/*************************************************************************/ /* cpu_particles_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "cpu_particles_2d.h" #include "core/core_string_names.h" #include "scene/2d/gpu_particles_2d.h" #include "scene/resources/particle_process_material.h" void CPUParticles2D::set_emitting(bool p_emitting) { if (emitting == p_emitting) { return; } emitting = p_emitting; if (emitting) { set_process_internal(true); } } void CPUParticles2D::set_amount(int p_amount) { ERR_FAIL_COND_MSG(p_amount < 1, "Amount of particles must be greater than 0."); particles.resize(p_amount); { Particle *w = particles.ptrw(); for (int i = 0; i < p_amount; i++) { w[i].active = false; } } particle_data.resize((8 + 4 + 4) * p_amount); RS::get_singleton()->multimesh_allocate_data(multimesh, p_amount, RS::MULTIMESH_TRANSFORM_2D, true, true); particle_order.resize(p_amount); } void CPUParticles2D::set_lifetime(double p_lifetime) { ERR_FAIL_COND_MSG(p_lifetime <= 0, "Particles lifetime must be greater than 0."); lifetime = p_lifetime; } void CPUParticles2D::set_one_shot(bool p_one_shot) { one_shot = p_one_shot; } void CPUParticles2D::set_pre_process_time(double p_time) { pre_process_time = p_time; } void CPUParticles2D::set_explosiveness_ratio(real_t p_ratio) { explosiveness_ratio = p_ratio; } void CPUParticles2D::set_randomness_ratio(real_t p_ratio) { randomness_ratio = p_ratio; } void CPUParticles2D::set_lifetime_randomness(double p_random) { lifetime_randomness = p_random; } void CPUParticles2D::set_use_local_coordinates(bool p_enable) { local_coords = p_enable; set_notify_transform(!p_enable); } void CPUParticles2D::set_speed_scale(double p_scale) { speed_scale = p_scale; } bool CPUParticles2D::is_emitting() const { return emitting; } int CPUParticles2D::get_amount() const { return particles.size(); } double CPUParticles2D::get_lifetime() const { return lifetime; } bool CPUParticles2D::get_one_shot() const { return one_shot; } double CPUParticles2D::get_pre_process_time() const { return pre_process_time; } real_t CPUParticles2D::get_explosiveness_ratio() const { return explosiveness_ratio; } real_t CPUParticles2D::get_randomness_ratio() const { return randomness_ratio; } double CPUParticles2D::get_lifetime_randomness() const { return lifetime_randomness; } bool CPUParticles2D::get_use_local_coordinates() const { return local_coords; } double CPUParticles2D::get_speed_scale() const { return speed_scale; } void CPUParticles2D::set_draw_order(DrawOrder p_order) { draw_order = p_order; } CPUParticles2D::DrawOrder CPUParticles2D::get_draw_order() const { return draw_order; } void CPUParticles2D::_update_mesh_texture() { Size2 tex_size; if (texture.is_valid()) { tex_size = texture->get_size(); } else { tex_size = Size2(1, 1); } Vector vertices = { -tex_size * 0.5, -tex_size * 0.5 + Vector2(tex_size.x, 0), -tex_size * 0.5 + tex_size, -tex_size * 0.5 + Vector2(0, tex_size.y) }; Vector uvs; AtlasTexture *atlas_texure = Object::cast_to(*texture); if (atlas_texure && atlas_texure->get_atlas().is_valid()) { Rect2 region_rect = atlas_texure->get_region(); Size2 atlas_size = atlas_texure->get_atlas()->get_size(); uvs.push_back(Vector2(region_rect.position.x / atlas_size.x, region_rect.position.y / atlas_size.y)); uvs.push_back(Vector2((region_rect.position.x + region_rect.size.x) / atlas_size.x, region_rect.position.y / atlas_size.y)); uvs.push_back(Vector2((region_rect.position.x + region_rect.size.x) / atlas_size.x, (region_rect.position.y + region_rect.size.y) / atlas_size.y)); uvs.push_back(Vector2(region_rect.position.x / atlas_size.x, (region_rect.position.y + region_rect.size.y) / atlas_size.y)); } else { uvs.push_back(Vector2(0, 0)); uvs.push_back(Vector2(1, 0)); uvs.push_back(Vector2(1, 1)); uvs.push_back(Vector2(0, 1)); } Vector colors = { Color(1, 1, 1, 1), Color(1, 1, 1, 1), Color(1, 1, 1, 1), Color(1, 1, 1, 1) }; Vector indices = { 0, 1, 2, 2, 3, 0 }; Array arr; arr.resize(RS::ARRAY_MAX); arr[RS::ARRAY_VERTEX] = vertices; arr[RS::ARRAY_TEX_UV] = uvs; arr[RS::ARRAY_COLOR] = colors; arr[RS::ARRAY_INDEX] = indices; RS::get_singleton()->mesh_clear(mesh); RS::get_singleton()->mesh_add_surface_from_arrays(mesh, RS::PRIMITIVE_TRIANGLES, arr); } void CPUParticles2D::set_texture(const Ref &p_texture) { if (p_texture == texture) { return; } if (texture.is_valid()) { texture->disconnect(CoreStringNames::get_singleton()->changed, callable_mp(this, &CPUParticles2D::_texture_changed)); } texture = p_texture; if (texture.is_valid()) { texture->connect(CoreStringNames::get_singleton()->changed, callable_mp(this, &CPUParticles2D::_texture_changed)); } queue_redraw(); _update_mesh_texture(); } void CPUParticles2D::_texture_changed() { if (texture.is_valid()) { queue_redraw(); _update_mesh_texture(); } } Ref CPUParticles2D::get_texture() const { return texture; } void CPUParticles2D::set_fixed_fps(int p_count) { fixed_fps = p_count; } int CPUParticles2D::get_fixed_fps() const { return fixed_fps; } void CPUParticles2D::set_fractional_delta(bool p_enable) { fractional_delta = p_enable; } bool CPUParticles2D::get_fractional_delta() const { return fractional_delta; } PackedStringArray CPUParticles2D::get_configuration_warnings() const { PackedStringArray warnings = Node2D::get_configuration_warnings(); CanvasItemMaterial *mat = Object::cast_to(get_material().ptr()); if (get_material().is_null() || (mat && !mat->get_particles_animation())) { if (get_param_max(PARAM_ANIM_SPEED) != 0.0 || get_param_max(PARAM_ANIM_OFFSET) != 0.0 || get_param_curve(PARAM_ANIM_SPEED).is_valid() || get_param_curve(PARAM_ANIM_OFFSET).is_valid()) { warnings.push_back(RTR("CPUParticles2D animation requires the usage of a CanvasItemMaterial with \"Particles Animation\" enabled.")); } } return warnings; } void CPUParticles2D::restart() { time = 0; inactive_time = 0; frame_remainder = 0; cycle = 0; emitting = false; { int pc = particles.size(); Particle *w = particles.ptrw(); for (int i = 0; i < pc; i++) { w[i].active = false; } } set_emitting(true); } void CPUParticles2D::set_direction(Vector2 p_direction) { direction = p_direction; } Vector2 CPUParticles2D::get_direction() const { return direction; } void CPUParticles2D::set_spread(real_t p_spread) { spread = p_spread; } real_t