<?xml version="1.0" encoding="UTF-8" ?>
<class name="Physics2DDirectSpaceState" inherits="Object" version="3.5" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
	<brief_description>
		Direct access object to a space in the [Physics2DServer].
	</brief_description>
	<description>
		Direct access object to a space in the [Physics2DServer]. It's used mainly to do queries against objects and areas residing in a given space.
	</description>
	<tutorials>
		<link title="Physics introduction">$DOCS_URL/tutorials/physics/physics_introduction.html</link>
		<link title="Ray-casting">$DOCS_URL/tutorials/physics/ray-casting.html</link>
	</tutorials>
	<methods>
		<method name="cast_motion">
			<return type="Array" />
			<argument index="0" name="shape" type="Physics2DShapeQueryParameters" />
			<description>
				Checks how far a [Shape2D] can move without colliding. All the parameters for the query, including the shape and the motion, are supplied through a [Physics2DShapeQueryParameters] object.
				Returns an array with the safe and unsafe proportions (between 0 and 1) of the motion. The safe proportion is the maximum fraction of the motion that can be made without a collision. The unsafe proportion is the minimum fraction of the distance that must be moved for a collision. If no collision is detected a result of [code][1.0, 1.0][/code] will be returned.
				[b]Note:[/b] Any [Shape2D]s that the shape is already colliding with e.g. inside of, will be ignored. Use [method collide_shape] to determine the [Shape2D]s that the shape is already colliding with.
			</description>
		</method>
		<method name="collide_shape">
			<return type="Array" />
			<argument index="0" name="shape" type="Physics2DShapeQueryParameters" />
			<argument index="1" name="max_results" type="int" default="32" />
			<description>
				Checks the intersections of a shape, given through a [Physics2DShapeQueryParameters] object, against the space. The resulting array contains a list of points where the shape intersects another. Like with [method intersect_shape], the number of returned results can be limited to save processing time.
			</description>
		</method>
		<method name="get_rest_info">
			<return type="Dictionary" />
			<argument index="0" name="shape" type="Physics2DShapeQueryParameters" />
			<description>
				Checks the intersections of a shape, given through a [Physics2DShapeQueryParameters] object, against the space. If it collides with more than one shape, the nearest one is selected. If the shape did not intersect anything, then an empty dictionary is returned instead.
				[b]Note:[/b] This method does not take into account the [code]motion[/code] property of the object. The returned object is a dictionary containing the following fields:
				[code]collider_id[/code]: The colliding object's ID.
				[code]linear_velocity[/code]: The colliding object's velocity [Vector2]. If the object is an [Area2D], the result is [code](0, 0)[/code].
				[code]metadata[/code]: The intersecting shape's metadata. This metadata is different from [method Object.get_meta], and is set with [method Physics2DServer.shape_set_data].
				[code]normal[/code]: The object's surface normal at the intersection point.
				[code]point[/code]: The intersection point.
				[code]rid[/code]: The intersecting object's [RID].
				[code]shape[/code]: The shape index of the colliding shape.
			</description>
		</method>
		<method name="intersect_point">
			<return type="Array" />
			<argument index="0" name="point" type="Vector2" />
			<argument index="1" name="max_results" type="int" default="32" />
			<argument index="2" name="exclude" type="Array" default="[  ]" />
			<argument index="3" name="collision_layer" type="int" default="2147483647" />
			<argument index="4" name="collide_with_bodies" type="bool" default="true" />
			<argument index="5" name="collide_with_areas" type="bool" default="false" />
			<description>
				Checks whether a point is inside any solid shape. The shapes the point is inside of are returned in an array containing dictionaries with the following fields:
				[code]collider[/code]: The colliding object.
				[code]collider_id[/code]: The colliding object's ID.
				[code]metadata[/code]: The intersecting shape's metadata. This metadata is different from [method Object.get_meta], and is set with [method Physics2DServer.shape_set_data].
				[code]rid[/code]: The intersecting object's [RID].
				[code]shape[/code]: The shape index of the colliding shape.
				The number of intersections can be limited with the [code]max_results[/code] parameter, to reduce the processing time.
				Additionally, the method can take an [code]exclude[/code] array of objects or [RID]s that are to be excluded from collisions, a [code]collision_mask[/code] bitmask representing the physics layers to check in, or booleans to determine if the ray should collide with [PhysicsBody2D]s or [Area2D]s, respectively.
