// Copyright 2022 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Gamma correction utilities. #include "sharpyuv/sharpyuv_gamma.h" #include #include #include #include "src/webp/types.h" // Gamma correction compensates loss of resolution during chroma subsampling. // Size of pre-computed table for converting from gamma to linear. #define GAMMA_TO_LINEAR_TAB_BITS 10 #define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS) static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2]; #define LINEAR_TO_GAMMA_TAB_BITS 9 #define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS) static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2]; // -- GODOT start -- #if defined(_MSC_VER) static const double kGammaF = 2.222222222222222; #else static const double kGammaF = 1. / 0.45; #endif // -- GODOT end -- #define GAMMA_TO_LINEAR_BITS 16 static volatile int kGammaTablesSOk = 0; void SharpYuvInitGammaTables(void) { assert(GAMMA_TO_LINEAR_BITS <= 16); if (!kGammaTablesSOk) { int v; const double a = 0.09929682680944; const double thresh = 0.018053968510807; const double final_scale = 1 << GAMMA_TO_LINEAR_BITS; // Precompute gamma to linear table. { const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE; const double a_rec = 1. / (1. + a); for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) { const double g = norm * v; double value; if (g <= thresh * 4.5) { value = g / 4.5; } else { value = pow(a_rec * (g + a), kGammaF); } kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5); } // to prevent small rounding errors to cause read-overflow: kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] = kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE]; } // Precompute linear to gamma table. { const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE; for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) { const double g = scale * v; double value; if (g <= thresh) { value = 4.5 * g; } else { value = (1. + a) * pow(g, 1. / kGammaF) - a; } kLinearToGammaTabS[v] = (uint32_t)(final_scale * value + 0.5); } // to prevent small rounding errors to cause read-overflow: kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] = kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE]; } kGammaTablesSOk = 1; } } static WEBP_INLINE int Shift(int v, int shift) { return (shift >= 0) ? (v << shift) : (v >> -shift); } static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab, int tab_pos_shift_right, int tab_value_shift) { const uint32_t tab_pos = Shift(v, -tab_pos_shift_right); // fractional part, in 'tab_pos_shift' fixed-point precision const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part // v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1]) const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift); const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift); // Final interpolation. const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0. const int half = (tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0; const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right); return result; } static uint32_t ToLinearSrgb(uint16_t v, int bit_depth) { const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth; if (shift > 0) { return kGammaToLinearTabS[v << shift]; } return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0); } static uint16_t FromLinearSrgb(uint32_t value, int bit_depth) { return FixedPointInterpolation( value, kLinearToGammaTabS, (GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS), bit_depth - GAMMA_TO_LINEAR_BITS); } //////////////////////////////////////////////////////////////////////////////// #define CLAMP(x, low, high) \ (((x) < (low)) ? (low) : (((high) < (x)) ? (high) : (x))) #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #define MAX(a, b) (((a) > (b)) ? (a) : (b)) static WEBP_INLINE float Roundf(float x) { if (x < 0) return (float)ceil((double)(x - 0.5f)); else return (float)floor((double)(x + 0.5f)); } static