CPUParticles2D::get_spread() const { return spread; } void CPUParticles2D::set_param_min(Parameter p_param, real_t p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); parameters_min[p_param] = p_value; if (parameters_min[p_param] > parameters_max[p_param]) { set_param_max(p_param, p_value); } } real_t CPUParticles2D::get_param_min(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return parameters_min[p_param]; } void CPUParticles2D::set_param_max(Parameter p_param, real_t p_value) { ERR_FAIL_INDEX(p_param, PARAM_MAX); parameters_max[p_param] = p_value; if (parameters_min[p_param] > parameters_max[p_param]) { set_param_min(p_param, p_value); } update_configuration_warnings(); } real_t CPUParticles2D::get_param_max(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0); return parameters_max[p_param]; } static void _adjust_curve_range(const Ref &p_curve, real_t p_min, real_t p_max) { Ref curve = p_curve; if (!curve.is_valid()) { return; } curve->ensure_default_setup(p_min, p_max); } void CPUParticles2D::set_param_curve(Parameter p_param, const Ref &p_curve) { ERR_FAIL_INDEX(p_param, PARAM_MAX); curve_parameters[p_param] = p_curve; switch (p_param) { case PARAM_INITIAL_LINEAR_VELOCITY: { //do none for this one } break; case PARAM_ANGULAR_VELOCITY: { _adjust_curve_range(p_curve, -360, 360); } break; case PARAM_ORBIT_VELOCITY: { _adjust_curve_range(p_curve, -500, 500); } break; case PARAM_LINEAR_ACCEL: { _adjust_curve_range(p_curve, -200, 200); } break; case PARAM_RADIAL_ACCEL: { _adjust_curve_range(p_curve, -200, 200); } break; case PARAM_TANGENTIAL_ACCEL: { _adjust_curve_range(p_curve, -200, 200); } break; case PARAM_DAMPING: { _adjust_curve_range(p_curve, 0, 100); } break; case PARAM_ANGLE: { _adjust_curve_range(p_curve, -360, 360); } break; case PARAM_SCALE: { } break; case PARAM_HUE_VARIATION: { _adjust_curve_range(p_curve, -1, 1); } break; case PARAM_ANIM_SPEED: { _adjust_curve_range(p_curve, 0, 200); } break; case PARAM_ANIM_OFFSET: { } break; default: { } } update_configuration_warnings(); } Ref CPUParticles2D::get_param_curve(Parameter p_param) const { ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref()); return curve_parameters[p_param]; } void CPUParticles2D::set_color(const Color &p_color) { color = p_color; } Color CPUParticles2D::get_color() const { return color; } void CPUParticles2D::set_color_ramp(const Ref &p_ramp) { color_ramp = p_ramp; } Ref CPUParticles2D::get_color_ramp() const { return color_ramp; } void CPUParticles2D::set_color_initial_ramp(const Ref &p_ramp) { color_initial_ramp = p_ramp; } Ref CPUParticles2D::get_color_initial_ramp() const { return color_initial_ramp; } void CPUParticles2D::set_particle_flag(ParticleFlags p_particle_flag, bool p_enable) { ERR_FAIL_INDEX(p_particle_flag, PARTICLE_FLAG_MAX); particle_flags[p_particle_flag] = p_enable; } bool CPUParticles2D::get_particle_flag(ParticleFlags p_particle_flag) const { ERR_FAIL_INDEX_V(p_particle_flag, PARTICLE_FLAG_MAX, false); return particle_flags[p_particle_flag]; } void CPUParticles2D::set_emission_shape(EmissionShape p_shape) { ERR_FAIL_INDEX(p_shape, EMISSION_SHAPE_MAX); emission_shape = p_shape; notify_property_list_changed(); } void CPUParticles2D::set_emission_sphere_radius(real_t p_radius) { emission_sphere_radius = p_radius; } void CPUParticles2D::set_emission_rect_extents(Vector2 p_extents) { emission_rect_extents = p_extents; } void CPUParticles2D::set_emission_points(const Vector &p_points) { emission_points = p_points; } void CPUParticles2D::set_emission_normals(const Vector &p_normals) { emission_normals = p_normals; } void CPUParticles2D::set_emission_colors(const Vector &p_colors) { emission_colors = p_colors; } real_t CPUParticles2D::get_emission_sphere_radius() const { return emission_sphere_radius; } Vector2 CPUParticles2D::get_emission_rect_extents() const { return emission_rect_extents; } Vector CPUParticles2D::get_emission_points() const { return emission_points; } Vector CPUParticles2D::get_emission_normals() const { return emission_normals; } Vector CPUParticles2D::get_emission_colors() const { return emission_colors; } CPUParticles2D::EmissionShape CPUParticles2D::get_emission_shape() const { return emission_shape; } void CPUParticles2D::set_gravity(const Vector2 &p_gravity) { gravity = p_gravity; } Vector2 CPUParticles2D::get_gravity() const { return gravity; } void CPUParticles2D::set_scale_curve_x(Ref p_scale_curve) { scale_curve_x = p_scale_curve; } void CPUParticles2D::set_scale_curve_y(Ref p_scale_curve) { scale_curve_y = p_scale_curve; } void CPUParticles2D::set_split_scale(bool p_split_scale) { split_scale = p_split_scale; notify_property_list_changed(); } Ref CPUParticles2D::get_scale_curve_x() const { return scale_curve_x; } Ref CPUParticles2D::get_scale_curve_y() const { return scale_curve_y; } bool CPUParticles2D::get_split_scale() { return split_scale; } void CPUParticles2D::_validate_property(PropertyInfo &p_property) const { if (p_property.name == "emission_sphere_radius" && (emission_shape != EMISSION_SHAPE_SPHERE && emission_shape != EMISSION_SHAPE_SPHERE_SURFACE)) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_rect_extents" && emission_shape != EMISSION_SHAPE_RECTANGLE) { p_property.usage = PROPERTY_USAGE_NONE; } if ((p_property.name == "emission_point_texture" || p_property.name == "emission_color_texture") && (emission_shape < EMISSION_SHAPE_POINTS)) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_points" && emission_shape != EMISSION_SHAPE_POINTS && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name == "emission_colors" && emission_shape != EMISSION_SHAPE_POINTS && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) { p_property.usage = PROPERTY_USAGE_NONE; } if (p_property.name.begins_with("scale_curve_") && !split_scale) { p_property.usage = PROPERTY_USAGE_NONE; } } static uint32_t idhash(uint32_t x) { x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b); x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b); x = (x >> uint32_t(16)) ^ x; return x; } static real_t rand_from_seed(uint32_t &seed) { int k; int s = int(seed); if (s == 0) { s = 305420679; } k = s / 127773; s = 16807 * (s - k * 127773) - 2836 * k; if (s < 0) { s += 2147483647; } seed = uint32_t(s); return (seed % uint32_t(65536)) / 65535.0; } void CPUParticles2D::_update_internal() { if (particles.size() == 0 || !is_visible_in_tree()) { _set_do_redraw(false); return; } double delta = get_process_delta_time(); if (emitting) { inactive_time = 0; } else { inactive_time += delta; if (inactive_time > lifetime * 1.2) { set_process_internal(false); _set_do_redraw(false); //reset variables time = 0; inactive_time = 0; frame_remainder = 0; cycle = 0; return; } } _set_do_redraw(true); if (time == 0 && pre_process_time > 0.0) { double frame_time; if (fixed_fps > 0) { frame_time = 1.0 / fixed_fps; } else { frame_time = 1.0 / 30.0; } double todo = pre_process_time; while (todo >= 0) { _particles_process(frame_time); todo -= frame_time; } } if (fixed_fps > 0) { double frame_time = 1.0 / fixed_fps; double decr = frame_time; double ldelta = delta; if (ldelta > 0.1) { //avoid recursive stalls if fps goes below 10 ldelta = 0.1; } else if (ldelta <= 0.0) { //unlikely but.. ldelta = 0.001; } double todo = frame_remainder + ldelta; while (todo >= frame_time) { _particles_process(frame_time); todo -= decr; } frame_remainder = todo; } else { _particles_process(delta); } _update_particle_data_buffer(); } void CPUParticles2D::_particles_process(double p_delta) { p_delta *= speed_scale; int pcount = particles.size(); Particle *w = particles.ptrw(); Particle *parray = w; double prev_time = time; time += p_delta; if (time > lifetime) { time = Math::fmod(time, lifetime); cycle++; if (one_shot && cycle > 0) { set_emitting(false); notify_property_list_changed(); } } Transform2D emission_xform; Transform2D velocity_xform; if (!local_coords) { emission_xform = get_global_transform(); velocity_xform = emission_xform; velocity_xform[2] = Vector2(); } double system_phase = time / lifetime; for (int i = 0; i < pcount; i++) { Particle &p = parray[i]; if (!emitting && !p.active) { continue; } double local_delta = p_delta; // The phase is a ratio between 0 (birth) and 1 (end of life) for each particle. // While we use time in tests later on, for randomness we use the phase as done in the // original shader code, and we later multiply by lifetime to get the time. double restart_phase = double(i) / double(pcount); if (randomness_ratio > 0.0) { uint32_t seed = cycle; if (restart_phase >= system_phase) { seed -= uint32_t(1); } seed *= uint32_t(pcount); seed += uint32_t(i); double random = double(idhash(seed) % uint32_t(65536)) / 65536.0; restart_phase += randomness_ratio * random * 1.0 / double(pcount); } restart_phase *= (1.0 - explosiveness_ratio); double restart_time = restart_phase * lifetime; bool restart = false; if (time > prev_time) { // restart_time >= prev_time is used so particles emit in the first frame they are processed if (restart_time >= prev_time && restart_time < time) { restart = true; if (fractional_delta) { local_delta = time - restart_time; } } } else if (local_delta > 0.0) { if (restart_time >= prev_time) { restart = true; if (fractional_delta) { local_delta = lifetime - restart_time + time; } } else if (restart_time < time) { restart = true; if (fractional_delta) { local_delta = time - restart_time; } } } if (p.time * (1.0 - explosiveness_ratio) > p.lifetime) { restart = true; } float tv = 0.0; if (restart) { if (!emitting) { p.active = false; continue; } p.active = true; /*real_t tex_linear_velocity = 0; if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->sample(0); }*/ real_t tex_angle = 0.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_angle = curve_parameters[PARAM_ANGLE]->sample(tv); } real_t tex_anim_offset = 0.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_anim_offset = curve_parameters[PARAM_ANGLE]->sample(tv); } p.seed = Math::rand(); p.angle_rand = Math::randf(); p.scale_rand = Math::randf(); p.hue_rot_rand = Math::randf(); p.anim_offset_rand = Math::randf(); if (color_initial_ramp.is_valid()) { p.start_color_rand = color_initial_ramp->get_color_at_offset(Math::randf()); } else { p.start_color_rand = Color(1, 1, 1, 1); } real_t angle1_rad = direction.angle() + Math::deg_to_rad((Math::randf() * 2.0 - 1.0) * spread); Vector2 rot = Vector2(Math::cos(angle1_rad), Math::sin(angle1_rad)); p.velocity = rot * Math::lerp(parameters_min[PARAM_INITIAL_LINEAR_VELOCITY], parameters_max[PARAM_INITIAL_LINEAR_VELOCITY], (real_t)Math::randf()); real_t base_angle = tex_angle * Math::lerp(parameters_min[PARAM_ANGLE], parameters_max[PARAM_ANGLE], p.angle_rand); p.rotation = Math::deg_to_rad(base_angle); p.custom[0] = 0.0; // unused p.custom[1] = 0.0; // phase [0..1] p.custom[2] = tex_anim_offset * Math::lerp(parameters_min[PARAM_ANIM_OFFSET], parameters_max[PARAM_ANIM_OFFSET], p.anim_offset_rand); p.custom[3] = 0.0; p.transform = Transform2D(); p.time = 0; p.lifetime = lifetime * (1.0 - Math::randf() * lifetime_randomness); p.base_color = Color(1, 1, 1, 1); switch (emission_shape) { case EMISSION_SHAPE_POINT: { //do none } break; case EMISSION_SHAPE_SPHERE: { real_t t = Math_TAU * Math::randf(); real_t radius = emission_sphere_radius * Math::randf(); p.transform[2] = Vector2(Math::cos(t), Math::sin(t)) * radius; } break; case EMISSION_SHAPE_SPHERE_SURFACE: { real_t s = Math::randf(), t = Math_TAU * Math::randf(); real_t radius = emission_sphere_radius * Math::sqrt(1.0 - s * s); p.transform[2] = Vector2(Math::cos(t), Math::sin(t)) * radius; } break; case EMISSION_SHAPE_RECTANGLE: { p.transform[2] = Vector2(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0) * emission_rect_extents; } break; case EMISSION_SHAPE_POINTS: case EMISSION_SHAPE_DIRECTED_POINTS: { int pc = emission_points.size(); if (pc == 0) { break; } int random_idx = Math::rand() % pc; p.transform[2] = emission_points.get(random_idx); if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS && emission_normals.size() == pc) { Vector2 normal = emission_normals.get(random_idx); Transform2D m2; m2.columns[0] = normal; m2.columns[1] = normal.orthogonal(); p.velocity = m2.basis_xform(p.velocity); } if (emission_colors.size() == pc) { p.base_color = emission_colors.get(random_idx); } } break; case EMISSION_SHAPE_MAX: { // Max value for validity check. break; } } if (!local_coords) { p.velocity = velocity_xform.xform(p.velocity); p.transform = emission_xform * p.transform; } } else if (!p.active) { continue; } else if (p.time > p.lifetime) { p.active = false; tv = 1.0; } else { uint32_t alt_seed = p.seed; p.time += local_delta; p.custom[1] = p.time / lifetime; tv = p.time / p.lifetime; real_t tex_linear_velocity = 1.0; if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->sample(tv); } real_t tex_orbit_velocity = 1.0; if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) { tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->sample(tv); } real_t tex_angular_velocity = 1.0; if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) { tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->sample(tv); } real_t tex_linear_accel = 1.0; if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) { tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->sample(tv); } real_t tex_tangential_accel = 1.0; if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) { tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->sample(tv); } real_t tex_radial_accel = 1.0; if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) { tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->sample(tv); } real_t tex_damping = 1.0; if (curve_parameters[PARAM_DAMPING].is_valid()) { tex_damping = curve_parameters[PARAM_DAMPING]->sample(tv); } real_t tex_angle = 1.0; if (curve_parameters[PARAM_ANGLE].is_valid()) { tex_angle = curve_parameters[PARAM_ANGLE]->sample(tv); } real_t tex_anim_speed = 1.0; if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) { tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->sample(tv); } real_t tex_anim_offset = 1.0; if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) { tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->sample(tv); } Vector2 force = gravity; Vector2 pos = p.transform[2]; //apply linear acceleration force += p.velocity.length() > 0.0 ? p.velocity.normalized() * tex_linear_accel * Math::lerp(parameters_min[PARAM_LINEAR_ACCEL], parameters_max[PARAM_LINEAR_ACCEL], rand_from_seed(alt_seed)) : Vector2(); //apply radial acceleration Vector2 org = emission_xform[2]; Vector2 diff = pos - org; force += diff.length() > 0.0 ? diff.normalized() * (tex_radial_accel)*Math::lerp(parameters_min[PARAM_RADIAL_ACCEL], parameters_max[PARAM_RADIAL_ACCEL], rand_from_seed(alt_seed)) : Vector2(); //apply tangential acceleration; Vector2 yx = Vector2(diff.y, diff.x); force += yx.length() > 0.0 ? yx.normalized() * (tex_tangential_accel * Math::lerp(parameters_min[PARAM_TANGENTIAL_ACCEL], parameters_max[PARAM_TANGENTIAL_ACCEL], rand_from_seed(alt_seed))) : Vector2(); //apply attractor forces p.velocity += force * local_delta; //orbit velocity real_t orbit_amount = tex_orbit_velocity * Math::lerp(parameters_min[PARAM_ORBIT_VELOCITY], parameters_max[PARAM_ORBIT_VELOCITY], rand_from_seed(alt_seed)); if (orbit_amount != 0.0) { real_t ang = orbit_amount * local_delta * Math_TAU; // Not sure why the ParticleProcessMaterial code uses a clockwise rotation matrix, // but we use -ang here to reproduce its behavior. Transform2D rot = Transform2D(-ang, Vector2()); p.transform[2] -= diff; p.transform[2] += rot.basis_xform(diff); } if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) { p.velocity = p.velocity.normalized() * tex_linear_velocity; } if (parameters_max[PARAM_DAMPING] + tex_damping > 0.0) { real_t v = p.velocity.length(); real_t damp = tex_damping * Math::lerp(parameters_min[PARAM_DAMPING], parameters_max[PARAM_DAMPING], rand_from_seed(alt_seed)); v -= damp * local_delta; if (v < 0.0) { p.velocity = Vector2(); } else { p.velocity = p.velocity.normalized() * v; } } real_t base_angle = (tex_angle)*Math::lerp(parameters_min[PARAM_ANGLE], parameters_max[PARAM_ANGLE], p.angle_rand); base_angle += p.custom[1] * lifetime * tex_angular_velocity * Math::lerp(parameters_min[PARAM_ANGULAR_VELOCITY], parameters_max[PARAM_ANGULAR_VELOCITY], rand_from_seed(alt_seed)); p.rotation = Math::deg_to_rad(base_angle); //angle p.custom[2] = tex_anim_offset * Math::lerp(parameters_min[PARAM_ANIM_OFFSET], parameters_max[PARAM_ANIM_OFFSET], p.anim_offset_rand) + tv * tex_anim_speed * Math::lerp(parameters_min[PARAM_ANIM_SPEED], parameters_max[PARAM_ANIM_SPEED], rand_from_seed(alt_seed)); } //apply color //apply hue rotation Vector2 tex_scale = Vector2(1.0, 1.0); if (split_scale) { if (scale_curve_x.is_valid()) { tex_scale.x = scale_curve_x->sample(tv); } else { tex_scale.x = 1.0; } if (scale_curve_y.is_valid()) { tex_scale.y = scale_curve_y->sample(tv); } else { tex_scale.y = 1.0; } } else { if (curve_parameters[PARAM_SCALE].is_valid()) { real_t tmp_scale = curve_parameters[PARAM_SCALE]->sample(tv); tex_scale.x = tmp_scale; tex_scale.y = tmp_scale; } } real_t tex_hue_variation = 0.0; if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) { tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->sample(tv); } real_t hue_rot_angle = (tex_hue_variation)*Math_TAU * Math::lerp(parameters_min[PARAM_HUE_VARIATION], parameters_max[PARAM_HUE_VARIATION], p.hue_rot_rand); real_t hue_rot_c = Math::cos(hue_rot_angle); real_t hue_rot_s = Math::sin(hue_rot_angle); Basis hue_rot_mat; { Basis mat1(0.299, 0.587, 0.114, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114); Basis mat2(0.701, -0.587, -0.114, -0.299, 0.413, -0.114, -0.300, -0.588, 0.886); Basis mat3(0.168, 0.330, -0.497, -0.328, 0.035, 0.292, 1.250, -1.050, -0.203); for (int j = 0; j < 3; j++) { hue_rot_mat[j] = mat1[j] + mat2[j] * hue_rot_c + mat3[j] * hue_rot_s; } } if (color_ramp.is_valid()) { p.color = color_ramp->get_color_at_offset(tv) * color; } else { p.color = color; } Vector3 color_rgb = hue_rot_mat.xform_inv(Vector3(p.color.r, p.color.g, p.color.b)); p.color.r = color_rgb.x; p.color.g = color_rgb.y; p.color.b = color_rgb.z; p.color *= p.base_color * p.start_color_rand; if (particle_flags[PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY]) { if (p.velocity.length() > 0.0) { p.transform.columns[1] = p.velocity.normalized(); p.transform.columns[0] = p.transform.columns[1].orthogonal(); } } else { p.transform.columns[0] = Vector2(Math::cos(p.rotation), -Math::sin(p.rotation)); p.transform.columns[1] = Vector2(Math::sin(p.rotation), Math::cos(p.rotation)); } //scale by scale Vector2 base_scale = tex_scale * Math::lerp(parameters_min[PARAM_SCALE], parameters_max[PARAM_SCALE], p.scale_rand); if (base_scale.x < 0.00001) { base_scale.x = 0.00001; } if (base_scale.y < 0.00001) { base_scale.y = 0.00001; } p.transform.columns[0] *= base_scale.x; p.transform.columns[1] *= base_scale.y; p.transform[2] += p.velocity * local_delta; } } void CPUParticles2D::_update_particle_data_buffer() { MutexLock lock(update_mutex); int pc = particles.size(); int *ow; int *order = nullptr; float *w = particle_data.ptrw(); const Particle *r = particles.ptr(); float *ptr = w; if (draw_order != DRAW_ORDER_INDEX) { ow = particle_order.ptrw(); order = ow; for (int i = 0; i < pc; i++) { order[i] = i; } if (draw_order == DRAW_ORDER_LIFETIME) { SortArray sorter; sorter.compare.particles = r; sorter.sort(order, pc); } } for (int i = 0; i < pc; i++) { int idx = order ? order[i] : i; Transform2D t = r[idx].transform; if (!local_coords) { t = inv_emission_transform * t; } if (r[idx].active) { ptr[0] = t.columns[0][0]; ptr[1] = t.columns[1][0]; ptr[2] = 0; ptr[3] = t.columns[2][0]; ptr[4] = t.columns[0][1]; ptr[5] = t.columns[1][1]; ptr[6] = 0; ptr[7] = t.columns[2][1]; } else { memset(ptr, 0, sizeof(float) * 8); } Color c = r[idx].color; ptr[8] = c.r; ptr[9] = c.g; ptr[10] = c.b; ptr[11] = c.a; ptr[12] = r[idx].custom[0]; ptr[13] = r[idx].custom[1]; ptr[14] = r[idx].custom[2]; ptr[15] = r[idx].custom[3]; ptr += 16; } } void CPUParticles2D::_set_do_redraw(bool p_do_redraw) { if (do_redraw == p_do_redraw) { return; } do_redraw = p_do_redraw; { MutexLock lock(update_mutex); if (do_redraw) { RS::get_singleton()->connect("frame_pre_draw", callable_mp(this, &CPUParticles2D::_update_render_thread)); RS::get_singleton()->canvas_item_set_update_when_visible(get_canvas_item(), true); RS::get_singleton()->multimesh_set_visible_instances(multimesh, -1); } else { if (RS::get_singleton()->is_connected("frame_pre_draw", callable_mp(this, &CPUParticles2D::_update_render_thread))) { RS::get_singleton()->disconnect("frame_pre_draw", callable_mp(this, &CPUParticles2D::_update_render_thread)); } RS::get_singleton()->canvas_item_set_update_when_visible(get_canvas_item(), false); RS::get_singleton()->multimesh_set_visible_instances(multimesh, 0); } } queue_redraw(); // redraw to update render list } void CPUParticles2D::_update_render_thread() { MutexLock lock(update_mutex); RS::get_singleton()->multimesh_set_buffer(multimesh, particle_data); } void CPUParticles2D::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: { set_process_internal(emitting); } break; case NOTIFICATION_EXIT_TREE: { _set_do_redraw(false); } break; case NOTIFICATION_DRAW: { // first update before rendering to avoid one frame delay after emitting starts if (emitting && (time == 0)) { _update_internal(); } if (!do_redraw) { return; // don't add to render list } RID texrid; if (texture.is_valid()) { texrid = texture->get_rid(); } RS::get_singleton()->canvas_item_add_multimesh(get_canvas_item(), multimesh, texrid); } break; case NOTIFICATION_INTERNAL_PROCESS: { _update_internal(); } break; case NOTIFICATION_TRANSFORM_CHANGED: { inv_emission_transform = get_global_transform().affine_inverse(); if (!local_coords) { int pc = particles.size(); float *w = particle_data.ptrw(); const Particle *r = particles.ptr(); float *ptr = w; for (int i = 0; i < pc; i++) { Transform2D t = inv_emission_transform * r[i].transform; if (r[i].active) { ptr[0] = t.columns[0][0]; ptr[1] = t.columns[1][0]; ptr[2] = 0; ptr[3] = t.columns[2][0]; ptr[4] = t.columns[0][1]; ptr[5] = t.columns[1][1]; ptr[6] = 0; ptr[7] = t.columns[2][1]; } else { memset(ptr, 0, sizeof(float) * 8); } ptr += 16; } } } break; } } void CPUParticles2D::convert_from_particles(Node *p_particles) { GPUParticles2D *gpu_particles = Object::cast_to(p_particles); ERR_FAIL_COND_MSG(!gpu_particles, "Only GPUParticles2D nodes can be converted to CPUParticles2D."); set_emitting(gpu_particles->is_emitting()); set_amount(gpu_particles->get_amount()); set_lifetime(gpu_particles->get_lifetime()); set_one_shot(gpu_particles->get_one_shot()); set_pre_process_time(gpu_particles->get_pre_process_time()); set_explosiveness_ratio(gpu_particles->get_explosiveness_ratio()); set_randomness_ratio(gpu_particles->get_randomness_ratio()); set_use_local_coordinates(gpu_particles->get_use_local_coordinates()); set_fixed_fps(gpu_particles->get_fixed_fps()); set_fractional_delta(gpu_particles->get_fractional_delta()); set_speed_scale(gpu_particles->get_speed_scale()); set_draw_order(DrawOrder(gpu_particles->get_draw_order())); set_texture(gpu_particles->get_texture()); Ref mat = gpu_particles->get_material(); if (mat.is_valid()) { set_material(mat); } Ref proc_mat = gpu_particles->get_process_material(); if (proc_mat.is_null()) { return; } Vector3 dir = proc_mat->get_direction(); set_direction(Vector2(dir.x, dir.y)); set_spread(proc_mat->get_spread()); set_color(proc_mat->get_color()); Ref gt = proc_mat->get_color_ramp(); if (gt.is_valid()) { set_color_ramp(gt->get_gradient()); } Ref gti = proc_mat->get_color_initial_ramp(); if (gti.is_valid()) { set_color_initial_ramp(gti->get_gradient()); } set_particle_flag(PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY, proc_mat->get_particle_flag(ParticleProcessMaterial::PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY)); set_emission_shape(EmissionShape(proc_mat->get_emission_shape())); set_emission_sphere_radius(proc_mat->get_emission_sphere_radius()); Vector2 rect_extents = Vector2(proc_mat->get_emission_box_extents().x, proc_mat->get_emission_box_extents().y); set_emission_rect_extents(rect_extents); Ref scale3D = proc_mat->get_param_texture(ParticleProcessMaterial::PARAM_SCALE); if (scale3D.is_valid()) { split_scale = true; scale_curve_x = scale3D->get_curve_x(); scale_curve_y = scale3D->get_curve_y(); } set_gravity(Vector2(proc_mat->get_gravity().x, proc_mat->get_gravity().y)); set_lifetime_randomness(proc_mat->get_lifetime_randomness()); #define CONVERT_PARAM(m_param) \ set_param_min(m_param, proc_mat->get_param_min(ParticleProcessMaterial::m_param)); \ { \ Ref ctex = proc_mat->get_param_texture(ParticleProcessMaterial::m_param); \ if (ctex.is_valid()) \ set_param_curve(m_param, ctex->get_curve()); \ } \ set_param_max(m_param, proc_mat->get_param_max(ParticleProcessMaterial::m_param)); CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY); CONVERT_PARAM(PARAM_ANGULAR_VELOCITY); CONVERT_PARAM(PARAM_ORBIT_VELOCITY); CONVERT_PARAM(PARAM_LINEAR_ACCEL); CONVERT_PARAM(PARAM_RADIAL_ACCEL); CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL); CONVERT_PARAM(PARAM_DAMPING); CONVERT_PARAM(PARAM_ANGLE); CONVERT_PARAM(PARAM_SCALE); CONVERT_PARAM(PARAM_HUE_VARIATION); CONVERT_PARAM(PARAM_ANIM_SPEED); CONVERT_PARAM(PARAM_ANIM_OFFSET); #undef CONVERT_PARAM } void CPUParticles2D::_bind_methods() { ClassDB::bind_method(D_METHOD("set_emitting", "emitting"), &CPUParticles2D::set_emitting); ClassDB::bind_method(D_METHOD("set_amount", "amount"), &CPUParticles2D::set_amount); ClassDB::bind_method(D_METHOD("set_lifetime", "secs"), &CPUParticles2D::set_lifetime); ClassDB::bind_method(D_METHOD("set_one_shot", "enable"), &CPUParticles2D::set_one_shot); ClassDB::bind_method(D_METHOD("set_pre_process_time", "secs"), &CPUParticles2D::set_pre_process_time); ClassDB::bind_method(D_METHOD("set_explosiveness_ratio", "ratio"), &CPUParticles2D::set_explosiveness_ratio); ClassDB::bind_method(D_METHOD("set_randomness_ratio", "ratio"), &CPUParticles2D::set_randomness_ratio); ClassDB::bind_method(D_METHOD("set_lifetime_randomness", "random"), &CPUParticles2D::set_lifetime_randomness); ClassDB::bind_method(D_METHOD("set_use_local_coordinates", "enable"), &CPUParticles2D::set_use_local_coordinates); ClassDB::bind_method(D_METHOD("set_fixed_fps", "fps"), &CPUParticles2D::set_fixed_fps); ClassDB::bind_method(D_METHOD("set_fractional_delta", "enable"), &CPUParticles2D::set_fractional_delta); ClassDB::bind_method(D_METHOD("set_speed_scale", "scale"), &CPUParticles2D::set_speed_scale); ClassDB::bind_method(D_METHOD("is_emitting"), &CPUParticles2D::is_emitting); ClassDB::bind_method(D_METHOD("get_amount"), &CPUParticles2D::get_amount); ClassDB::bind_method(D_METHOD("get_lifetime"), &CPUParticles2D::get_lifetime); ClassDB::bind_method(D_METHOD("get_one_shot"), &CPUParticles2D::get_one_shot); ClassDB::bind_method(D_METHOD("get_pre_process_time"), &CPUParticles2D::get_pre_process_time); ClassDB::bind_method(D_METHOD("get_explosiveness_ratio"), &CPUParticles2D::get_explosiveness_ratio); ClassDB::bind_method(D_METHOD("get_randomness_ratio"), &CPUParticles2D::get_randomness_ratio); ClassDB::bind_method(D_METHOD("get_lifetime_randomness"), &CPUParticles2D::get_lifetime_randomness); ClassDB::bind_method(D_METHOD("get_use_local_coordinates"), &CPUParticles2D::get_use_local_coordinates); ClassDB::bind_method(D_METHOD("get_fixed_fps"), &CPUParticles2D::get_fixed_fps); ClassDB::bind_method(D_METHOD("get_fractional_delta"), &CPUParticles2D::get_fractional_delta); ClassDB::bind_method(D_METHOD("get_speed_scale"), &CPUParticles2D::get_speed_scale); ClassDB::bind_method(D_METHOD("set_draw_order", "order"), &CPUParticles2D::set_draw_order); ClassDB::bind_method(D_METHOD("get_draw_order"), &CPUParticles2D::get_draw_order); ClassDB::bind_method(D_METHOD("set_texture", "texture"), &CPUParticles2D::set_texture); ClassDB::bind_method(D_METHOD("get_texture"), &CPUParticles2D::get_texture); ClassDB::bind_method(D_METHOD("restart"), &CPUParticles2D::restart); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emitting"), "set_emitting", "is_emitting"); ADD_PROPERTY(PropertyInfo(Variant::INT, "amount", PROPERTY_HINT_RANGE, "1,1000000,1,exp"), "set_amount", "get_amount"); ADD_GROUP("Time", ""); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lifetime", PROPERTY_HINT_RANGE, "0.01,600.0,0.01,or_greater,suffix:s"), "set_lifetime", "get_lifetime"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "one_shot"), "set_one_shot", "get_one_shot"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "preprocess", PROPERTY_HINT_RANGE, "0.00,600.0,0.01,suffix:s"), "set_pre_process_time", "get_pre_process_time"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "speed_scale", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_speed_scale", "get_speed_scale"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_explosiveness_ratio", "get_explosiveness_ratio"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_randomness_ratio", "get_randomness_ratio"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lifetime_randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_lifetime_randomness", "get_lifetime_randomness"); ADD_PROPERTY(PropertyInfo(Variant::INT, "fixed_fps", PROPERTY_HINT_RANGE, "0,1000,1,suffix:FPS"), "set_fixed_fps", "get_fixed_fps"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fract_delta"), "set_fractional_delta", "get_fractional_delta"); ADD_GROUP("Drawing", ""); // No visibility_rect property contrarily to Particles2D, it's updated automatically. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "local_coords"), "set_use_local_coordinates", "get_use_local_coordinates"); ADD_PROPERTY(PropertyInfo(Variant::INT, "draw_order", PROPERTY_HINT_ENUM, "Index,Lifetime"), "set_draw_order", "get_draw_order"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture2D"), "set_texture", "get_texture"); BIND_ENUM_CONSTANT(DRAW_ORDER_INDEX); BIND_ENUM_CONSTANT(DRAW_ORDER_LIFETIME); //////////////////////////////// ClassDB::bind_method(D_METHOD("set_direction", "direction"), &CPUParticles2D::set_direction); ClassDB::bind_method(D_METHOD("get_direction"), &CPUParticles2D::get_direction); ClassDB::bind_method(D_METHOD("set_spread", "spread"), &CPUParticles2D::set_spread); ClassDB::bind_method(D_METHOD("get_spread"), &CPUParticles2D::get_spread); ClassDB::bind_method(D_METHOD("set_param_min", "param", "value"), &CPUParticles2D::set_param_min); ClassDB::bind_method(D_METHOD("get_param_min", "param"), &CPUParticles2D::get_param_min); ClassDB::bind_method(D_METHOD("set_param_max", "param", "value"), &CPUParticles2D::set_param_max); ClassDB::bind_method(D_METHOD("get_param_max", "param"), &CPUParticles2D::get_param_max); ClassDB::bind_method(D_METHOD("set_param_curve", "param", "curve"), &CPUParticles2D::set_param_curve); ClassDB::bind_method(D_METHOD("get_param_curve", "param"), &CPUParticles2D::get_param_curve); ClassDB::bind_method(D_METHOD("set_color", "color"), &CPUParticles2D::set_color); ClassDB::bind_method(D_METHOD("get_color"), &CPUParticles2D::get_color); ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &CPUParticles2D::set_color_ramp); ClassDB::bind_method(D_METHOD("get_color_ramp"), &CPUParticles2D::get_color_ramp); ClassDB::bind_method(D_METHOD("set_color_initial_ramp", "ramp"), &CPUParticles2D::set_color_initial_ramp); ClassDB::bind_method(D_METHOD("get_color_initial_ramp"), &CPUParticles2D::get_color_initial_ramp); ClassDB::bind_method(D_METHOD("set_particle_flag", "particle_flag", "enable"), &CPUParticles2D::set_particle_flag); ClassDB::bind_method(D_METHOD("get_particle_flag", "particle_flag"), &CPUParticles2D::get_particle_flag); ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &CPUParticles2D::set_emission_shape); ClassDB::bind_method(D_METHOD("get_emission_shape"), &CPUParticles2D::get_emission_shape); ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &CPUParticles2D::set_emission_sphere_radius); ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &CPUParticles2D::get_emission_sphere_radius); ClassDB::bind_method(D_METHOD("set_emission_rect_extents", "extents"), &CPUParticles2D::set_emission_rect_extents); ClassDB::bind_method(D_METHOD("get_emission_rect_extents"), &CPUParticles2D::get_emission_rect_extents); ClassDB::bind_method(D_METHOD("set_emission_points", "array"), &CPUParticles2D::set_emission_points); ClassDB::bind_method(D_METHOD("get_emission_points"), &CPUParticles2D::get_emission_points); ClassDB::bind_method(D_METHOD("set_emission_normals", "array"), &CPUParticles2D::set_emission_normals); ClassDB::bind_method(D_METHOD("get_emission_normals"), &CPUParticles2D::get_emission_normals); ClassDB::bind_method(D_METHOD("set_emission_colors", "array"), &CPUParticles2D::set_emission_colors); ClassDB::bind_method(D_METHOD("get_emission_colors"), &CPUParticles2D::get_emission_colors); ClassDB::bind_method(D_METHOD("get_gravity"), &CPUParticles2D::get_gravity); ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &CPUParticles2D::set_gravity); ClassDB::bind_method(D_METHOD("get_split_scale"), &CPUParticles2D::get_split_scale); ClassDB::bind_method(D_METHOD("set_split_scale", "split_scale"), &CPUParticles2D::set_split_scale); ClassDB::bind_method(D_METHOD("get_scale_curve_x"), &CPUParticles2D::get_scale_curve_x); ClassDB::bind_method(D_METHOD("set_scale_curve_x", "scale_curve"), &CPUParticles2D::set_scale_curve_x); ClassDB::bind_method(D_METHOD("get_scale_curve_y"), &CPUParticles2D::get_scale_curve_y); ClassDB::bind_method(D_METHOD("set_scale_curve_y", "scale_curve"), &CPUParticles2D::set_scale_curve_y); ClassDB::bind_method(D_METHOD("convert_from_particles", "particles"), &CPUParticles2D::convert_from_particles); ADD_GROUP("Emission Shape", "emission_"); ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Sphere Surface,Rectangle,Points,Directed Points", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_emission_shape", "get_emission_shape"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01,suffix:px"), "set_emission_sphere_radius", "get_emission_sphere_radius"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "emission_rect_extents", PROPERTY_HINT_NONE, "suffix:px"), "set_emission_rect_extents", "get_emission_rect_extents"); ADD_PROPERTY(PropertyInfo(Variant::PACKED_VECTOR2_ARRAY, "emission_points"), "set_emission_points", "get_emission_points"); ADD_PROPERTY(PropertyInfo(Variant::PACKED_VECTOR2_ARRAY, "emission_normals"), "set_emission_normals", "get_emission_normals"); ADD_PROPERTY(PropertyInfo(Variant::PACKED_COLOR_ARRAY, "emission_colors"), "set_emission_colors", "get_emission_colors"); ADD_GROUP("Particle Flags", "particle_flag_"); ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_align_y"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY); ADD_GROUP("Direction", ""); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "direction"), "set_direction", "get_direction"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "spread", PROPERTY_HINT_RANGE, "0,180,0.01"), "set_spread", "get_spread"); ADD_GROUP("Gravity", ""); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "gravity", PROPERTY_HINT_NONE, U"suffix:px/s\u00B2"), "set_gravity", "get_gravity"); ADD_GROUP("Initial Velocity", "initial_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "initial_velocity_min", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater,suffix:px/s"), "set_param_min", "get_param_min", PARAM_INITIAL_LINEAR_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "initial_velocity_max", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater,suffix:px/s"), "set_param_max", "get_param_max", PARAM_INITIAL_LINEAR_VELOCITY); ADD_GROUP("Angular Velocity", "angular_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angular_velocity_min", PROPERTY_HINT_RANGE, "-720,720,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_ANGULAR_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angular_velocity_max", PROPERTY_HINT_RANGE, "-720,720,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_ANGULAR_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY); ADD_GROUP("Orbit Velocity", "orbit_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "orbit_velocity_min", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_ORBIT_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "orbit_velocity_max", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_ORBIT_VELOCITY); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY); ADD_GROUP("Linear Accel", "linear_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "linear_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_LINEAR_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "linear_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_LINEAR_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_LINEAR_ACCEL); ADD_GROUP("Radial Accel", "radial_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "radial_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_RADIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "radial_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_RADIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_RADIAL_ACCEL); ADD_GROUP("Tangential