; if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) { cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1)); reverse_cull = true; } if (p_reflection_probe.is_valid()) { ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); ERR_FAIL_COND(!probe); state.render_no_shadows = !probe->probe_ptr->enable_shadows; if (!probe->probe_ptr->interior) { //use env only if not interior env = environment_owner.getornull(p_environment); } current_fb = probe->fbo[p_reflection_probe_pass]; viewport_width = probe->probe_ptr->resolution; viewport_height = probe->probe_ptr->resolution; probe_interior = probe->probe_ptr->interior; } else { state.render_no_shadows = false; if (storage->frame.current_rt->external.fbo != 0) { current_fb = storage->frame.current_rt->external.fbo; } else { if (storage->frame.current_rt->multisample_active) { current_fb = storage->frame.current_rt->multisample_fbo; } else { current_fb = storage->frame.current_rt->fbo; } } env = environment_owner.getornull(p_environment); viewport_width = storage->frame.current_rt->width; viewport_height = storage->frame.current_rt->height; viewport_x = storage->frame.current_rt->x; if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { viewport_y = OS::get_singleton()->get_window_size().height - viewport_height - storage->frame.current_rt->y; } else { viewport_y = storage->frame.current_rt->y; } } state.used_screen_texture = false; state.viewport_size.x = viewport_width; state.viewport_size.y = viewport_height; state.screen_pixel_size.x = 1.0 / viewport_width; state.screen_pixel_size.y = 1.0 / viewport_height; //push back the directional lights if (p_light_cull_count) { //hardcoded limit of 256 lights render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count); render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count); render_directional_lights = 0; //doing this because directional lights are at the end, put them at the beginning int index = 0; for (int i = render_light_instance_count - 1; i >= 0; i--) { RID light_rid = p_light_cull_result[i]; LightInstance *light = light_instance_owner.getornull(light_rid); if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) { render_directional_lights++; //as going in reverse, directional lights are always first anyway } light->light_index = index; render_light_instances[index] = light; index++; } } else { render_light_instances = NULL; render_directional_lights = 0; render_light_instance_count = 0; } if (p_reflection_probe_cull_count) { reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count); reflection_probe_count = p_reflection_probe_cull_count; for (int i = 0; i < p_reflection_probe_cull_count; i++) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]); ERR_CONTINUE(!rpi); rpi->last_pass = render_pass + 1; //will be incremented later rpi->index = i; reflection_probe_instances[i] = rpi; } } else { reflection_probe_instances = NULL; reflection_probe_count = 0; } // render list stuff render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, false, false); // other stuff glBindFramebuffer(GL_FRAMEBUFFER, current_fb); glViewport(viewport_x, viewport_y, viewport_width, viewport_height); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { glScissor(viewport_x, viewport_y, viewport_width, viewport_height); glEnable(GL_SCISSOR_TEST); } glDepthFunc(GL_LEQUAL); glDepthMask(GL_TRUE); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); // clear color Color clear_color(0, 0, 0, 1); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { clear_color = Color(0, 0, 0, 0); storage->frame.clear_request = false; } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) { if (storage->frame.clear_request) { clear_color = storage->frame.clear_request_color; storage->frame.clear_request = false; } } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) { clear_color = env->bg_color; storage->frame.clear_request = false; } else { storage->frame.clear_request = false; } if (!env || env->bg_mode != VS::ENV_BG_KEEP) { glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a); } state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) { glDisable(GL_SCISSOR_TEST); } glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // render sky RasterizerStorageGLES2::Sky *sky = NULL; GLuint env_radiance_tex = 0; if (env) { switch (env->bg_mode) { case VS::ENV_BG_COLOR_SKY: case VS::ENV_BG_SKY: { sky = storage->sky_owner.getornull(env->sky); if (sky) { env_radiance_tex = sky->radiance; } } break; default: { // FIXME: implement other background modes } break; } } if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) { if (sky && sky->panorama.is_valid()) { _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation); } } if (probe_interior) { env_radiance_tex = 0; //do not use radiance texture on interiors state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior } // render opaque things first render_list.sort_by_key(false); _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false); if (storage->frame.current_rt && state.used_screen_texture) { //copy screen texture if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) { // Resolve framebuffer to front buffer before copying #ifdef GLES_OVER_GL glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); #elif IPHONE_ENABLED glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glResolveMultisampleFramebufferAPPLE(); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); #else // In GLES2 Blit is not available, so just copy color texture manually _copy_texture_to_front_buffer(storage->frame.current_rt->multisample_color); #endif } storage->canvas->_copy_screen(Rect2()); if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) { // Rebind the current framebuffer glBindFramebuffer(GL_FRAMEBUFFER, current_fb); glViewport(0, 0, viewport_width, viewport_height); } } // alpha