/*************************************************************************/ /* rasterizer_canvas_batcher.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZER_CANVAS_BATCHER_H #define RASTERIZER_CANVAS_BATCHER_H #include "core/os/os.h" #include "core/templates/local_vector.h" #include "rasterizer_array.h" #include "rasterizer_asserts.h" #include "rasterizer_storage_common.h" #include "core/config/project_settings.h" #include "servers/rendering/renderer_compositor.h" // We are using the curiously recurring template pattern // https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern // For static polymorphism. // This makes it super easy to access // data / call funcs in the derived rasterizers from the base without writing and // maintaining a boatload of virtual functions. // In addition it assures that vtable will not be used and the function calls can be optimized, // because it gives compile time static polymorphism. // These macros makes it simpler and less verbose to define (and redefine) the inline functions // template preamble #define T_PREAMBLE template // class preamble #define C_PREAMBLE RasterizerCanvasBatcher // generic preamble #define PREAMBLE(RET_T) \ T_PREAMBLE \ RET_T C_PREAMBLE template class RasterizerCanvasBatcher { public: // used to determine whether we use hardware transform (none) // software transform all verts, or software transform just a translate // (no rotate or scale) enum TransformMode { TM_NONE, TM_ALL, TM_TRANSLATE, }; // pod versions of vector and color and RID, need to be 32 bit for vertex format struct BatchVector2 { float x, y; void set(float xx, float yy) { x = xx; y = yy; } void set(const Vector2 &p_o) { x = p_o.x; y = p_o.y; } void to(Vector2 &r_o) const { r_o.x = x; r_o.y = y; } }; struct BatchColor { float r, g, b, a; void set_white() { r = 1.0f; g = 1.0f; b = 1.0f; a = 1.0f; } void set(const Color &p_c) { r = p_c.r; g = p_c.g; b = p_c.b; a = p_c.a; } void set(float rr, float gg, float bb, float aa) { r = rr; g = gg; b = bb; a = aa; } bool operator==(const BatchColor &p_c) const { return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a); } bool operator!=(const BatchColor &p_c) const { return (*this == p_c) == false; } bool equals(const Color &p_c) const { return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a); } const float *get_data() const { return &r; } String to_string() const { String sz = "{"; const float *data = get_data(); for (int c = 0; c < 4; c++) { float f = data[c]; int val = ((f * 255.0f) + 0.5f); sz += String(Variant(val)) + " "; } sz += "}"; return sz; } }; // simplest FVF - local or baked position struct BatchVertex { // must be 32 bit pod BatchVector2 pos; BatchVector2 uv; }; // simple FVF but also incorporating baked color struct BatchVertexColored : public BatchVertex { // must be 32 bit pod BatchColor col; }; // if we are using normal mapping, we need light angles to be sent struct BatchVertexLightAngled : public BatchVertexColored { // must be pod float light_angle; }; // CUSTOM SHADER vertex formats. These are larger but will probably // be needed with custom shaders in order to have the data accessible in the shader. // if we are using COLOR in vertex shader but not position (VERTEX) struct BatchVertexModulated : public BatchVertexLightAngled { BatchColor modulate; }; struct BatchTransform { BatchVector2 translate; BatchVector2 basis[2]; }; // last resort, specially for custom shader, we put everything possible into a huge FVF // not very efficient, but better than no batching at all. struct BatchVertexLarge : public BatchVertexModulated { // must be pod BatchTransform transform; }; // Batch should be as small as possible, and ideally nicely aligned (is 32 bytes at the moment) struct Batch { RasterizerStorageCommon::BatchType type; // should be 16 bit uint16_t batch_texture_id; // also item reference number uint32_t first_command; // in the case of DEFAULT, this is num commands. // with rects, is number of command and rects. // with lines, is number of lines uint32_t num_commands; // first vertex of this batch in the vertex lists uint32_t first_vert; BatchColor color; }; struct BatchTex { enum TileMode : uint32_t { TILE_OFF, TILE_NORMAL, TILE_FORCE_REPEAT, }; RID RID_texture; RID RID_normal; TileMode tile_mode; BatchVector2 tex_pixel_size; uint32_t flags; }; // items in a list to be sorted prior to joining struct BSortItem { // have a function to keep as pod, rather than operator void assign(const BSortItem &o) { item = o.item; z_index = o.z_index; } RendererCanvasRender::Item *item; int z_index; }; // batch item may represent 1 or more items struct BItemJoined { uint32_t first_item_ref; uint32_t num_item_refs; Rect2 bounding_rect; // note the z_index may only be correct for the first of the joined item references // this has implications for light culling with z ranged lights. int16_t z_index; // these are defined in RasterizerStorageCommon::BatchFlags uint16_t flags; // we are always splitting items with lots of commands, // and items with unhandled primitives (default) bool use_hardware_transform() const { return num_item_refs == 1; } }; struct BItemRef { RendererCanvasRender::Item *item; Color final_modulate; }; struct BLightRegion { void reset() { light_bitfield = 0; shadow_bitfield = 0; too_many_lights = false; } uint64_t light_bitfield; uint64_t shadow_bitfield; bool too_many_lights; // we can only do light region optimization if there are 64 or less lights }; struct BatchData { BatchData() { reset_flush(); reset_joined_item(); gl_vertex_buffer = 0; gl_index_buffer = 0; max_quads = 0; vertex_buffer_size_units = 0; vertex_buffer_size_bytes = 0; index_buffer_size_units = 0; index_buffer_size_bytes = 0; use_colored_vertices = false; settings_use_batching = false; settings_max_join_item_commands = 0; settings_colored_vertex_format_threshold = 0.0f; settings_batch_buffer_num_verts = 0; scissor_threshold_area = 0.0f; joined_item_batch_flags = 0; diagnose_frame = false; next_diagnose_tick = 10000; diagnose_frame_number = 9999999999; // some high number join_across_z_indices = true; settings_item_reordering_lookahead = 0; settings_use_batching_original_choice = false; settings_flash_batching = false; settings_diagnose_frame = false; settings_scissor_lights = false; settings_scissor_threshold = -1.0f; settings_use_single_rect_fallback = false; settings_use_software_skinning = true; settings_ninepatch_mode = 0; // default settings_light_max_join_items = 16; settings_uv_contract = false; settings_uv_contract_amount = 0.0f; buffer_mode_batch_upload_send_null = true; buffer_mode_batch_upload_flag_stream = false; stats_items_sorted = 0; stats_light_items_joined = 0; } // called for each joined item void reset_joined_item() { // noop but left in as a stub } // called after each flush void reset_flush() { batches.reset(); batch_textures.reset(); vertices.reset(); light_angles.reset(); vertex_colors.reset(); vertex_modulates.reset(); vertex_transforms.reset(); total_quads = 0; total_verts = 0; total_color_changes = 0; use_light_angles = false; use_modulate = false; use_large_verts = false; fvf = RasterizerStorageCommon::FVF_REGULAR; } unsigned int gl_vertex_buffer; unsigned int gl_index_buffer; uint32_t max_quads; uint32_t vertex_buffer_size_units; uint32_t vertex_buffer_size_bytes; uint32_t index_buffer_size_units; uint32_t index_buffer_size_bytes; // small vertex FVF type - pos and UV. // This will always be written to initially, but can be translated // to larger FVFs if necessary. RasterizerArray vertices; // extra data which can be stored during prefilling, for later translation to larger FVFs RasterizerArray light_angles; RasterizerArray vertex_colors; // these aren't usually used, but are for polys RasterizerArray vertex_modulates; RasterizerArray vertex_transforms; // instead of having a different buffer for each vertex FVF type // we have a special array big enough for the biggest FVF // which can have a changeable unit size, and reuse it. RasterizerUnitArray unit_vertices; RasterizerArray batches; RasterizerArray batches_temp; // used for translating to colored vertex batches RasterizerArray_non_pod batch_textures; // the only reason this is non-POD is because of RIDs // SHOULD THESE BE IN FILLSTATE? // flexible vertex format. // all verts have pos and UV. // some have color, some light angles etc. RasterizerStorageCommon::FVF fvf; bool use_colored_vertices; bool use_light_angles; bool use_modulate; bool use_large_verts; // if the shader is using MODULATE, we prevent baking color so the final_modulate can // be read in the shader. // if the shader is reading VERTEX, we prevent baking vertex positions with extra matrices etc // to prevent the read position being incorrect. // These flags are defined in RasterizerStorageCommon::BatchFlags uint32_t joined_item_batch_flags; RasterizerArray items_joined; RasterizerArray item_refs; // items are sorted prior to joining RasterizerArray sort_items; // new for Godot 4 .. the client outputs a linked list so we need to convert this // to a linear array LocalVector command_shortlist; // counts int total_quads; int total_verts; // we keep a record of how many color changes caused new batches // if the colors are causing an excessive number of batches, we switch // to alternate batching method and add color to the vertex format. int total_color_changes; // measured in pixels, recalculated each frame float scissor_threshold_area; // diagnose this frame, every nTh frame when settings_diagnose_frame is on bool diagnose_frame; String frame_string; uint32_t next_diagnose_tick; uint64_t diagnose_frame_number; // whether to join items across z_indices - this can interfere with z ranged lights, // so has to be disabled in some circumstances bool join_across_z_indices; // global settings bool settings_use_batching; // the current use_batching (affected by flash) bool settings_use_batching_original_choice; // the choice entered in project settings bool settings_flash_batching; // for regression testing, flash between non-batched and batched renderer bool settings_diagnose_frame; // print out batches to help optimize / regression test int settings_max_join_item_commands; float settings_colored_vertex_format_threshold; int settings_batch_buffer_num_verts; bool settings_scissor_lights; float settings_scissor_threshold; // 0.0 to 1.0 int settings_item_reordering_lookahead; bool settings_use_single_rect_fallback; bool settings_use_software_skinning; int settings_light_max_join_items; int settings_ninepatch_mode; // buffer orphaning modes bool buffer_mode_batch_upload_send_null; bool buffer_mode_batch_upload_flag_stream; // uv contraction bool settings_uv_contract; float settings_uv_contract_amount; // only done on diagnose frame void reset_stats() { stats_items_sorted = 0; stats_light_items_joined = 0; } // frame stats (just for monitoring and debugging) int stats_items_sorted; int stats_light_items_joined; } bdata; struct FillState { void reset_flush() { // don't reset members that need to be preserved after flushing // half way through a list of commands curr_batch = 0; batch_tex_id = -1; texpixel_size = Vector2(1, 1); contract_uvs = false; sequence_batch_type_flags = 0; } void reset_joined_item(bool p_use_hardware_transform) { reset_flush(); use_hardware_transform = p_use_hardware_transform; extra_matrix_sent = false; } // for batching multiple types, we don't allow mixing RECTs / LINEs etc. // using flags allows quicker rejection of sequences with different batch types uint32_t sequence_batch_type_flags; Batch *curr_batch; int batch_tex_id; bool use_hardware_transform; bool contract_uvs; Vector2 texpixel_size; Color final_modulate; TransformMode transform_mode; TransformMode orig_transform_mode; // support for extra matrices bool extra_matrix_sent; // whether sent on this item (in which case software transform can't be used untl end of item) int transform_extra_command_number_p1; // plus one to allow fast checking against zero Transform2D transform_combined; // final * extra }; // used during try_join struct RenderItemState { RenderItemState() { reset(); } void reset() { current_clip = nullptr; shader_cache = nullptr; rebind_shader = true; prev_use_skeleton = false; last_blend_mode = -1; canvas_last_material = RID(); item_group_z = 0; item_group_light = nullptr; final_modulate = Color(-1.0, -1.0, -1.0, -1.0); // just something unlikely joined_item_batch_type_flags_curr = 0; joined_item_batch_type_flags_prev = 0; joined_item = nullptr; } RendererCanvasRender::Item *current_clip; typename T_STORAGE::Shader *shader_cache; bool rebind_shader; bool prev_use_skeleton; bool prev_distance_field; int last_blend_mode; RID canvas_last_material; Color final_modulate; // used for joining items only BItemJoined *joined_item; bool join_batch_break; BLightRegion