/*************************************************************************/ /* joints_2d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "joints_2d_sw.h" #include "space_2d_sw.h" //based on chipmunk joint constraints /* Copyright (c) 2007 Scott Lembcke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ static inline real_t k_scalar(Body2DSW *a, Body2DSW *b, const Vector2 &rA, const Vector2 &rB, const Vector2 &n) { real_t value = 0; { value += a->get_inv_mass(); real_t rcn = rA.cross(n); value += a->get_inv_inertia() * rcn * rcn; } if (b) { value += b->get_inv_mass(); real_t rcn = rB.cross(n); value += b->get_inv_inertia() * rcn * rcn; } return value; } static inline Vector2 relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB) { Vector2 sum = a->get_linear_velocity() - rA.tangent() * a->get_angular_velocity(); if (b) return (b->get_linear_velocity() - rB.tangent() * b->get_angular_velocity()) - sum; else return -sum; } static inline real_t normal_relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB, Vector2 n) { return relative_velocity(a, b, rA, rB).dot(n); } #if 0 bool PinJoint2DSW::setup(float p_step) { Space2DSW *space = A->get_space(); ERR_FAIL_COND_V(!space,false;) rA = A->get_transform().basis_xform(anchor_A); rB = B?B->get_transform().basis_xform(anchor_B):anchor_B; Vector2 gA = A->get_transform().get_origin(); Vector2 gB = B?B->get_transform().get_origin():Vector2(); Vector2 delta = gB - gA; delta = (delta+rB) -rA; real_t jdist = delta.length(); correct=false; if (jdist==0) return false; // do not correct correct=true; n = delta / jdist; // calculate mass normal mass_normal = 1.0f/k_scalar(A, B, rA, rB, n); // calculate bias velocity //real_t maxBias = joint->constraint.maxBias; bias = -(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step)*(jdist-dist); bias = CLAMP(bias, -get_max_bias(), +get_max_bias()); // compute max impulse jn_max = get_max_force() * p_step; // apply accumulated impulse Vector2 j = n * jn_acc; A->apply_impulse(rA,-j); if (B) B->apply_impulse(rB,j); print_line("setup"); return true; } void PinJoint2DSW::solve(float p_step){ if (!correct) return; Vector2 ln = n; // compute relative velocity real_t vrn = normal_relative_velocity(A,B, rA, rB, ln); // compute normal impulse real_t jn = (bias - vrn)*mass_normal; real_t jnOld = jn_acc; jn_acc = CLAMP(jnOld + jn,-jn_max,jn_max); //cpfclamp(jnOld + jn, -joint->jnMax, joint->jnMax); jn = jn_acc - jnOld; print_line("jn_acc: "+rtos(jn_acc)); Vector2 j = jn*ln; A->apply_impulse(rA,-j); if (B) B->apply_impulse(rB,j); } PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) { A=p_body_a; B=p_body_b; anchor_A = p_body_a->get_inv_transform().xform(p_pos); anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos; jn_acc=0; dist=0; p_body_a->add_constraint(this,0); if (p_body_b) p_body_b->add_constraint(this,1); } PinJoint2DSW::~PinJoint2DSW() { if (A) A->remove_constraint(this); if (B) B->remove_constraint(this); } #else bool PinJoint2DSW::setup(float p_step) { Space2DSW *space = A->get_space(); ERR_FAIL_COND_V(!space, false;) rA = A->get_transform().basis_xform(anchor_A); rB = B ? B->get_transform().basis_xform(anchor_B) : anchor_B; #if 0 Vector2 gA = rA+A->get_transform().get_origin(); Vector2 gB = B?rB+B->get_transform().get_origin():rB; VectorB delta = gB - gA; real_t jdist = delta.length(); correct=false; if (jdist==0) return false; // do not correct #endif // deltaV = deltaV0 + K * impulse // invM = [(1/m1 + 1/m2) * eye(2) - skew(rA) * invI1 * skew(rA) - skew(rB) * invI2 * skew(rB)] // = [1/m1+1/m2 0 ] + invI1 * [rA.y*rA.y -rA.x*rA.y] + invI2 * [rA.y*rA.y -rA.x*rA.y] // [ 0 1/m1+1/m2] [-rA.x*rA.y rA.x*rA.x] [-rA.x*rA.y rA.x*rA.x] real_t B_inv_mass = B ? B->get_inv_mass() : 0.0; Matrix32 K1; K1[0].x = A->get_inv_mass() + B_inv_mass; K1[1].x = 0.0f; K1[0].y = 0.0f; K1[1].y = A->get_inv_mass() + B_inv_mass; Matrix32 K2; K2[0].x = A->get_inv_inertia() * rA.y * rA.y; K2[1].x = -A->get_inv_inertia() * rA.x * rA.y; K2[0].y = -A->get_inv_inertia() * rA.x * rA.y; K2[1].y = A->get_inv_inertia() * rA.x * rA.x; Matrix32 K; K[0] = K1[0] + K2[0]; K[1] = K1[1] + K2[1]; if (B) { Matrix32 K3; K3[0].x = B->get_inv_inertia() * rB.y * rB.y; K3[1].x = -B->get_inv_inertia() * rB.x * rB.y; K3[0].y = -B->get_inv_inertia() * rB.x * rB.y; K3[1].y = B->get_inv_inertia() * rB.x * rB.x; K[0] += K3[0]; K[1] += K3[1]; } K[0].x += softness; K[1].y += softness; M = K.affine_inverse(); Vector2 gA = rA + A->get_transform().get_origin(); Vector2 gB = B ? rB + B->get_transform().get_origin() : rB; Vector2 delta = gB - gA; bias = delta * -(get_bias() == 0 ? space->get_constraint_bias() : get_bias()) * (1.0 / p_step); // apply accumulated impulse A->apply_impulse(rA, -P); if (B) B->apply_impulse(rB, P); return true; } void PinJoint2DSW::solve(float p_step) { // compute relative velocity Vector2 vA = A->get_linear_velocity() - rA.cross(A->get_angular_velocity()); Vector2 rel_vel; if (B) rel_vel = B->get_linear_velocity() - rB.cross(B->get_angular_velocity()) - vA; else rel_vel = -vA; Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness, softness) * P); A->apply_impulse(rA, -impulse); if (B) B->apply_impulse(rB, impulse); P += impulse; } void PinJoint2DSW::set_param(Physics2DServer::PinJointParam p_param, real_t p_value) { if (p_param == Physics2DServer::PIN_JOINT_SOFTNESS) softness = p_value; } real_t PinJoint2DSW::get_param(Physics2DServer::PinJointParam p_param) const { if (p_param == Physics2DServer::PIN_JOINT_SOFTNESS) return softness; ERR_FAIL_V(0); } PinJoint2DSW::PinJoint2DSW(const Vector2 &p_pos, Body2DSW *p_body_a, Body2DSW *p_body_b) : Joint2DSW(_arr, p_body_b ? 2 : 1) { A = p_body_a; B = p_body_b; anchor_A = p_body_a->get_inv_transform().xform(p_pos); anchor_B = p_body_b ? p_body_b->get_inv_transform().xform(p_pos) : p_pos; softness = 0; p_body_a->add_constraint(this, 0); if (p_body_b) p_body_b->add_constraint(this, 1); } PinJoint2DSW::~PinJoint2DSW() { if (A) A->remove_constraint(this); if (B) B->remove_constraint(this); } #endif ////////////////////////////////////////////// ////////////////////////////////////////////// ////////////////////////////////////////////// static inline void k_tensor(Body2DSW *a, Body2DSW *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2) { // calculate mass matrix // If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross... real_t k11, k12, k21, k22; real_t m_sum = a->get_inv_mass() + b->get_inv_mass(); // start with I*m_sum k11 = m_sum; k12 = 0.0f; k21 = 0.0f; k22 = m_sum; // add the influence from r1 real_t a_i_inv = a->get_inv_inertia(); real_t r1xsq = r1.x * r1.x * a_i_inv; real_t r1ysq = r1.y * r1.y * a_i_inv; real_t r1nxy = -r1.x * r1.y * a_i_inv; k11 += r1ysq; k12 += r1nxy; k21 += r1nxy; k22 += r1xsq; // add the influnce from r2 real_t b_i_inv = b->get_inv_inertia(); real_t r2xsq = r2.x * r2.x * b_i_inv; real_t r2ysq = r2.y * r2.y * b_i_inv; real_t r2nxy = -r2.x * r2.y * b_i_inv; k11 += r2ysq; k12 += r2nxy; k21 += r2nxy; k22 += r2xsq; // invert real_t determinant = k11 * k22 - k12 * k21; ERR_FAIL_COND(determinant == 0.0); real_t det_inv = 1.0f / determinant; *k1 = Vector2(k22 * det_inv, -k12 * det_inv); *k2 = Vector2(-k21 * det_inv, k11 * det_inv); } static _FORCE_INLINE_ Vector2 mult_k(const Vector2 &vr, const Vector2 &k1, const Vector2 &k2) { return Vector2(vr.dot(k1), vr.dot(k2)); } bool GrooveJoint2DSW::setup(float p_step) { // calculate endpoints in worldspace Vector2 ta = A->get_transform().xform(A_groove_1); Vector2 tb = A->get_transform().xform(A_groove_2); Space2DSW *space = A->get_space(); // calculate axis Vector2 n = -(tb - ta).tangent().normalized(); real_t d = ta.dot(n); xf_normal = n; rB = B->get_transform().basis_xform(B_anchor); // calculate tangential distance along the axis of rB real_t td = (B->get_transform().get_origin() + rB).cross(n); // calculate clamping factor and rB if (td <= ta.cross(n)) { clamp = 1.0f; rA = ta - A->get_transform().get_origin(); } else if (td >= tb.cross(n)) { clamp = -1.0f; rA = tb - A->get_transform().get_origin(); } else { clamp = 