pass glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); render_list.sort_by_reverse_depth_and_priority(true); _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false); glDisable(GL_DEPTH_TEST); if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) { #ifdef GLES_OVER_GL glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); #else // In GLES2 Blit is not available, so just copy color texture manually _copy_texture_to_front_buffer(storage->frame.current_rt->multisample_color); #endif } //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); if (shadow_atlas) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); storage->shaders.copy.bind(); storage->_copy_screen(); } #endif //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW if (true) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false); storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false); storage->shaders.copy.bind(); storage->_copy_screen(); } #endif } void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { state.render_no_shadows = false; LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); RasterizerStorageGLES2::Light *light = light_instance->light_ptr; ERR_FAIL_COND(!light); uint32_t x; uint32_t y; uint32_t width; uint32_t height; float zfar = 0; bool flip_facing = false; int custom_vp_size = 0; GLuint fbo = 0; state.shadow_is_dual_parabolloid = false; state.dual_parbolloid_direction = 0.0; int current_cubemap = -1; float bias = 0; float normal_bias = 0; CameraMatrix light_projection; Transform light_transform; // TODO directional light if (light->type == VS::LIGHT_DIRECTIONAL) { // set pssm stuff // TODO set this only when changed light_instance->light_directional_index = directional_shadow.current_light; light_instance->last_scene_shadow_pass = scene_pass; directional_shadow.current_light++; if (directional_shadow.light_count == 1) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size); } else if (directional_shadow.light_count == 2) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2); if (light_instance->light_directional_index == 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } } else { //3 and 4 light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2); if (light_instance->light_directional_index & 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } if (light_instance->light_directional_index / 2) { light_instance->directional_rect.position.y += light_instance->directional_rect.size.y; } } light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; x = light_instance->directional_rect.position.x; y = light_instance->directional_rect.position.y; width = light_instance->directional_rect.size.width; height = light_instance->directional_rect.size.height; if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { width /= 2; height /= 2; if (p_pass == 0) { } else if (p_pass == 1) { x += width; } else if (p_pass == 2) { y += height; } else if (p_pass == 3) { x += width; y += height; } } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { height /= 2; if (p_pass == 0) { } else { y += height; } } float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]); zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult; normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult; fbo = directional_shadow.fbo; } else { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); fbo = shadow_atlas->fbo; uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; x = (quadrant & 1) * quadrant_size; y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; width = shadow_size; height = shadow_size; if (light->type == VS::LIGHT_OMNI) { // cubemap only if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) { int cubemap_index = shadow_cubemaps.size() - 1; // find an appropriate cubemap to render to for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) { if (shadow_cubemaps[i].size > shadow_size * 2) { break; } cubemap_index = i; } fbo = shadow_cubemaps[cubemap_index].fbo[p_pass]; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; custom_vp_size = shadow_cubemaps[cubemap_index].size; zfar = light->param[VS::LIGHT_PARAM_RANGE]; current_cubemap = cubemap_index; } else { //dual parabolloid state.shadow_is_dual_parabolloid = true; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { height /= 2; y += p_pass * height; } else { width /= 2; x += p_pass * width; } state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0; flip_facing = (p_pass == 1); zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; state.dual_parbolloid_zfar = zfar; state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true); } } else if (light->type == VS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; flip_facing = false; zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS]; } } render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, true, true); render_list.sort_by_depth(false); glDisable(GL_BLEND); glDisable(GL_DITHER); glEnable(GL_DEPTH_TEST); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glDepthMask(GL_TRUE); if (!storage->config.use_rgba_3d_shadows) { glColorMask(0, 0, 0, 0); } if (custom_vp_size) { glViewport(0, 0, custom_vp_size, custom_vp_size); glScissor(0, 0, custom_vp_size, custom_vp_size); } else { glViewport(x, y, width, height); glScissor(x, y, width, height); } glEnable(GL_SCISSOR_TEST); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); if (light->reverse_cull) { flip_facing = !flip_facing; } state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true); _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true); state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false); state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false); // convert cubemap to dual paraboloid if needed if (light->type == VS::LIGHT_OMNI && (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) && p_pass == 5) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); state.cube_to_dp_shader.bind(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap); glDisable(GL_CULL_FACE); for (int i = 0; i < 2; i++) { state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near()); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far()); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]); uint32_t local_width = width; uint32_t local_height = height; uint32_t local_x = x; uint32_t local_y = y; if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { local_height /= 2; local_y += i * local_height; } else { local_width /= 2; local_x += i * local_width; } glViewport(local_x, local_y, local_width, local_height); glScissor(local_x, local_y, local_width, local_height); glEnable(GL_SCISSOR_TEST); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); storage->_copy_screen(); } } if (storage->frame.current_rt) { glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } if (!storage->config.use_rgba_3d_shadows) { glColorMask(1, 1, 1, 1); } } void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } bool RasterizerSceneGLES2::free(RID p_rid) { if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getptr(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); memdelete(light_instance); } else if (shadow_atlas_owner.owns(p_rid)) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid); shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); memdelete(shadow_atlas); } else if (reflection_probe_instance_owner.owns(p_rid)) { ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid); for (int i = 0; i < 6; i++) { glDeleteFramebuffers(1, &reflection_instance->fbo[i]); glDeleteTextures(1, &reflection_instance->color[i]); } if (reflection_instance->cubemap != 0) { glDeleteTextures(1, &reflection_instance->cubemap); } glDeleteRenderbuffers(1, &reflection_instance->depth); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); memdelete(reflection_instance); } else { return false; } return true; } void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) { } void RasterizerSceneGLES2::initialize() { state.scene_shader.init(); state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows); state.cube_to_dp_shader.init(); render_list.init(); render_pass = 1; shadow_atlas_realloc_tolerance_msec = 500; { //default material and shader default_shader = storage->shader_create(); storage->shader_set_code(default_shader, "shader_type spatial;\n"); default_material = storage->material_create(); storage->material_set_shader(default_material, default_shader); default_shader_twosided = storage->shader_create(); default_material_twosided = storage->material_create(); storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n"); storage->material_set_shader(default_material_twosided, default_shader_twosided); } { default_worldcoord_shader = storage->shader_create(); storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n"); default_worldcoord_material = storage->material_create(); storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader); default_worldcoord_shader_twosided = storage->shader_create(); default_worldcoord_material_twosided = storage->material_create(); storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n"); storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided); } { //default material and shader default_overdraw_shader = storage->shader_create(); storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }"); default_overdraw_material = storage->material_create(); storage->material_set_shader(default_overdraw_material, default_overdraw_shader); } { glGenBuffers(1, &state.sky_verts); glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } { uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048); ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater")); glGenBuffers(1, &state.immediate_buffer); glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } // cubemaps for shadows if (storage->config.support_shadow_cubemaps) { //not going to be used int max_shadow_cubemap_sampler_size = 512; int cube_size = max_shadow_cubemap_sampler_size; glActiveTexture(GL_TEXTURE0); while (cube_size >= 32) { ShadowCubeMap cube; cube.size = cube_size; glGenTextures(1, &cube.cubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap); for (int i = 0; i < 6; i++) { glTexImage2D(_cube_side_enum[i], 0, storage->config.depth_internalformat, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenFramebuffers(6, cube.fbo); for (int i = 0; i < 6; i++) { glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0); } shadow_cubemaps.push_back(cube); cube_size >>= 1; } } { // directional shadows directional_shadow.light_count = 0; directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size")); glGenFramebuffers(1, &directional_shadow.fbo); glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo); if (storage->config.use_rgba_3d_shadows) { //maximum compatibility, renderbuffer and RGBA shadow glGenRenderbuffers(1, &directional_shadow.depth); glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth); glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, directional_shadow.depth); glGenTextures(1, &directional_shadow.color); glBindTexture(GL_TEXTURE_2D, directional_shadow.color); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0); } else { //just a depth buffer glGenTextures(1, &directional_shadow.depth); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0); } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { ERR_PRINT("Directional shadow framebuffer status invalid"); } } shadow_filter_mode = SHADOW_FILTER_NEAREST; glFrontFace(GL_CW); } void RasterizerSceneGLES2::iteration() { shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode"))); } void RasterizerSceneGLES2::finalize() { } RasterizerSceneGLES2::RasterizerSceneGLES2() { }