light_region; // we need some logic to prevent joining items that have vastly different batch types // these are defined in RasterizerStorageCommon::BatchTypeFlags uint32_t joined_item_batch_type_flags_curr; uint32_t joined_item_batch_type_flags_prev; // 'item group' is data over a single call to canvas_render_items int item_group_z; Color item_group_modulate; RendererCanvasRender::Light *item_group_light; Transform2D item_group_base_transform; } _render_item_state; bool use_nvidia_rect_workaround; ////////////////////////////////////////////////////////////////////////////// // End of structs used by the batcher. Beginning of funcs. private: // curiously recurring template pattern - allows access to functions in the DERIVED class // this is kind of like using virtual functions but more efficient as they are resolved at compile time T_STORAGE *get_storage() { return static_cast(this)->storage; } const T_STORAGE *get_storage() const { return static_cast(this)->storage; } T *get_this() { return static_cast(this); } const T *get_this() const { return static_cast(this); } protected: // main functions called from the rasterizer canvas void batch_constructor(); void batch_initialize(); void batch_canvas_begin(); void batch_canvas_end(); void batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform); void batch_canvas_render_items_end(); void batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform); // recording and sorting items from the initial pass void record_items(RendererCanvasRender::Item *p_item_list, int p_z); void join_sorted_items(); void sort_items(); bool _sort_items_match(const BSortItem &p_a, const BSortItem &p_b) const; bool sort_items_from(int p_start); // joining logic bool _disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed); bool _detect_item_batch_break(RenderItemState &r_ris, RendererCanvasRender::Item *p_ci, bool &r_batch_break); // drives the loop filling batches and flushing void render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit); private: // flush once full or end of joined item void flush_render_batches(RendererCanvasRender::Item *p_first_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, uint32_t p_sequence_batch_type_flags); // a single joined item can contain multiple itemrefs, and thus create lots of batches // command start given a separate name to make easier to tell apart godot 3 and 4 bool prefill_joined_item(FillState &r_fill_state, RendererCanvasRender::Item::Command **r_first_command, RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material); // prefilling different types of batch // default batch is an 'unhandled' legacy type batch that will be drawn with the legacy path, // all other batches are accelerated. void _prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item); // accelerated batches bool _prefill_rect(RendererCanvasRender::Item::CommandRect *rect, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RendererCanvasRender::Item::Command *const *commands, RendererCanvasRender::Item *p_item, bool multiply_final_modulate); // dealing with textures int _batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match); protected: // legacy support for non batched mode void _legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material); // light scissoring bool _light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const; bool _light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const; void _calculate_scissor_threshold_area(); private: // translating vertex formats prior to rendering void _translate_batches_to_vertex_colored_FVF(); template void _translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags); protected: // accessory funcs void _software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const; void _software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const; TransformMode _find_transform_mode(const Transform2D &p_tr) const { // decided whether to do translate only for software transform if ((p_tr.elements[0].x == 1.0f) && (p_tr.elements[0].y == 0.0f) && (p_tr.elements[1].x == 0.0f) && (p_tr.elements[1].y == 1.0f)) { return TM_TRANSLATE; } return TM_ALL; } typename T_STORAGE::Texture *_get_canvas_texture(const RID &p_texture) const { if (p_texture.is_valid()) { typename T_STORAGE::Texture *texture = get_storage()->texture_owner.get_or_null(p_texture); if (texture) { return texture->get_ptr(); } } return 0; } public: Batch *_batch_request_new(bool p_blank = true) { Batch *batch = bdata.batches.request(); if (!batch) { // grow the batches bdata.batches.grow(); // and the temporary batches (used for color verts) bdata.batches_temp.reset(); bdata.batches_temp.grow(); // this should always succeed after growing batch = bdata.batches.request(); RAST_DEBUG_ASSERT(batch); } if (p_blank) memset(batch, 0, sizeof(Batch)); return batch; } BatchVertex *_batch_vertex_request_new() { return bdata.vertices.request(); } protected: int godot4_commands_count(RendererCanvasRender::Item::Command *p_comm) const { int count = 0; while (p_comm) { count++; p_comm = p_comm->next; } return count; } unsigned int godot4_commands_to_vector(RendererCanvasRender::Item::Command *p_comm, LocalVector &p_list) { p_list.clear(); while (p_comm) { p_list.push_back(p_comm); p_comm = p_comm->next; } return p_list.size(); } }; PREAMBLE(void)::batch_canvas_begin() { // diagnose_frame? bdata.frame_string = ""; // just in case, always set this as we don't want a string leak in release... #if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) if (bdata.settings_diagnose_frame) { bdata.diagnose_frame = false; uint32_t tick = OS::get_singleton()->get_ticks_msec(); uint64_t frame = Engine::get_singleton()->get_frames_drawn(); if (tick >= bdata.next_diagnose_tick) { bdata.next_diagnose_tick = tick + 10000; // the plus one is prevent starting diagnosis half way through frame bdata.diagnose_frame_number = frame + 1; } if (frame == bdata.diagnose_frame_number) { bdata.diagnose_frame = true; bdata.reset_stats(); } if (bdata.diagnose_frame) { bdata.frame_string = "canvas_begin FRAME " + itos(frame) + "\n"; } } #endif } PREAMBLE(void)::batch_canvas_end() { #if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) if (bdata.diagnose_frame) { bdata.frame_string += "canvas_end\n"; if (bdata.stats_items_sorted) { bdata.frame_string += "\titems reordered: " + itos(bdata.stats_items_sorted) + "\n"; } if (bdata.stats_light_items_joined) { bdata.frame_string += "\tlight items joined: " + itos(bdata.stats_light_items_joined) + "\n"; } print_line(bdata.frame_string); } #endif } PREAMBLE(void)::batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) { // if we are debugging, flash each frame between batching renderer and old version to compare for regressions if (bdata.settings_flash_batching) { if ((Engine::get_singleton()->get_frames_drawn() % 2) == 0) bdata.settings_use_batching = true; else bdata.settings_use_batching = false; } if (!bdata.settings_use_batching) { return; } // this only needs to be done when screen size changes, but this should be // infrequent enough _calculate_scissor_threshold_area(); // set up render item state for all the z_indexes (this is common to all z_indexes) _render_item_state.reset(); _render_item_state.item_group_modulate = p_modulate; _render_item_state.item_group_light = p_light; _render_item_state.item_group_base_transform = p_base_transform; _render_item_state.light_region.reset(); // batch break must be preserved over the different z indices, // to prevent joining to an item on a previous index if not allowed _render_item_state.join_batch_break = false; // whether to join across z indices depends on whether there are z ranged lights. // joined z_index items can be wrongly classified with z ranged lights. bdata.join_across_z_indices = true; int light_count = 0; while (p_light) { light_count++; if ((p_light->z_min != RS::CANVAS_ITEM_Z_MIN) || (p_light->z_max != RS::CANVAS_ITEM_Z_MAX)) { // prevent joining across z indices. This would have caused visual regressions bdata.join_across_z_indices = false; } p_light = p_light->next_ptr; } // can't use the light region bitfield if there are too many lights // hopefully most games won't blow this limit.. // if they do they will work but it won't batch join items just in case if (light_count > 64) { _render_item_state.light_region.too_many_lights = true; } } PREAMBLE(void)::batch_canvas_render_items_end() { if (!bdata.settings_use_batching) { return; } join_sorted_items(); #if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) if (bdata.diagnose_frame) { bdata.frame_string += "items\n"; } #endif // batching render is deferred until after going through all the z_indices, joining all the items get_this()->canvas_render_items_implementation(0, 0, _render_item_state.item_group_modulate, _render_item_state.item_group_light, _render_item_state.item_group_base_transform); bdata.items_joined.reset(); bdata.item_refs.reset(); bdata.sort_items.reset(); } PREAMBLE(void)::batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) { // stage 1 : join similar items, so that their state changes are not repeated, // and commands from joined items can be batched together if (bdata.settings_use_batching) { record_items(p_item_list, p_z); return; } // only legacy renders at this stage, batched renderer doesn't render until canvas_render_items_end() get_this()->canvas_render_items_implementation(p_item_list, p_z, p_modulate, p_light, p_base_transform); } // Default batches will not occur in software transform only items // EXCEPT IN THE CASE OF SINGLE RECTS (and this may well not occur, check the logic in prefill_join_item TYPE_RECT) // but can occur where transform commands have been sent during hardware batch PREAMBLE(void)::_prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item) { if (r_fill_state.curr_batch->type == RasterizerStorageCommon::BT_DEFAULT) { // don't need to flush an extra transform command? if (!r_fill_state.transform_extra_command_number_p1) { // another default command, just add to the existing batch r_fill_state.curr_batch->num_commands++; } else { #if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) if (r_fill_state.transform_extra_command_number_p1 != p_command_num) { WARN_PRINT_ONCE("_prefill_default_batch : transform_extra_command_number_p1 != p_command_num"); } #endif // if the first member of the batch is a transform we have to be careful if (!r_fill_state.curr_batch->num_commands) { // there can be leading useless extra transforms (sometimes happens with debug collision polys) // we need to rejig the first_command for the first useful transform r_fill_state.curr_batch->first_command += r_fill_state.transform_extra_command_number_p1 - 1; } // we do have a pending extra transform command to flush // either the extra transform is in the prior command, or not, in which case we need 2 batches r_fill_state.curr_batch->num_commands += 2; r_fill_state.transform_extra_command_number_p1 = 0; // mark as sent r_fill_state.extra_matrix_sent = true; // the original mode should always be hardware transform .. // test this assumption //CRASH_COND(r_fill_state.orig_transform_mode != TM_NONE); r_fill_state.transform_mode = r_fill_state.orig_transform_mode; // do we need to restore anything else? } } else { // end of previous different type batch, so start new default batch // first consider whether there is a dirty extra matrix to send if (r_fill_state.transform_extra_command_number_p1) { // get which command the extra is in, and blank all the records as it no longer is stored CPU side int extra_command = r_fill_state.transform_extra_command_number_p1 - 1; // plus 1 based r_fill_state.transform_extra_command_number_p1 = 0; r_fill_state.extra_matrix_sent = true; // send the extra to the GPU in a batch r_fill_state.curr_batch = _batch_request_new(); r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT; r_fill_state.curr_batch->first_command = extra_command; r_fill_state.curr_batch->num_commands = 1; // revert to the original transform mode // e.g. go back to NONE if we were in hardware transform mode r_fill_state.transform_mode = r_fill_state.orig_transform_mode; // reset the original transform if we are going back to software mode, // because the extra is now done on the GPU... // (any subsequent extras are sent directly to the GPU, no deferring) if (r_fill_state.orig_transform_mode != TM_NONE) { r_fill_state.transform_combined = p_item.final_transform; } // can possibly combine batch with the next one in some cases // this is more efficient than having an extra batch especially for the extra if ((extra_command + 1) == p_command_num) { r_fill_state.curr_batch->num_commands = 2; return; } } // start default batch r_fill_state.curr_batch = _batch_request_new(); r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT; r_fill_state.curr_batch->first_command = p_command_num; r_fill_state.curr_batch->num_commands = 1; } } PREAMBLE(int)::_batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match) { // optimization .. in 99% cases the last matched value will be the same, so no need to traverse the list if (p_previous_match > 0) // if it is zero, it will get hit first in the linear search anyway { const BatchTex &batch_texture = bdata.batch_textures[p_previous_match]; // note for future reference, if RID implementation changes, this could become more expensive if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) { // tiling mode must also match bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF; if (tiles == p_tile) // match! return p_previous_match; } } // not the previous match .. we will do a linear search ... slower, but should happen // not very often except with non-batchable runs, which are going to be slow anyway // n.b. could possibly be replaced later by a fast hash table for (int n = 0; n < bdata.batch_textures.size(); n++) { const BatchTex &batch_texture = bdata.batch_textures[n]; if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) { // tiling mode must also match bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF; if (tiles == p_tile) // match! return n; } } // pushing back from local variable .. not ideal but has to use a Vector because non pod // due to RIDs BatchTex new_batch_tex; new_batch_tex.RID_texture = p_texture; new_batch_tex.RID_normal = p_normal; // get the texture typename T_STORAGE::Texture *texture = _get_canvas_texture(p_texture); if (texture) { // special case, there can be textures with no width or height int w = texture->width; int h = texture->height; if (!w || !h) { w = 1; h = 1; } new_batch_tex.tex_pixel_size.x = 1.0 / w; new_batch_tex.tex_pixel_size.y = 1.0 / h; new_batch_tex.flags = texture->flags; } else { // maybe doesn't need doing... new_batch_tex.tex_pixel_size.x = 1.0f; new_batch_tex.tex_pixel_size.y = 1.0f; new_batch_tex.flags = 0; } if (p_tile) { if (texture) { // default new_batch_tex.tile_mode = BatchTex::TILE_NORMAL; // no hardware support for non power of 2 tiling if (!get_storage()->config.support_npot_repeat_mipmap) { if (next_power_of_2(texture->alloc_width) != (unsigned int)texture->alloc_width && next_power_of_2(texture->alloc_height) != (unsigned int)texture->alloc_height) { new_batch_tex.tile_mode = BatchTex::TILE_FORCE_REPEAT; } } } else { // this should not happen? new_batch_tex.tile_mode = BatchTex::TILE_OFF; } } else { new_batch_tex.tile_mode = BatchTex::TILE_OFF; } // push back bdata.batch_textures.push_back(new_batch_tex); return bdata.batch_textures.size() - 1; } PREAMBLE(void)::batch_constructor() { bdata.settings_use_batching = false; #ifdef GLES_OVER_GL use_nvidia_rect_workaround = GLOBAL_GET("rendering/quality/2d/use_nvidia_rect_flicker_workaround"); #else // Not needed (a priori) on GLES devices use_nvidia_rect_workaround = false; #endif } PREAMBLE(void)::batch_initialize() { #define BATCHING_LOAD_PROJECT_SETTINGS #ifdef BATCHING_LOAD_PROJECT_SETTINGS bdata.settings_use_batching = GLOBAL_GET("rendering/batching/options/use_batching"); bdata.settings_max_join_item_commands = GLOBAL_GET("rendering/batching/parameters/max_join_item_commands"); bdata.settings_colored_vertex_format_threshold = GLOBAL_GET("rendering/batching/parameters/colored_vertex_format_threshold"); bdata.settings_item_reordering_lookahead = GLOBAL_GET("rendering/batching/parameters/item_reordering_lookahead"); bdata.settings_light_max_join_items = GLOBAL_GET("rendering/batching/lights/max_join_items"); bdata.settings_use_single_rect_fallback = GLOBAL_GET("rendering/batching/options/single_rect_fallback"); bdata.settings_use_software_skinning = GLOBAL_GET("rendering/quality/2d/use_software_skinning"); bdata.settings_ninepatch_mode = GLOBAL_GET("rendering/quality/2d/ninepatch_mode"); // alternatively only enable uv contract if pixel snap in use, // but with this enable bool, it should not be necessary bdata.settings_uv_contract = GLOBAL_GET("rendering/batching/precision/uv_contract"); bdata.settings_uv_contract_amount = (float)GLOBAL_GET("rendering/batching/precision/uv_contract_amount") / 1000000.0f; // we can use the threshold to determine whether to turn scissoring off or on bdata.settings_scissor_threshold = GLOBAL_GET("rendering/batching/lights/scissor_area_threshold"); #endif if (bdata.settings_scissor_threshold > 0.999f) { bdata.settings_scissor_lights = false; } else { bdata.settings_scissor_lights = true; // apply power of 4 relationship for the area, as most of the important changes // will be happening at low values of scissor threshold bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold; bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold; } // The sweet spot on my desktop for cache is actually smaller than the max, and this // is the default. This saves memory too so we will use it for now, needs testing to see whether this varies according // to device / platform. #ifdef BATCHING_LOAD_PROJECT_SETTINGS bdata.settings_batch_buffer_num_verts = GLOBAL_GET("rendering/batching/parameters/batch_buffer_size"); // override the use_batching setting in the editor // (note that if the editor can't start, you can't change the use_batching project setting!) if (Engine::get_singleton()->is_editor_hint()) { bool use_in_editor = GLOBAL_GET("rendering/batching/options/use_batching_in_editor"); bdata.settings_use_batching = use_in_editor; // fix some settings in the editor, as the performance not worth the risk bdata.settings_use_single_rect_fallback = false; } #endif // if we are using batching, we will purposefully disable the nvidia workaround. // This is because the only reason to use the single rect fallback is the approx 2x speed // of the uniform drawing technique. If we used nvidia workaround, speed would be // approx equal to the batcher drawing technique (indexed primitive + VB). if (bdata.settings_use_batching) { use_nvidia_rect_workaround = false; } // For debugging, if flash is set in project settings, it will flash on alternate frames // between the non-batched renderer and the batched renderer, // in order to find regressions. // This should not be used except during development. // make a note of the original choice in case we are flashing on and off the batching bdata.settings_use_batching_original_choice = bdata.settings_use_batching; #ifdef BATCHING_LOAD_PROJECT_SETTINGS bdata.settings_flash_batching = GLOBAL_GET("rendering/batching/debug/flash_batching"); #endif if (!bdata.settings_use_batching) { // no flash when batching turned off bdata.settings_flash_batching = false; } // frame diagnosis. print out the batches every nth frame bdata.settings_diagnose_frame = false; if (!Engine::get_singleton()->is_editor_hint() && bdata.settings_use_batching) { #ifdef BATCHING_LOAD_PROJECT_SETTINGS bdata.settings_diagnose_frame = GLOBAL_GET("rendering/batching/debug/diagnose_frame"); #endif } // the maximum num quads in a batch is limited by GLES2. We can have only 16 bit indices, // which means we can address a vertex buffer of max size 65535. 