Accel", "tangential_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "tangential_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_TANGENTIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "tangential_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_TANGENTIAL_ACCEL); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_TANGENTIAL_ACCEL); ADD_GROUP("Damping", ""); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "damping_min", PROPERTY_HINT_RANGE, "0,100,0.01"), "set_param_min", "get_param_min", PARAM_DAMPING); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "damping_max", PROPERTY_HINT_RANGE, "0,100,0.01"), "set_param_max", "get_param_max", PARAM_DAMPING); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_DAMPING); ADD_GROUP("Angle", ""); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angle_min", PROPERTY_HINT_RANGE, "-720,720,0.1,or_less,or_greater,degrees"), "set_param_min", "get_param_min", PARAM_ANGLE); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angle_max", PROPERTY_HINT_RANGE, "-720,720,0.1,or_less,or_greater,degrees"), "set_param_max", "get_param_max", PARAM_ANGLE); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGLE); ADD_GROUP("Scale", ""); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "scale_amount_min", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_min", "get_param_min", PARAM_SCALE); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "scale_amount_max", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_max", "get_param_max", PARAM_SCALE); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_amount_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_SCALE); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "split_scale"), "set_split_scale", "get_split_scale"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "scale_curve_x", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_scale_curve_x", "get_scale_curve_x"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "scale_curve_y", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_scale_curve_y", "get_scale_curve_y"); ADD_GROUP("Color", ""); ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_ramp", "get_color_ramp"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_initial_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_initial_ramp", "get_color_initial_ramp"); ADD_GROUP("Hue Variation", "hue_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "hue_variation_min", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param_min", "get_param_min", PARAM_HUE_VARIATION); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "hue_variation_max", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param_max", "get_param_max", PARAM_HUE_VARIATION); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_HUE_VARIATION); ADD_GROUP("Animation", "anim_"); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_speed_min", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater,or_less"), "set_param_min", "get_param_min", PARAM_ANIM_SPEED); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_speed_max", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater,or_less"), "set_param_max", "get_param_max", PARAM_ANIM_SPEED); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_SPEED); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_offset_min", PROPERTY_HINT_RANGE, "0,1,0.0001"), "set_param_min", "get_param_min", PARAM_ANIM_OFFSET); ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_offset_max", PROPERTY_HINT_RANGE, "0,1,0.0001"), "set_param_max", "get_param_max", PARAM_ANIM_OFFSET); ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_OFFSET); BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY); BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY); BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY); BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL); BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL); BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL); BIND_ENUM_CONSTANT(PARAM_DAMPING); BIND_ENUM_CONSTANT(PARAM_ANGLE); BIND_ENUM_CONSTANT(PARAM_SCALE); BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION); BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED); BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET); BIND_ENUM_CONSTANT(PARAM_MAX); BIND_ENUM_CONSTANT(PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY); BIND_ENUM_CONSTANT(PARTICLE_FLAG_ROTATE_Y); // Unused, but exposed for consistency with 3D. BIND_ENUM_CONSTANT(PARTICLE_FLAG_DISABLE_Z); // Unused, but exposed for consistency with 3D. BIND_ENUM_CONSTANT(PARTICLE_FLAG_MAX); BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT); BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE); BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE_SURFACE); BIND_ENUM_CONSTANT(EMISSION_SHAPE_RECTANGLE); BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS); BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS); BIND_ENUM_CONSTANT(EMISSION_SHAPE_MAX); } CPUParticles2D::CPUParticles2D() { mesh = RenderingServer::get_singleton()->mesh_create(); multimesh = RenderingServer::get_singleton()->multimesh_create(); RenderingServer::get_singleton()->multimesh_set_mesh(multimesh, mesh); set_emitting(true); set_amount(8); set_use_local_coordinates(false); set_param_min(PARAM_INITIAL_LINEAR_VELOCITY, 0); set_param_min(PARAM_ANGULAR_VELOCITY, 0); set_param_min(PARAM_ORBIT_VELOCITY, 0); set_param_min(PARAM_LINEAR_ACCEL, 0); set_param_min(PARAM_RADIAL_ACCEL, 0); set_param_min(PARAM_TANGENTIAL_ACCEL, 0); set_param_min(PARAM_DAMPING, 0); set_param_min(PARAM_ANGLE, 0); set_param_min(PARAM_SCALE, 1); set_param_min(PARAM_HUE_VARIATION, 0); set_param_min(PARAM_ANIM_SPEED, 0); set_param_min(PARAM_ANIM_OFFSET, 0); set_param_max(PARAM_INITIAL_LINEAR_VELOCITY, 0); set_param_max(PARAM_ANGULAR_VELOCITY, 0); set_param_max(PARAM_ORBIT_VELOCITY, 0); set_param_max(PARAM_LINEAR_ACCEL, 0); set_param_max(PARAM_RADIAL_ACCEL, 0); set_param_max(PARAM_TANGENTIAL_ACCEL, 0); set_param_max(PARAM_DAMPING, 0); set_param_max(PARAM_ANGLE, 0); set_param_max(PARAM_SCALE, 1); set_param_max(PARAM_HUE_VARIATION, 0); set_param_max(PARAM_ANIM_SPEED, 0); set_param_max(PARAM_ANIM_OFFSET, 0); for (int i = 0; i < PARTICLE_FLAG_MAX; i++) { particle_flags[i] = false; } set_color(Color(1, 1, 1, 1)); _update_mesh_texture(); } CPUParticles2D::~CPUParticles2D() { RS::get_singleton()->free(multimesh); RS::get_singleton()->free(mesh); }