public: struct ItemRef { uint32_t tnode_id; // -1 is invalid uint32_t item_id; // in the leaf bool is_active() const { return tnode_id != BVHCommon::INACTIVE; } void set_inactive() { tnode_id = BVHCommon::INACTIVE; item_id = BVHCommon::INACTIVE; } }; // extra info kept in separate parallel list to the references, // as this is less used as keeps cache better struct ItemExtra { uint32_t last_updated_tick; uint32_t pairable; uint32_t pairable_mask; uint32_t pairable_type; int32_t subindex; // the active reference is a separate list of which references // are active so that we can slowly iterate through it over many frames for // slow optimize. uint32_t active_ref_id; T *userdata; }; // this is an item OR a child node depending on whether a leaf node struct Item { BVHABB_CLASS aabb; uint32_t item_ref_id; }; // tree leaf struct TLeaf { uint16_t num_items; private: uint16_t dirty; // separate data orientated lists for faster SIMD traversal uint32_t item_ref_ids[MAX_ITEMS]; BVHABB_CLASS aabbs[MAX_ITEMS]; public: // accessors BVHABB_CLASS &get_aabb(uint32_t p_id) { return aabbs[p_id]; } const BVHABB_CLASS &get_aabb(uint32_t p_id) const { return aabbs[p_id]; } uint32_t &get_item_ref_id(uint32_t p_id) { return item_ref_ids[p_id]; } const uint32_t &get_item_ref_id(uint32_t p_id) const { return item_ref_ids[p_id]; } bool is_dirty() const { return dirty; } void set_dirty(bool p) { dirty = p; } void clear() { num_items = 0; set_dirty(true); } bool is_full() const { return num_items >= MAX_ITEMS; } void remove_item_unordered(uint32_t p_id) { BVH_ASSERT(p_id < num_items); num_items--; aabbs[p_id] = aabbs[num_items]; item_ref_ids[p_id] = item_ref_ids[num_items]; } uint32_t request_item() { if (num_items < MAX_ITEMS) { uint32_t id = num_items; num_items++; return id; } return -1; } }; // tree node struct TNode { BVHABB_CLASS aabb; // either number of children if positive // or leaf id if negative (leaf id 0 is disallowed) union { int32_t num_children; int32_t neg_leaf_id; }; uint32_t parent_id; // or -1 uint16_t children[MAX_CHILDREN]; // height in the tree, where leaves are 0, and all above are 1+ // (or the highest where there is a tie off) int32_t height; bool is_leaf() const { return num_children < 0; } void set_leaf_id(int id) { neg_leaf_id = -id; } int get_leaf_id() const { return -neg_leaf_id; } void clear() { num_children = 0; parent_id = BVHCommon::INVALID; height = 0; // or -1 for testing // for safety set to improbable value aabb.set_to_max_opposite_extents(); // other members are not blanked for speed .. they may be uninitialized } bool is_full_of_children() const { return num_children >= MAX_CHILDREN; } void remove_child_internal(uint32_t child_num) { children[child_num] = children[num_children - 1]; num_children--; } int find_child(uint32_t p_child_node_id) { BVH_ASSERT(!is_leaf()); for (int n = 0; n < num_children; n++) { if (children[n] == p_child_node_id) { return n; } } // not found return -1; } }; // instead of using linked list we maintain // item references (for quick lookup) PooledList<ItemRef, true> _refs; PooledList<ItemExtra, true> _extra; PooledList<ItemPairs> _pairs; // these 2 are not in sync .. nodes != leaves! PooledList<TNode, true> _nodes; PooledList<TLeaf, true> _leaves; // we can maintain an un-ordered list of which references are active, // in order to do a slow incremental optimize of the tree over each frame. // This will work best if dynamic objects and static objects are in a different tree. LocalVector<uint32_t, uint32_t, true> _active_refs; uint32_t _current_active_ref = 0; // instead of translating directly to the userdata output, // we keep an intermediate list of hits as reference IDs, which can be used // for pairing collision detection LocalVector<uint32_t, uint32_t, true> _cull_hits; // we now have multiple root nodes, allowing us to store // more than 1 tree. This can be more efficient, while sharing the same // common lists enum { NUM_TREES = 2, }; // Tree 0 - Non pairable // Tree 1 - Pairable // This is more efficient because in physics we only need check non pairable against the pairable tree. uint32_t _root_node_id[NUM_TREES]; // these values may need tweaking according to the project // the bound of the world, and the average velocities of the objects // node expansion is important in the rendering tree // larger values give less re-insertion as items move... // but on the other hand over estimates the bounding box of nodes. // we can either use auto mode, where the expansion is based on the root node size, or specify manually real_t _node_expansion = 0.5; bool _auto_node_expansion = true; // pairing expansion important for physics pairing // larger values gives more 'sticky' pairing, and is less likely to exhibit tunneling // we can either use auto mode, where the expansion is based on the root node size, or specify manually real_t _pairing_expansion = 0.1; bool _auto_pairing_expansion = true;