4 vertices are needed per quad. // Note this determines the memory use by the vertex buffer vector. max quads (65536/4)-1 // but can be reduced to save memory if really required (will result in more batches though) const int max_possible_quads = (65536 / 4) - 1; const int min_possible_quads = 8; // some reasonable small value // value from project settings int max_quads = bdata.settings_batch_buffer_num_verts / 4; // sanity checks max_quads = CLAMP(max_quads, min_possible_quads, max_possible_quads); bdata.settings_max_join_item_commands = CLAMP(bdata.settings_max_join_item_commands, 0, 65535); bdata.settings_colored_vertex_format_threshold = CLAMP(bdata.settings_colored_vertex_format_threshold, 0.0f, 1.0f); bdata.settings_scissor_threshold = CLAMP(bdata.settings_scissor_threshold, 0.0f, 1.0f); bdata.settings_light_max_join_items = CLAMP(bdata.settings_light_max_join_items, 0, 65535); bdata.settings_item_reordering_lookahead = CLAMP(bdata.settings_item_reordering_lookahead, 0, 65535); // allow user to override the api usage techniques using project settings // bdata.buffer_mode_batch_upload_send_null = GLOBAL_GET("rendering/options/api_usage_batching/send_null"); // bdata.buffer_mode_batch_upload_flag_stream = GLOBAL_GET("rendering/options/api_usage_batching/flag_stream"); // for debug purposes, output a string with the batching options String batching_options_string = "OpenGL ES Batching: "; if (bdata.settings_use_batching) { batching_options_string += "ON"; if (OS::get_singleton()->is_stdout_verbose()) { batching_options_string += "\n\tOPTIONS\n"; batching_options_string += "\tmax_join_item_commands " + itos(bdata.settings_max_join_item_commands) + "\n"; batching_options_string += "\tcolored_vertex_format_threshold " + String(Variant(bdata.settings_colored_vertex_format_threshold)) + "\n"; batching_options_string += "\tbatch_buffer_size " + itos(bdata.settings_batch_buffer_num_verts) + "\n"; batching_options_string += "\tlight_scissor_area_threshold " + String(Variant(bdata.settings_scissor_threshold)) + "\n"; batching_options_string += "\titem_reordering_lookahead " + itos(bdata.settings_item_reordering_lookahead) + "\n"; batching_options_string += "\tlight_max_join_items " + itos(bdata.settings_light_max_join_items) + "\n"; batching_options_string += "\tsingle_rect_fallback " + String(Variant(bdata.settings_use_single_rect_fallback)) + "\n"; batching_options_string += "\tdebug_flash " + String(Variant(bdata.settings_flash_batching)) + "\n"; batching_options_string += "\tdiagnose_frame " + String(Variant(bdata.settings_diagnose_frame)); } print_line(batching_options_string); } // special case, for colored vertex format threshold. // as the comparison is >=, we want to be able to totally turn on or off // conversion to colored vertex format at the extremes, so we will force // 1.0 to be just above 1.0 if (bdata.settings_colored_vertex_format_threshold > 0.995f) { bdata.settings_colored_vertex_format_threshold = 1.01f; } // save memory when batching off if (!bdata.settings_use_batching) { max_quads = 0; } uint32_t sizeof_batch_vert = sizeof(BatchVertex); bdata.max_quads = max_quads; // 4 verts per quad bdata.vertex_buffer_size_units = max_quads * 4; // the index buffer can be longer than 65535, only the indices need to be within this range bdata.index_buffer_size_units = max_quads * 6; const int max_verts = bdata.vertex_buffer_size_units; // this comes out at approx 64K for non-colored vertex buffer, and 128K for colored vertex buffer bdata.vertex_buffer_size_bytes = max_verts * sizeof_batch_vert; bdata.index_buffer_size_bytes = bdata.index_buffer_size_units * 2; // 16 bit inds // create equal number of normal and (max) unit sized verts (as the normal may need to be translated to a larger FVF) bdata.vertices.create(max_verts); // 512k bdata.unit_vertices.create(max_verts, sizeof(BatchVertexLarge)); // extra data per vert needed for larger FVFs bdata.light_angles.create(max_verts); bdata.vertex_colors.create(max_verts); bdata.vertex_modulates.create(max_verts); bdata.vertex_transforms.create(max_verts); // num batches will be auto increased dynamically if required bdata.batches.create(1024); bdata.batches_temp.create(bdata.batches.max_size()); // batch textures can also be increased dynamically bdata.batch_textures.create(32); } PREAMBLE(bool)::_light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const { float area_item = p_item_rect.size.x * p_item_rect.size.y; // double check these are always positive // quick reject .. the area of pixels saved can never be more than the area of the item if (area_item < bdata.scissor_threshold_area) { return false; } Rect2 cliprect; if (!_light_find_intersection(p_item_rect, p_light_xform, p_light_rect, cliprect)) { // should not really occur .. but just in case cliprect = Rect2(0, 0, 0, 0); } else { // some conditions not to scissor // determine the area (fill rate) that will be saved float area_cliprect = cliprect.size.x * cliprect.size.y; float area_saved = area_item - area_cliprect; // if area saved is too small, don't scissor if (area_saved < bdata.scissor_threshold_area) { return false; } } int rh = get_storage()->frame.current_rt->height; int y = rh - (cliprect.position.y + cliprect.size.y); get_this()->gl_enable_scissor(cliprect.position.x, y, cliprect.size.width, cliprect.size.height); return true; } PREAMBLE(bool)::_light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const { // transform light to world space (note this is done in the earlier intersection test, so could // be made more efficient) Vector2 pts[4] = { p_light_xform.xform(p_light_rect.position), p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y)), p_light_xform.xform(Vector2(p_light_rect.position.x, p_light_rect.position.y + p_light_rect.size.y)), p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y + p_light_rect.size.y)), }; // calculate the light bound rect in world space Rect2 lrect(pts[0].x, pts[0].y, 0, 0); for (int n = 1; n < 4; n++) { lrect.expand_to(pts[n]); } // intersection between the 2 rects // they should probably always intersect, because of earlier check, but just in case... if (!p_item_rect.intersects(lrect)) return false; // note this does almost the same as Rect2.clip but slightly more efficient for our use case r_cliprect.position.x = MAX(p_item_rect.position.x, lrect.position.x); r_cliprect.position.y = MAX(p_item_rect.position.y, lrect.position.y); Point2 item_rect_end = p_item_rect.position + p_item_rect.size; Point2 lrect_end = lrect.position + lrect.size; r_cliprect.size.x = MIN(item_rect_end.x, lrect_end.x) - r_cliprect.position.x; r_cliprect.size.y = MIN(item_rect_end.y, lrect_end.y) - r_cliprect.position.y; return true; } PREAMBLE(void)::_calculate_scissor_threshold_area() { if (!bdata.settings_scissor_lights) { return; } // scissor area threshold is 0.0 to 1.0 in the settings for ease of use. // we need to translate to an absolute area to determine quickly whether // to scissor. if (bdata.settings_scissor_threshold < 0.0001f) { bdata.scissor_threshold_area = -1.0f; // will always pass } else { // in pixels int w = get_storage()->frame.current_rt->width; int h = get_storage()->frame.current_rt->height; int screen_area = w * h; bdata.scissor_threshold_area = bdata.settings_scissor_threshold * screen_area; } } PREAMBLE(void)::render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit) { RendererCanvasRender::Item *item = 0; RendererCanvasRender::Item *first_item = bdata.item_refs[p_bij.first_item_ref].item; // fill_state and bdata have once off setup per joined item, and a smaller reset on flush FillState fill_state; fill_state.reset_joined_item(p_bij.use_hardware_transform()); bdata.reset_joined_item(); // should this joined item be using large FVF? if (p_bij.flags & RasterizerStorageCommon::USE_MODULATE_FVF) { bdata.use_modulate = true; bdata.fvf = RasterizerStorageCommon::FVF_MODULATED; } if (p_bij.flags & RasterizerStorageCommon::USE_LARGE_FVF) { bdata.use_modulate = true; bdata.use_large_verts = true; bdata.fvf = RasterizerStorageCommon::FVF_LARGE; } // in the special case of custom shaders that read from VERTEX (i.e. vertex position) // we want to disable software transform of extra matrix if (bdata.joined_item_batch_flags & RasterizerStorageCommon::PREVENT_VERTEX_BAKING) { fill_state.extra_matrix_sent = true; } for (unsigned int i = 0; i < p_bij.num_item_refs; i++) { const BItemRef &ref = bdata.item_refs[p_bij.first_item_ref + i]; item = ref.item; if (!p_lit) { // if not lit we use the complex calculated final modulate fill_state.final_modulate = ref.final_modulate; } else { // if lit we ignore canvas modulate and just use the item modulate fill_state.final_modulate = item->final_modulate; } // ONCE OFF fill state setup, that will be retained over multiple calls to // prefill_joined_item() fill_state.transform_combined = item->final_transform; // decide the initial transform mode, and make a backup // in orig_transform_mode in case we need to switch back if (!fill_state.use_hardware_transform) { fill_state.transform_mode = _find_transform_mode(fill_state.transform_combined); } else { fill_state.transform_mode = TM_NONE; } fill_state.orig_transform_mode = fill_state.transform_mode; // keep track of when we added an extra matrix // so we can defer sending until we see a default command fill_state.transform_extra_command_number_p1 = 0; RendererCanvasRender::Item::Command *current_command = item->commands; while (current_command) { // fill as many batches as possible (until all done, or the vertex buffer is full) bool bFull = get_this()->prefill_joined_item(fill_state, current_command, item, p_current_clip, r_reclip, p_material); if (bFull) { // always pass first item (commands for default are always first item) flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags); // zero all the batch data ready for a new run bdata.reset_flush(); // don't zero all the fill state, some may need to be preserved fill_state.reset_flush(); } } } // flush if any left flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags); // zero all the batch data ready for a new run bdata.reset_flush(); } PREAMBLE(void)::_legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material) { // reuse the same list each time to prevent needless dynamic allocations unsigned int command_count = godot4_commands_to_vector(p_item->commands, bdata.command_shortlist); RendererCanvasRender::Item::Command *const *commands = nullptr; if (command_count) { commands = &bdata.command_shortlist[0]; } // legacy .. just create one massive batch and render everything as before bdata.batches.reset(); Batch *batch = _batch_request_new(); batch->type = RasterizerStorageCommon::BT_DEFAULT; batch->num_commands = command_count; get_this()->render_batches(commands, p_current_clip, r_reclip, p_material); bdata.reset_flush(); } PREAMBLE(void)::record_items(RendererCanvasRender::Item *p_item_list, int p_z) { while (p_item_list) { BSortItem *s = bdata.sort_items.request_with_grow(); s->item = p_item_list; s->z_index = p_z; p_item_list = p_item_list->next; } } PREAMBLE(void)::join_sorted_items() { } PREAMBLE(void)::_software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const { Vector2 vc(r_v.x, r_v.y); vc = p_tr.xform(vc); r_v.set(vc); } PREAMBLE(void)::_software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const { r_v = p_tr.xform(r_v); } PREAMBLE(void)::_translate_batches_to_vertex_colored_FVF() { // zeros the size and sets up how big each unit is bdata.unit_vertices.prepare(sizeof(BatchVertexColored)); const BatchColor *source_vertex_colors = &bdata.vertex_colors[0]; RAST_DEBUG_ASSERT(bdata.vertex_colors.size() == bdata.vertices.size()); int num_verts = bdata.vertices.size(); for (int n = 0; n < num_verts; n++) { const BatchVertex &bv = bdata.vertices[n]; BatchVertexColored *cv = (BatchVertexColored *)bdata.unit_vertices.request(); cv->pos = bv.pos; cv->uv = bv.uv; cv->col = *source_vertex_colors++; } } // Translation always involved adding color to the FVF, which enables // joining of batches that have different colors. // There is a trade