WEBP_INLINE float Powf(float base, float exp) { return (float)pow((double)base, (double)exp); } static WEBP_INLINE float Log10f(float x) { return (float)log10((double)x); } static float ToLinear709(float gamma) { if (gamma < 0.f) { return 0.f; } else if (gamma < 4.5f * 0.018053968510807f) { return gamma / 4.5f; } else if (gamma < 1.f) { return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f); } return 1.f; } static float FromLinear709(float linear) { if (linear < 0.f) { return 0.f; } else if (linear < 0.018053968510807f) { return linear * 4.5f; } else if (linear < 1.f) { return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f; } return 1.f; } static float ToLinear470M(float gamma) { return Powf(CLAMP(gamma, 0.f, 1.f), 2.2f); } static float FromLinear470M(float linear) { return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.2f); } static float ToLinear470Bg(float gamma) { return Powf(CLAMP(gamma, 0.f, 1.f), 2.8f); } static float FromLinear470Bg(float linear) { return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.8f); } static float ToLinearSmpte240(float gamma) { if (gamma < 0.f) { return 0.f; } else if (gamma < 4.f * 0.022821585529445f) { return gamma / 4.f; } else if (gamma < 1.f) { return Powf((gamma + 0.111572195921731f) / 1.111572195921731f, 1.f / 0.45f); } return 1.f; } static float FromLinearSmpte240(float linear) { if (linear < 0.f) { return 0.f; } else if (linear < 0.022821585529445f) { return linear * 4.f; } else if (linear < 1.f) { return 1.111572195921731f * Powf(linear, 0.45f) - 0.111572195921731f; } return 1.f; } static float ToLinearLog100(float gamma) { // The function is non-bijective so choose the middle of [0, 0.01]. const float mid_interval = 0.01f / 2.f; return (gamma <= 0.0f) ? mid_interval : Powf(10.0f, 2.f * (MIN(gamma, 1.f) - 1.0f)); } static float FromLinearLog100(float linear) { return (linear < 0.01f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.0f; } static float ToLinearLog100Sqrt10(float gamma) { // The function is non-bijective so choose the middle of [0, 0.00316227766f[. const float mid_interval = 0.00316227766f / 2.f; return (gamma <= 0.0f) ? mid_interval : Powf(10.0f, 2.5f * (MIN(gamma, 1.f) - 1.0f)); } static float FromLinearLog100Sqrt10(float linear) { return (linear < 0.00316227766f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.5f; } static float ToLinearIec61966(float gamma) { if (gamma <= -4.5f * 0.018053968510807f) { return Powf((-gamma + 0.09929682680944f) / -1.09929682680944f, 1.f / 0.45f); } else if (gamma < 4.5f * 0.018053968510807f) { return gamma / 4.5f; } return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f); } static float FromLinearIec61966(float linear) { if (linear <= -0.018053968510807f) { return -1.09929682680944f * Powf(-linear, 0.45f) + 0.09929682680944f; } else if (linear < 0.018053968510807f) { return linear * 4.5f; } return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f; } static float ToLinearBt1361(float gamma) { if (gamma < -0.25f) { return -0.25f; } else if (gamma < 0.f) { return Powf((gamma - 0.02482420670236f) / -0.27482420670236f, 1.f / 0.45f) / -4.f; } else if (gamma < 4.5f * 0.018053968510807f) { return gamma / 4.5f; } else if (gamma < 1.f) { return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f); } return 1.f; } static float FromLinearBt1361(float linear) { if (linear < -0.25f) { return -0.25f; } else if (linear < 0.f) { return -0.27482420670236f * Powf(-4.f * linear, 0.45f) + 0.02482420670236f; } else if (linear < 0.018053968510807f) { return linear * 4.5f; } else if (linear < 1.f) { return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f; } return 1.f; } static float ToLinearPq(float gamma) { if (gamma > 0.f) { const float pow_gamma = Powf(gamma, 32.f / 2523.f); const float num = MAX(pow_gamma - 107.f / 128.f, 0.0f); const float den = MAX(2413.f / 128.f - 2392.f / 128.f * pow_gamma, FLT_MIN); return Powf(num / den, 4096.f / 653.f); } return 0.f; } static