0.0f; //joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p); rA = ((-n.tangent() * -td) + n * d) - A->get_transform().get_origin(); } // Calculate mass tensor k_tensor(A, B, rA, rB, &k1, &k2); // compute max impulse jn_max = get_max_force() * p_step; // calculate bias velocity // cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1)); // joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias); Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA); float _b = get_bias(); _b = 0.001; gbias = (delta * -(_b == 0 ? space->get_constraint_bias() : _b) * (1.0 / p_step)).clamped(get_max_bias()); // apply accumulated impulse A->apply_impulse(rA, -jn_acc); B->apply_impulse(rB, jn_acc); correct = true; return true; } void GrooveJoint2DSW::solve(float p_step) { // compute impulse Vector2 vr = relative_velocity(A, B, rA, rB); Vector2 j = mult_k(gbias - vr, k1, k2); Vector2 jOld = jn_acc; j += jOld; jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : xf_normal.project(j)).clamped(jn_max); j = jn_acc - jOld; A->apply_impulse(rA, -j); B->apply_impulse(rB, j); } GrooveJoint2DSW::GrooveJoint2DSW(const Vector2 &p_a_groove1, const Vector2 &p_a_groove2, const Vector2 &p_b_anchor, Body2DSW *p_body_a, Body2DSW *p_body_b) : Joint2DSW(_arr, 2) { A = p_body_a; B = p_body_b; A_groove_1 = A->get_inv_transform().xform(p_a_groove1); A_groove_2 = A->get_inv_transform().xform(p_a_groove2); B_anchor = B->get_inv_transform().xform(p_b_anchor); A_groove_normal = -(A_groove_2 - A_groove_1).normalized().tangent(); A->add_constraint(this, 0); B->add_constraint(this, 1); } GrooveJoint2DSW::~GrooveJoint2DSW() { A->remove_constraint(this); B->remove_constraint(this); } ////////////////////////////////////////////// ////////////////////////////////////////////// ////////////////////////////////////////////// bool DampedSpringJoint2DSW::setup(float p_step) { rA = A->get_transform().basis_xform(anchor_A); rB = B->get_transform().basis_xform(anchor_B); Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA); real_t dist = delta.length(); if (dist) n = delta / dist; else n = Vector2(); real_t k = k_scalar(A, B, rA, rB, n); n_mass = 1.0f / k; target_vrn = 0.0f; v_coef = 1.0f - Math::exp(-damping * (p_step)*k); // apply spring force real_t f_spring = (rest_length - dist) * stiffness; Vector2 j = n * f_spring * (p_step); A->apply_impulse(rA, -j); B->apply_impulse(rB, j); return true; } void DampedSpringJoint2DSW::solve(float p_step) { // compute relative velocity real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn; // compute velocity loss from drag // not 100% certain this is derived correctly, though it makes sense real_t v_damp = -vrn * v_coef; target_vrn = vrn + v_damp; Vector2 j = n * v_damp * n_mass; A->apply_impulse(rA, -j); B->apply_impulse(rB, j); } void DampedSpringJoint2DSW::set_param(Physics2DServer::DampedStringParam p_param, real_t p_value) { switch (p_param) { case Physics2DServer::DAMPED_STRING_REST_LENGTH: { rest_length = p_value; } break; case Physics2DServer::DAMPED_STRING_DAMPING: { damping = p_value; } break; case Physics2DServer::DAMPED_STRING_STIFFNESS: { stiffness = p_value; } break; } } real_t DampedSpringJoint2DSW::get_param(Physics2DServer::DampedStringParam p_param) const { switch (p_param) { case Physics2DServer::DAMPED_STRING_REST_LENGTH: { return rest_length; } break; case Physics2DServer::DAMPED_STRING_DAMPING: { return damping; } break; case Physics2DServer::DAMPED_STRING_STIFFNESS: { return stiffness; } break; } ERR_FAIL_V(0); } DampedSpringJoint2DSW::DampedSpringJoint2DSW(const Vector2 &p_anchor_a, const Vector2 &p_anchor_b, Body2DSW *p_body_a, Body2DSW *p_body_b) : Joint2DSW(_arr, 2) { A = p_body_a; B = p_body_b; anchor_A = A->get_inv_transform().xform(p_anchor_a); anchor_B = B->get_inv_transform().xform(p_anchor_b); rest_length = p_anchor_a.distance_to(p_anchor_b); stiffness = 20; damping = 1.5; A->add_constraint(this, 0); B->add_constraint(this, 1); } DampedSpringJoint2DSW::~DampedSpringJoint2DSW() { A->remove_constraint(this); B->remove_constraint(this); }