/**************************************************************************/ /* test_basis.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "test_basis.h" #include "core/math/random_number_generator.h" #include "core/os/os.h" #include "core/ustring.h" namespace TestBasis { enum RotOrder { EulerXYZ, EulerXZY, EulerYZX, EulerYXZ, EulerZXY, EulerZYX }; Vector3 deg2rad(const Vector3 &p_rotation) { return p_rotation / 180.0 * Math_PI; } Vector3 rad2deg(const Vector3 &p_rotation) { return p_rotation / Math_PI * 180.0; } Basis EulerToBasis(RotOrder mode, const Vector3 &p_rotation) { Basis ret; switch (mode) { case EulerXYZ: ret.set_euler_xyz(p_rotation); break; case EulerXZY: ret.set_euler_xzy(p_rotation); break; case EulerYZX: ret.set_euler_yzx(p_rotation); break; case EulerYXZ: ret.set_euler_yxz(p_rotation); break; case EulerZXY: ret.set_euler_zxy(p_rotation); break; case EulerZYX: ret.set_euler_zyx(p_rotation); break; default: // If you land here, Please integrate all rotation orders. CRASH_NOW_MSG("This is not unreachable."); } return ret; } Vector3 BasisToEuler(RotOrder mode, const Basis &p_rotation) { switch (mode) { case EulerXYZ: return p_rotation.get_euler_xyz(); case EulerXZY: return p_rotation.get_euler_xzy(); case EulerYZX: return p_rotation.get_euler_yzx(); case EulerYXZ: return p_rotation.get_euler_yxz(); case EulerZXY: return p_rotation.get_euler_zxy(); case EulerZYX: return p_rotation.get_euler_zyx(); default: // If you land here, Please integrate all rotation orders. CRASH_NOW_MSG("This is not unreachable."); return Vector3(); } } String get_rot_order_name(RotOrder ro) { switch (ro) { case EulerXYZ: return "XYZ"; case EulerXZY: return "XZY"; case EulerYZX: return "YZX"; case EulerYXZ: return "YXZ"; case EulerZXY: return "ZXY"; case EulerZYX: return "ZYX"; default: return "[Not supported]"; } } bool test_rotation(Vector3 deg_original_euler, RotOrder rot_order) { // This test: // 1. Converts the rotation vector from deg to rad. // 2. Converts euler to basis. // 3. Converts the above basis back into euler. // 4. Converts the above euler into basis again. // 5. Compares the basis obtained in step 2 with the basis of step 4 // // The conversion "basis to euler", done in the step 3, may be different from // the original euler, even if the final rotation are the same. // This happens because there are more ways to represents the same rotation, // both valid, using eulers. // For this reason is necessary to convert that euler back to basis and finally // compares it. // // In this way we can assert that both functions: basis to euler / euler to basis // are correct. bool pass = true; // Euler to rotation const Vector3 original_euler = deg2rad(deg_original_euler); const Basis to_rotation = EulerToBasis(rot_order, original_euler); // Euler from rotation const Vector3 euler_from_rotation = BasisToEuler(rot_order, to_rotation); const Basis rotation_from_computed_euler = EulerToBasis(rot_order, euler_from_rotation); Basis res = to_rotation.inverse() * rotation_from_computed_euler; if ((res.get_axis(0) - Vector3(1.0, 0.0, 0.0)).length() > 0.1) { OS::get_singleton()->print("Fail due to X %ls\n", String(res.get_axis(0)).c_str()); pass = false; } if ((res.get_axis(1) - Vector3(0.0, 1.0, 0.0)).length() > 0.1) { OS::get_singleton()->print("Fail due to Y %ls\n", String(res.get_axis(1)).c_str()); pass = false; } if ((res.get_axis(2) - Vector3(0.0, 0.0, 1.0)).length() > 0.1) { OS::get_singleton()->print("Fail due to Z %ls\n", String(res.get_axis(2)).c_str()); pass = false; } if (pass) { // Double check `to_rotation` decomposing with XYZ rotation order. const Vector3 euler_xyz_from_rotation = to_rotation.get_euler_xyz(); Basis rotation_from_xyz_computed_euler; rotation_from_xyz_computed_euler.set_euler_xyz(euler_xyz_from_rotation); res = to_rotation.inverse() * rotation_from_xyz_computed_euler; if ((res.get_axis(0) - Vector3(1.0, 0.0, 0.0)).length() > 0.1) { OS::get_singleton()->print("Double check with XYZ rot order failed, due to X %ls\n", String(res.get_axis(0)).c_str()); pass = false; } if ((res.get_axis(1) - Vector3(0.0, 1.0, 0.0)).length() > 0.1) { OS::get_singleton()->print("Double check with XYZ rot order failed, due to Y %ls\n", String(res.get_axis(1)).c_str()); pass = false; } if ((res.get_axis(2) - Vector3(0.0, 0.0, 1.0)).length() > 0.1) { OS::get_singleton()->print("Double check with XYZ rot order failed, due to Z %ls\n", String(res.get_axis(2)).c_str()); pass = false; } } if (pass == false) { // Print phase only if not pass. OS *os = OS::get_singleton(); os->print("Rotation order: %ls\n.", get_rot_order_name(rot_order).c_str()); os->print("Original Rotation: %ls\n", String(deg_original_euler).c_str()); os->print("Quaternion to rotation order: %ls\n", String(rad2deg(euler_from_rotation)).c_str()); } return pass; } void test_euler_conversion() { Vector rotorder_to_test; rotorder_to_test.push_back(EulerXYZ); rotorder_to_test.push_back(EulerXZY); rotorder_to_test.push_back(EulerYZX); rotorder_to_test.push_back(EulerYXZ); rotorder_to_test.push_back(EulerZXY); rotorder_to_test.push_back(EulerZYX); Vector vectors_to_test; // Test the special cases. vectors_to_test.push_back(Vector3(0.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.5, 0.5, 0.5)); vectors_to_test.push_back(Vector3(-0.5, -0.5, -0.5)); vectors_to_test.push_back(Vector3(40.0, 40.0, 40.0)); vectors_to_test.push_back(Vector3(-40.0, -40.0, -40.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, -90.0)); vectors_to_test.push_back(Vector3(0.0, -90.0, 0.0)); vectors_to_test.push_back(Vector3(-90.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, 90.0)); vectors_to_test.push_back(Vector3(0.0, 90.0, 0.0)); vectors_to_test.push_back(Vector3(90.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, -30.0)); vectors_to_test.push_back(Vector3(0.0, -30.0, 0.0)); vectors_to_test.push_back(Vector3(-30.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, 30.0)); vectors_to_test.push_back(Vector3(0.0, 30.0, 0.0)); vectors_to_test.push_back(Vector3(30.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.5, 50.0, 20.0)); vectors_to_test.push_back(Vector3(-0.5, -50.0, -20.0)); vectors_to_test.push_back(Vector3(0.5, 0.0, 90.0)); vectors_to_test.push_back(Vector3(0.5, 0.0, -90.0)); vectors_to_test.push_back(Vector3(360.0, 360.0, 360.0)); vectors_to_test.push_back(Vector3(-360.0, -360.0, -360.0)); vectors_to_test.push_back(Vector3(-90.0, 60.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, 60.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, -60.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, -60.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, 60.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, 60.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, -60.0, 90.0)); vectors_to_test.push_back(Vector3(-90.0, -60.0, 90.0)); vectors_to_test.push_back(Vector3(60.0, 90.0, -40.0)); vectors_to_test.push_back(Vector3(60.0, -90.0, -40.0)); vectors_to_test.push_back(Vector3(-60.0, -90.0, -40.0)); vectors_to_test.push_back(Vector3(-60.0, 90.0, 40.0)); vectors_to_test.push_back(Vector3(60.0, 90.0, 40.0)); vectors_to_test.push_back(Vector3(60.0, -90.0, 40.0)); vectors_to_test.push_back(Vector3(-60.0, -90.0, 40.0)); vectors_to_test.push_back(Vector3(-90.0, 90.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, 90.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, -90.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, -90.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, 90.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, 90.