off. Non colored verts are smaller so work faster, but // there comes a point where it is better to just use colored verts to avoid lots of // batches. // In addition this can optionally add light angles to the FVF, necessary for normal mapping. T_PREAMBLE template void C_PREAMBLE::_translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags) { bool include_poly_color = false; // we ONLY want to include the color verts in translation when using polys, // as rects do not write vertex colors, only colors per batch. if (p_sequence_batch_type_flags & RasterizerStorageCommon::BTF_POLY) { include_poly_color = INCLUDE_LIGHT_ANGLES | INCLUDE_MODULATE | INCLUDE_LARGE; } // zeros the size and sets up how big each unit is bdata.unit_vertices.prepare(sizeof(BATCH_VERTEX_TYPE)); bdata.batches_temp.reset(); // As the vertices_colored and batches_temp are 'mirrors' of the non-colored version, // the sizes should be equal, and allocations should never fail. Hence the use of debug // asserts to check program flow, these should not occur at runtime unless the allocation // code has been altered. RAST_DEBUG_ASSERT(bdata.unit_vertices.max_size() == bdata.vertices.max_size()); RAST_DEBUG_ASSERT(bdata.batches_temp.max_size() == bdata.batches.max_size()); Color curr_col(-1.0f, -1.0f, -1.0f, -1.0f); Batch *dest_batch = nullptr; const BatchColor *source_vertex_colors = &bdata.vertex_colors[0]; const float *source_light_angles = &bdata.light_angles[0]; const BatchColor *source_vertex_modulates = &bdata.vertex_modulates[0]; const BatchTransform *source_vertex_transforms = &bdata.vertex_transforms[0]; // translate the batches into vertex colored batches for (int n = 0; n < bdata.batches.size(); n++) { const Batch &source_batch = bdata.batches[n]; // does source batch use light angles? const BatchTex &btex = bdata.batch_textures[source_batch.batch_texture_id]; bool source_batch_uses_light_angles = btex.RID_normal != RID(); bool needs_new_batch = true; if (dest_batch) { if (dest_batch->type == source_batch.type) { if (source_batch.type == RasterizerStorageCommon::BT_RECT) { if (dest_batch->batch_texture_id == source_batch.batch_texture_id) { // add to previous batch dest_batch->num_commands += source_batch.num_commands; needs_new_batch = false; // create the colored verts (only if not default) //int first_vert = source_batch.first_quad * 4; //int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands); int first_vert = source_batch.first_vert; int end_vert = first_vert + (4 * source_batch.num_commands); for (int v = first_vert; v < end_vert; v++) { RAST_DEV_DEBUG_ASSERT(bdata.vertices.size()); const BatchVertex &bv = bdata.vertices[v]; BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request(); RAST_DEBUG_ASSERT(cv); cv->pos = bv.pos; cv->uv = bv.uv; cv->col = source_batch.color; if (INCLUDE_LIGHT_ANGLES) { RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size()); // this is required to allow compilation with non light angle vertex. // it should be compiled out. BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv; if (source_batch_uses_light_angles) lv->light_angle = *source_light_angles++; else lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea) } // if including light angles if (INCLUDE_MODULATE) { RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size()); BatchVertexModulated *mv = (BatchVertexModulated *)cv; mv->modulate = *source_vertex_modulates++; } // including modulate if (INCLUDE_LARGE) { RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size()); BatchVertexLarge *lv = (BatchVertexLarge *)cv; lv->transform = *source_vertex_transforms++; } // if including large } } // textures match } else { // default // we can still join, but only under special circumstances // does this ever happen? not sure at this stage, but left for future expansion uint32_t source_last_command = source_batch.first_command + source_batch.num_commands; if (source_last_command == dest_batch->first_command) { dest_batch->num_commands += source_batch.num_commands; needs_new_batch = false; } // if the commands line up exactly } } // if both batches are the same type } // if dest batch is valid if (needs_new_batch) { dest_batch = bdata.batches_temp.request(); RAST_DEBUG_ASSERT(dest_batch); *dest_batch = source_batch; // create the colored verts (only if not default) if (source_batch.type != RasterizerStorageCommon::BT_DEFAULT) { // int first_vert = source_batch.first_quad * 4; // int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands); int first_vert = source_batch.first_vert; int end_vert = first_vert + (4 * source_batch.num_commands); for (int v = first_vert; v < end_vert; v++) { RAST_DEV_DEBUG_ASSERT(bdata.vertices.size()); const BatchVertex &bv = bdata.vertices[v]; BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request(); RAST_DEBUG_ASSERT(cv); cv->pos = bv.pos; cv->uv = bv.uv; // polys are special, they can have per vertex colors if (!include_poly_color) { cv->col = source_batch.color; } else { RAST_DEV_DEBUG_ASSERT(bdata.vertex_colors.size()); cv->col = *source_vertex_colors++; } if (INCLUDE_LIGHT_ANGLES) { RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size()); // this is required to allow compilation with non light angle vertex. // it should be compiled out. BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv; if (source_batch_uses_light_angles) lv->light_angle = *source_light_angles++; else lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea) } // if using light angles if (INCLUDE_MODULATE) { RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size()); BatchVertexModulated *mv = (BatchVertexModulated *)cv; mv->modulate = *source_vertex_modulates++; } // including modulate if (INCLUDE_LARGE) { RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size()); BatchVertexLarge *lv = (BatchVertexLarge *)cv; lv->transform = *source_vertex_transforms++; } // if including large } } } } // copy the temporary batches to the master batch list (this could be avoided but it makes the code cleaner) bdata.batches.copy_from(bdata.batches_temp); } PREAMBLE(bool)::_disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed) { r_ris.joined_item_batch_type_flags_curr |= btf_allowed; bool disallow = false; if (r_ris.joined_item_batch_type_flags_prev & (~btf_allowed)) disallow = true; return disallow; } #undef PREAMBLE #undef T_PREAMBLE #undef C_PREAMBLE #endif // RASTERIZER_CANVAS_BATCHER_H