				[b]Note:[/b] [ConcavePolygonShape2D]s and [CollisionPolygon2D]s in [code]Segments[/code] build mode are not solid shapes. Therefore, they will not be detected.
			</description>
		</method>
		<method name="intersect_point_on_canvas">
			<return type="Array" />
			<argument index="0" name="point" type="Vector2" />
			<argument index="1" name="canvas_instance_id" type="int" />
			<argument index="2" name="max_results" type="int" default="32" />
			<argument index="3" name="exclude" type="Array" default="[  ]" />
			<argument index="4" name="collision_layer" type="int" default="2147483647" />
			<argument index="5" name="collide_with_bodies" type="bool" default="true" />
			<argument index="6" name="collide_with_areas" type="bool" default="false" />
			<description>
				Checks whether a point is inside any solid shape, in a specific canvas layer given by [code]canvas_instance_id[/code]. The shapes the point is inside of are returned in an array containing dictionaries with the following fields:
				[code]collider[/code]: The colliding object.
				[code]collider_id[/code]: The colliding object's ID.
				[code]metadata[/code]: The intersecting shape's metadata. This metadata is different from [method Object.get_meta], and is set with [method Physics2DServer.shape_set_data].
				[code]rid[/code]: The intersecting object's [RID].
				[code]shape[/code]: The shape index of the colliding shape.
				The number of intersections can be limited with the [code]max_results[/code] parameter, to reduce the processing time.
				Additionally, the method can take an [code]exclude[/code] array of objects or [RID]s that are to be excluded from collisions, a [code]collision_mask[/code] bitmask representing the physics layers to check in, or booleans to determine if the ray should collide with [PhysicsBody2D]s or [Area2D]s, respectively.
				[b]Note:[/b] [ConcavePolygonShape2D]s and [CollisionPolygon2D]s in [code]Segments[/code] build mode are not solid shapes. Therefore, they will not be detected.
			</description>
		</method>
		<method name="intersect_ray">
			<return type="Dictionary" />
			<argument index="0" name="from" type="Vector2" />
			<argument index="1" name="to" type="Vector2" />
			<argument index="2" name="exclude" type="Array" default="[  ]" />
			<argument index="3" name="collision_layer" type="int" default="2147483647" />
			<argument index="4" name="collide_with_bodies" type="bool" default="true" />
			<argument index="5" name="collide_with_areas" type="bool" default="false" />
			<description>
				Intersects a ray in a given space. The returned object is a dictionary with the following fields:
				[code]collider[/code]: The colliding object.
				[code]collider_id[/code]: The colliding object's ID.
				[code]metadata[/code]: The intersecting shape's metadata. This metadata is different from [method Object.get_meta], and is set with [method Physics2DServer.shape_set_data].
				[code]normal[/code]: The object's surface normal at the intersection point.
				[code]position[/code]: The intersection point.
				[code]rid[/code]: The intersecting object's [RID].
				[code]shape[/code]: The shape index of the colliding shape.
				If the ray did not intersect anything, then an empty dictionary is returned instead.
				Additionally, the method can take an [code]exclude[/code] array of objects or [RID]s that are to be excluded from collisions, a [code]collision_mask[/code] bitmask representing the physics layers to check in, or booleans to determine if the ray should collide with [PhysicsBody2D]s or [Area2D]s, respectively.
			</description>
		</method>
		<method name="intersect_shape">
			<return type="Array" />
			<argument index="0" name="shape" type="Physics2DShapeQueryParameters" />
			<argument index="1" name="max_results" type="int" default="32" />
			<description>
				Checks the intersections of a shape, given through a [Physics2DShapeQueryParameters] object, against the space. The intersected shapes are returned in an array containing dictionaries with the following fields:
				[code]collider[/code]: The colliding object.
				[code]collider_id[/code]: The colliding object's ID.
				[code]metadata[/code]: The intersecting shape's metadata. This metadata is different from [method Object.get_meta], and is set with [method Physics2DServer.shape_set_data].
				[code]rid[/code]: The intersecting object's [RID].
				[code]shape[/code]: The shape index of the colliding shape.
				The number of intersections can be limited with the [code]max_results[/code] parameter, to reduce the processing time.
			</description>
		</method>
	</methods>
	<constants>
	</constants>
</class>