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, -90.0, 90.0)); vectors_to_test.push_back(Vector3(20.0, 150.0, 30.0)); vectors_to_test.push_back(Vector3(20.0, -150.0, 30.0)); vectors_to_test.push_back(Vector3(-120.0, -150.0, 30.0)); vectors_to_test.push_back(Vector3(-120.0, -150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, -150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0)); // Add 1000 random vectors with weirds numbers. RandomNumberGenerator rng; for (int _ = 0; _ < 1000; _ += 1) { vectors_to_test.push_back(Vector3( rng.randf_range(-1800, 1800), rng.randf_range(-1800, 1800), rng.randf_range(-1800, 1800))); } bool success = true; for (int h = 0; h < rotorder_to_test.size(); h += 1) { int passed = 0; int failed = 0; for (int i = 0; i < vectors_to_test.size(); i += 1) { if (test_rotation(vectors_to_test[i], rotorder_to_test[h])) { //OS::get_singleton()->print("Success. \n\n"); passed += 1; } else { OS::get_singleton()->print("FAILED FAILED FAILED. \n\n"); OS::get_singleton()->print("------------>\n"); OS::get_singleton()->print("------------>\n"); failed += 1; success = false; } } if (failed == 0) { OS::get_singleton()->print("%i passed tests for rotation order: %ls.\n", passed, get_rot_order_name(rotorder_to_test[h]).c_str()); } else { OS::get_singleton()->print("%i FAILED tests for rotation order: %ls.\n", failed, get_rot_order_name(rotorder_to_test[h]).c_str()); } } if (success) { OS::get_singleton()->print("Euler conversion checks passed.\n"); } else { OS::get_singleton()->print("Euler conversion checks FAILED.\n"); } } void check_test(std::string test_case_name, bool condition) { if (!condition) { OS::get_singleton()->print("FAILED - %s\n", test_case_name.c_str()); } else { OS::get_singleton()->print("PASSED - %s\n", test_case_name.c_str()); } } void test_set_axis_angle() { Vector3 axis; real_t angle; real_t pi = (real_t)Math_PI; // Testing the singularity when the angle is 0°. Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1); identity.get_axis_angle(axis, angle); check_test("Testing the singularity when the angle is 0.", angle == 0); // Testing the singularity when the angle is 180°. Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1); singularityPi.get_axis_angle(axis, angle); check_test("Testing the singularity when the angle is 180.", Math::is_equal_approx(angle, pi)); // Testing reversing the an axis (of an 30° angle). float cos30deg = Math::cos(Math::deg2rad((real_t)30.0)); Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1); Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1); z_positive.get_axis_angle(axis, angle); check_test("Testing reversing the an axis (of an 30 angle).", Math::is_equal_approx(angle, Math::deg2rad((real_t)30.0))); check_test("Testing reversing the an axis (of an 30 angle).", axis == Vector3(0, 0, 1)); z_negative.get_axis_angle(axis, angle); check_test("Testing reversing the an axis (of an 30 angle).", Math::is_equal_approx(angle, Math::deg2rad((real_t)30.0))); check_test("Testing reversing the an axis (of an 30 angle).", axis == Vector3(0, 0, -1)); // Testing a rotation of 90° on x-y-z. Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0); x90deg.get_axis_angle(axis, angle); check_test("Testing a rotation of 90 on x-y-z.", Math::is_equal_approx(angle, pi / (real_t)2)); check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(1, 0, 0)); Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0); y90deg.get_axis_angle(axis, angle); check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(0, 1, 0)); Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1); z90deg.get_axis_angle(axis, angle); check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(0, 0, 1)); // Regression test: checks that the method returns a small angle (not 0). Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad. tiny.get_axis_angle(axis, angle); check_test("Regression test: checks that the method returns a small angle (not 0).", Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001)); // Regression test: checks that the method returns an angle which is a number (not NaN) Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024); bugNan.get_axis_angle(axis, angle); check_test("Regression test: checks that the method returns an angle which is a number (not NaN)", !Math::is_nan(angle)); } MainLoop *test() { OS::get_singleton()->print("Start euler conversion checks.\n"); test_euler_conversion(); OS::get_singleton()->print("\n---------------\n"); OS::get_singleton()->print("Start set axis angle checks.\n"); test_set_axis_angle(); return nullptr; } } // namespace TestBasis