/*************************************************************************/ /* collision_solver_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_sw.h" #include "collision_solver_sat.h" #include "collision_solver_sat.h" #include "gjk_epa.h" #define collision_solver sat_calculate_penetration //#define collision_solver gjk_epa_calculate_penetration bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { const PlaneShapeSW *plane = static_cast(p_shape_A); if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) return false; Plane p = p_transform_A.xform(plane->get_plane()); static const int max_supports = 16; Vector3 supports[max_supports]; int support_count; p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count); bool found = false; for (int i = 0; i < support_count; i++) { supports[i] = p_transform_B.xform(supports[i]); if (p.distance_to(supports[i]) >= 0) continue; found = true; Vector3 support_A = p.project(supports[i]); if (p_result_callback) { if (p_swap_result) p_result_callback(supports[i], support_A, p_userdata); else p_result_callback(support_A, supports[i], p_userdata); } } return found; } bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) { const RayShapeSW *ray = static_cast(p_shape_A); Vector3 from = p_transform_A.origin; Vector3 to = from + p_transform_A.basis.get_axis(2) * ray->get_length(); Vector3 support_A = to; Transform ai = p_transform_B.affine_inverse(); from = ai.xform(from); to = ai.xform(to); Vector3 p, n; if (!p_shape_B->intersect_segment(from, to, p, n)) return false; Vector3 support_B = p_transform_B.xform(p); if (p_result_callback) { if (p_swap_result) p_result_callback(support_B, support_A, p_userdata); else p_result_callback(support_A, support_B, p_userdata); } return true; } struct _ConcaveCollisionInfo { const Transform *transform_A; const ShapeSW *shape_A; const Transform *transform_B; CollisionSolverSW::CallbackResult result_callback; void *userdata; bool swap_result; bool collided; int aabb_tests; int collisions; bool tested; float margin_A; float margin_B; Vector3 close_A, close_B; }; void CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) { _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); cinfo.aabb_tests++; bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, NULL, cinfo.margin_A, cinfo.margin_B); if (!collided) return; cinfo.collided = true; cinfo.collisions++; } bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, float p_margin_A, float p_margin_B) { const ConcaveShapeSW *concave_B = static_cast(p_shape_B); _ConcaveCollisionInfo cinfo; cinfo.transform_A = &p_transform_A; cinfo.shape_A = p_shape_A; cinfo.transform_B = &p_transform_B; cinfo.result_callback = p_result_callback; cinfo.userdata = p_userdata; cinfo.swap_result = p_swap_result; cinfo.collided = false; cinfo.collisions = 0; cinfo.margin_A = p_margin_A; cinfo.margin_B = p_margin_B; cinfo.aabb_tests = 0; Transform rel_transform = p_transform_A; rel_transform.origin -= p_transform_B.origin; //quickly compute a local AABB AABB local_aabb; for (int i = 0; i < 3; i++) { Vector3 axis(p_transform_B.basis.get_axis(i)); float axis_scale = 1.0 / axis.length(); axis *= axis_scale; float smin, smax; p_shape_A->project_range(axis, rel_transform, smin, smax); smin -= p_margin_A; smax += p_margin_A; smin *= axis_scale; smax *= axis_scale; local_aabb.pos[i] = smin; local_aabb.size[i] = smax - smin; } concave_B->cull(local_aabb, concave_callback, &cinfo); //print_line("COL AABB TESTS: "+itos(cinfo.aabb_tests)); return cinfo.collided; } bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, float p_margin_A, float p_margin_B) { PhysicsServer::ShapeType type_A = p_shape_A->get_type(); PhysicsServer::ShapeType type_B = p_shape_B->get_type(); bool concave_A = p_shape_A->is_concave(); bool concave_B = p_shape_B->is_concave(); bool swap = false; if (type_A > type_B) { SWAP(type_A, type_B); SWAP(concave_A, concave_B); swap = true; } if (type_A == PhysicsServer::SHAPE_PLANE) { if (type_B == PhysicsServer::SHAPE_PLANE) return false; if (type_B == PhysicsServer::SHAPE_RAY) { return false; } if (swap) { return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); } else { return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); } } else if (type_A == PhysicsServer::SHAPE_RAY) { if (type_B == PhysicsServer::SHAPE_RAY) return false; if (swap) { return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true); } else { return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false); } } else if (concave_B) { if (concave_A) return false; if (!swap) return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B); else return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B); } else { return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B); } return false; } void CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) { _ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata); cinfo.aabb_tests++; if (cinfo.collided) return; Vector3 close_A, close_B; cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B); if (cinfo.collided) return; if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) { cinfo.close_A = close_A; cinfo.close_B = close_B; cinfo.tested = true; } cinfo.collisions++; } bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) { const PlaneShapeSW *plane = static_cast(p_shape_A); if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) return false; Plane p = p_transform_A.xform(plane->get_plane()); static const int max_supports = 16; Vector3 supports[max_supports]; int support_count; p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count); bool collided = false; Vector3 closest; float closest_d; for (int i = 0; i < support_count; i++) { supports[i] = p_transform_B.xform(supports[i]); real_t d = p.distance_to(supports[i]); if (i == 0 || d < closest_d) { closest = supports[i]; closest_d = d; if (d <= 0) collided = true; } } r_point_A = p.project(closest); r_point_B = closest; return collided; } bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) { if (p_shape_A->is_concave()) return false; if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) { Vector3 a, b; bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b); r_point_A = b; r_point_B = a; return !col; } else if (p_shape_B->is_concave()) { if (p_shape_A->is_concave()) return false; const ConcaveShapeSW *concave_B = static_cast(p_shape_B); _ConcaveCollisionInfo cinfo; cinfo.transform_A = &p_transform_A; cinfo.shape_A = p_shape_A; cinfo.transform_B = &p_transform_B; cinfo.result_callback = NULL; cinfo.userdata = NULL; cinfo.swap_result = false; cinfo.collided = false; cinfo.collisions = 0; cinfo.aabb_tests = 0; cinfo.tested = false; Transform rel_transform = p_transform_A; rel_transform.origin -= p_transform_B.origin; //quickly compute a local AABB bool use_cc_hint = p_concave_hint != AABB(); AABB cc_hint_aabb; if (use_cc_hint) { cc_hint_aabb = p_concave_hint; cc_hint_aabb.pos -= p_transform_B.origin; } AABB local_aabb; for (int i = 0; i < 3; i++) { Vector3 axis(p_transform_B.basis.get_axis(i)); float axis_scale = 1.0 / axis.length(); axis *= axis_scale; float smin, smax; if (use_cc_hint) { cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax); } else { p_shape_A->project_range(axis, rel_transform, smin, smax); } smin *= axis_scale; smax *= axis_scale; local_aabb.pos[i] = smin; local_aabb.size[i] = smax - smin; } concave_B->cull(local_aabb, concave_distance_callback, &cinfo); if (!cinfo.collided) { // print_line(itos(cinfo.tested)); r_point_A = cinfo.close_A; r_point_B = cinfo.close_B; } //print_line("DIST AABB TESTS: "+itos(cinfo.aabb_tests)); return !cinfo.collided; } else { return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis.. } return false; }