float FromLinearPq(float linear) { if (linear > 0.f) { const float pow_linear = Powf(linear, 653.f / 4096.f); const float num = 107.f / 128.f + 2413.f / 128.f * pow_linear; const float den = 1.0f + 2392.f / 128.f * pow_linear; return Powf(num / den, 2523.f / 32.f); } return 0.f; } static float ToLinearSmpte428(float gamma) { return Powf(MAX(gamma, 0.f), 2.6f) / 0.91655527974030934f; } static float FromLinearSmpte428(float linear) { return Powf(0.91655527974030934f * MAX(linear, 0.f), 1.f / 2.6f); } // Conversion in BT.2100 requires RGB info. Simplify to gamma correction here. static float ToLinearHlg(float gamma) { if (gamma < 0.f) { return 0.f; } else if (gamma <= 0.5f) { return Powf((gamma * gamma) * (1.f / 3.f), 1.2f); } return Powf((expf((gamma - 0.55991073f) / 0.17883277f) + 0.28466892f) / 12.0f, 1.2f); } static float FromLinearHlg(float linear) { linear = Powf(linear, 1.f / 1.2f); if (linear < 0.f) { return 0.f; } else if (linear <= (1.f / 12.f)) { return sqrtf(3.f * linear); } return 0.17883277f * logf(12.f * linear - 0.28466892f) + 0.55991073f; } uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth, SharpYuvTransferFunctionType transfer_type) { float v_float, linear; if (transfer_type == kSharpYuvTransferFunctionSrgb) { return ToLinearSrgb(v, bit_depth); } v_float = (float)v / ((1 << bit_depth) - 1); switch (transfer_type) { case kSharpYuvTransferFunctionBt709: case kSharpYuvTransferFunctionBt601: case kSharpYuvTransferFunctionBt2020_10Bit: case kSharpYuvTransferFunctionBt2020_12Bit: linear = ToLinear709(v_float); break; case kSharpYuvTransferFunctionBt470M: linear = ToLinear470M(v_float); break; case kSharpYuvTransferFunctionBt470Bg: linear = ToLinear470Bg(v_float); break; case kSharpYuvTransferFunctionSmpte240: linear = ToLinearSmpte240(v_float); break; case kSharpYuvTransferFunctionLinear: return v; case kSharpYuvTransferFunctionLog100: linear = ToLinearLog100(v_float); break; case kSharpYuvTransferFunctionLog100_Sqrt10: linear = ToLinearLog100Sqrt10(v_float); break; case kSharpYuvTransferFunctionIec61966: linear = ToLinearIec61966(v_float); break; case kSharpYuvTransferFunctionBt1361: linear = ToLinearBt1361(v_float); break; case kSharpYuvTransferFunctionSmpte2084: linear = ToLinearPq(v_float); break; case kSharpYuvTransferFunctionSmpte428: linear = ToLinearSmpte428(v_float); break; case kSharpYuvTransferFunctionHlg: linear = ToLinearHlg(v_float); break; default: assert(0); linear = 0; break; } return (uint32_t)Roundf(linear * ((1 << 16) - 1)); } uint16_t SharpYuvLinearToGamma(uint32_t v, int bit_depth, SharpYuvTransferFunctionType transfer_type) { float v_float, linear; if (transfer_type == kSharpYuvTransferFunctionSrgb) { return FromLinearSrgb(v, bit_depth); } v_float = (float)v / ((1 << 16) - 1); switch (transfer_type) { case kSharpYuvTransferFunctionBt709: case kSharpYuvTransferFunctionBt601: case kSharpYuvTransferFunctionBt2020_10Bit: case kSharpYuvTransferFunctionBt2020_12Bit: linear = FromLinear709(v_float); break; case kSharpYuvTransferFunctionBt470M: linear = FromLinear470M(v_float); break; case kSharpYuvTransferFunctionBt470Bg: linear = FromLinear470Bg(v_float); break; case kSharpYuvTransferFunctionSmpte240: linear = FromLinearSmpte240(v_float); break; case kSharpYuvTransferFunctionLinear: return v; case kSharpYuvTransferFunctionLog100: linear = FromLinearLog100(v_float); break; case kSharpYuvTransferFunctionLog100_Sqrt10: linear = FromLinearLog100Sqrt10(v_float); break; case kSharpYuvTransferFunctionIec61966: linear = FromLinearIec61966(v_float); break; case kSharpYuvTransferFunctionBt1361: linear = FromLinearBt1361(v_float); break; case kSharpYuvTransferFunctionSmpte2084: linear = FromLinearPq(v_float); break; case kSharpYuvTransferFunctionSmpte428: linear = FromLinearSmpte428(v_float); break; case kSharpYuvTransferFunctionHlg: linear = FromLinearHlg(v_float); break; default: assert(0); linear = 0; break; } return (uint16_t)Roundf(linear * ((1 << bit_depth) - 1)); }