/**************************************************************************/ /* immediate_mesh.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "immediate_mesh.h" void ImmediateMesh::surface_begin(PrimitiveType p_primitive, const Ref &p_material) { ERR_FAIL_COND_MSG(surface_active, "Already creating a new surface."); active_surface_data.primitive = p_primitive; active_surface_data.material = p_material; surface_active = true; } void ImmediateMesh::surface_set_color(const Color &p_color) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); if (!uses_colors) { colors.resize(vertices.size()); for (Color &color : colors) { color = p_color; } uses_colors = true; } current_color = p_color; } void ImmediateMesh::surface_set_normal(const Vector3 &p_normal) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); if (!uses_normals) { normals.resize(vertices.size()); for (Vector3 &normal : normals) { normal = p_normal; } uses_normals = true; } current_normal = p_normal; } void ImmediateMesh::surface_set_tangent(const Plane &p_tangent) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); if (!uses_tangents) { tangents.resize(vertices.size()); for (Plane &tangent : tangents) { tangent = p_tangent; } uses_tangents = true; } current_tangent = p_tangent; } void ImmediateMesh::surface_set_uv(const Vector2 &p_uv) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); if (!uses_uvs) { uvs.resize(vertices.size()); for (Vector2 &uv : uvs) { uv = p_uv; } uses_uvs = true; } current_uv = p_uv; } void ImmediateMesh::surface_set_uv2(const Vector2 &p_uv2) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); if (!uses_uv2s) { uv2s.resize(vertices.size()); for (Vector2 &uv : uv2s) { uv = p_uv2; } uses_uv2s = true; } current_uv2 = p_uv2; } void ImmediateMesh::surface_add_vertex(const Vector3 &p_vertex) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); ERR_FAIL_COND_MSG(vertices.size() && active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface."); if (uses_colors) { colors.push_back(current_color); } if (uses_normals) { normals.push_back(current_normal); } if (uses_tangents) { tangents.push_back(current_tangent); } if (uses_uvs) { uvs.push_back(current_uv); } if (uses_uv2s) { uv2s.push_back(current_uv2); } vertices.push_back(p_vertex); } void ImmediateMesh::surface_add_vertex_2d(const Vector2 &p_vertex) { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); ERR_FAIL_COND_MSG(vertices.size() && !active_surface_data.vertex_2d, "Can't mix 2D and 3D vertices in a surface."); if (uses_colors) { colors.push_back(current_color); } if (uses_normals) { normals.push_back(current_normal); } if (uses_tangents) { tangents.push_back(current_tangent); } if (uses_uvs) { uvs.push_back(current_uv); } if (uses_uv2s) { uv2s.push_back(current_uv2); } Vector3 v(p_vertex.x, p_vertex.y, 0); vertices.push_back(v); active_surface_data.vertex_2d = true; } void ImmediateMesh::surface_end() { ERR_FAIL_COND_MSG(!surface_active, "Not creating any surface. Use surface_begin() to do it."); ERR_FAIL_COND_MSG(vertices.is_empty(), "No vertices were added, surface can't be created."); uint64_t format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION; uint32_t vertex_stride = 0; if (active_surface_data.vertex_2d) { format |= ARRAY_FLAG_USE_2D_VERTICES; vertex_stride = sizeof(float) * 2; } else { vertex_stride = sizeof(float) * 3; } uint32_t normal_tangent_stride = 0; uint32_t normal_offset = 0; if (uses_normals) { format |= ARRAY_FORMAT_NORMAL; normal_offset = vertex_stride * vertices.size(); normal_tangent_stride += sizeof(uint32_t); } uint32_t tangent_offset = 0; if (uses_tangents || uses_normals) { format |= ARRAY_FORMAT_TANGENT; tangent_offset = vertex_stride * vertices.size() + normal_tangent_stride; normal_tangent_stride += sizeof(uint32_t); } AABB aabb; { surface_vertex_create_cache.resize((vertex_stride + normal_tangent_stride) * vertices.size()); uint8_t *surface_vertex_ptr = surface_vertex_create_cache.ptrw(); for (uint32_t i = 0; i < vertices.size(); i++) { { float *vtx = (float *)&surface_vertex_ptr[i * vertex_stride]; vtx[0] = vertices[i].x; vtx[1] = vertices[i].y; if (!active_surface_data.vertex_2d) { vtx[2] = vertices[i].z; } if (i == 0) { aabb = AABB(vertices[i], SMALL_VEC3); // Must have a bit of size. } else { aabb.expand_to(vertices[i]); } } if (uses_normals) { uint32_t *normal = (uint32_t *)&surface_vertex_ptr[i * normal_tangent_stride + normal_offset]; Vector2 n = normals[i].octahedron_encode(); uint32_t value = 0; value |= (uint16_t)CLAMP(n.x * 65535, 0, 65535); value |= (uint16_t)CLAMP(n.y * 65535, 0, 65535) << 16; *normal = value; } if (uses_tangents || uses_normals) { uint32_t *tangent = (uint32_t *)&surface_vertex_ptr[i * normal_tangent_stride + tangent_offset]; Vector2 t; if (uses_tangents) { t = tangents[i].normal.octahedron_tangent_encode(tangents[i].d); } else { Vector3 tan = Vector3(normals[i].z, -normals[i].x, normals[i].y).cross(normals[i].normalized()).normalized(); t = tan.octahedron_tangent_encode(1.0); } uint32_t value = 0; value |= (uint16_t)CLAMP(t.x * 65535, 0, 65535); value |= (uint16_t)CLAMP(t.y * 65535, 0, 65535) << 16; if (value == 4294901760) { // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection. // So we sanitize here. value = 4294967295; } *tangent = value; } } } if (uses_colors || uses_uvs || uses_uv2s) { uint32_t attribute_stride = 0; if (uses_colors) { format |= ARRAY_FORMAT_COLOR; attribute_stride += sizeof(uint8_t) * 4; } uint32_t uv_offset = 0; if (uses_uvs) { format |= ARRAY_FORMAT_TEX_UV; uv_offset = attribute_stride; attribute_stride += sizeof(float) * 2; } uint32_t uv2_offset = 0; if (uses_uv2s) { format |= ARRAY_FORMAT_TEX_UV2; uv2_offset = attribute_stride; attribute_stride += sizeof(float) * 2; } surface_attribute_create_cache.resize(vertices.size() * attribute_stride); uint8_t *surface_attribute_ptr = surface_attribute_create_cache.ptrw(); for (uint32_t i = 0; i < vertices.size(); i++) { if (uses_colors) { uint8_t *color8 = (uint8_t *)&surface_attribute_ptr[i * attribute_stride]; color8[0] = uint8_t(CLAMP(colors[i].r * 255.0, 0.0, 255.0)); color8[1] = uint8_t(CLAMP(colors[i].g * 255.0, 0.0, 255.0)); color8[2] = uint8_t(CLAMP(colors[i].b * 255.0, 0.0, 255.0)); color8[3] = uint8_t(CLAMP(colors[i].a * 255.0, 0.0, 255.0)); } if (uses_uvs) { float *uv = (float *)&surface_attribute_ptr[i * attribute_stride + uv_offset]; uv[0] = uvs[i].x; uv[1] = uvs[i].y; } if (uses_uv2s) { float *uv2 = (float *)&surface_attribute_ptr[i * attribute_stride + uv2_offset]; uv2[0] = uv2s[i].x; uv2[1] = uv2s[i].y; } } } RS::SurfaceData sd; sd.primitive = RS::PrimitiveType(active_surface_data.primitive); sd.format = format; sd.vertex_data = surface_vertex_create_cache; if (uses_colors || uses_uvs || uses_uv2s) { sd.attribute_data = surface_attribute_create_cache; } sd.vertex_count = vertices.size(); sd.aabb = aabb; if (active_surface_data.material.is_valid()) { sd.material = active_surface_data.material->get_rid(); } RS::get_singleton()->mesh_add_surface(mesh, sd); active_surface_data.aabb = aabb; active_surface_data.format = format; active_surface_data.array_len = vertices.size(); surfaces.push_back(active_surface_data); colors.clear(); normals.clear(); tangents.clear(); uvs.clear(); uv2s.clear(); vertices.clear(); uses_colors = false; uses_normals = false; uses_tangents = false; uses_uvs = false; uses_uv2s = false; surface_active = false; } void ImmediateMesh::clear_surfaces() { RS::get_singleton()->mesh_clear(mesh); surfaces.clear(); surface_active = false; colors.clear(); normals.clear(); tangents.clear(); uvs.clear(); uv2s.clear(); vertices.clear(); uses_colors = false; uses_normals = false; uses_tangents = false; uses_uvs = false; uses_uv2s = false; } int ImmediateMesh::get_surface_count() const { return surfaces.size(); } int ImmediateMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), -1); return surfaces[p_idx].array_len; } int ImmediateMesh::surface_get_array_index_len(int p_idx) const { return 0; } Array ImmediateMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, int(surfaces.size()), Array()); return RS::get_singleton()->mesh_surface_get_arrays(mesh, p_surface); } TypedArray ImmediateMesh::surface_get_blend_shape_arrays(int p_surface) const { return TypedArray(); } Dictionary ImmediateMesh::surface_get_lods(int p_surface) const { return Dictionary(); } BitField ImmediateMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), 0); return surfaces[p_idx].format; } Mesh::PrimitiveType ImmediateMesh::surface_get_primitive_type(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), PRIMITIVE_MAX); return surfaces[p_idx].primitive; } void ImmediateMesh::surface_set_material(int p_idx, const Ref &p_material) { ERR_FAIL_INDEX(p_idx, int(surfaces.size())); surfaces[p_idx].material = p_material; RID mat; if (p_material.is_valid()) { mat = p_material->get_rid(); } RS::get_singleton()->mesh_surface_set_material(mesh, p_idx, mat); } Ref ImmediateMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, int(surfaces.size()), Ref()); return surfaces[p_idx].material; } int ImmediateMesh::get_blend_shape_count() const { return 0; } StringName ImmediateMesh::get_blend_shape_name(int p_index) const { return StringName(); } void ImmediateMesh::set_blend_shape_name(int p_index, const StringName &p_name) { } AABB ImmediateMesh::get_aabb() const { AABB aabb; for (uint32_t i = 0; i < surfaces.size(); i++) { if (i == 0) { aabb = surfaces[i].aabb; } else { aabb = aabb.merge(surfaces[i].aabb); } } return aabb; } void ImmediateMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("surface_begin", "primitive", "material"), &ImmediateMesh::surface_begin, DEFVAL(Ref())); ClassDB::bind_method(D_METHOD("surface_set_color", "color"), &ImmediateMesh::surface_set_color); ClassDB::bind_method(D_METHOD("surface_set_normal", "normal"), &ImmediateMesh::surface_set_normal); ClassDB::bind_method(D_METHOD("surface_set_tangent", "tangent"), &ImmediateMesh::surface_set_tangent); ClassDB::bind_method(D_METHOD("surface_set_uv", "uv"), &ImmediateMesh::surface_set_uv); ClassDB::bind_method(D_METHOD("surface_set_uv2", "uv2"), &ImmediateMesh::surface_set_uv2); ClassDB::bind_method(D_METHOD("surface_add_vertex", "vertex"), &ImmediateMesh::surface_add_vertex); ClassDB::bind_method(D_METHOD("surface_add_vertex_2d", "vertex"), &ImmediateMesh::surface_add_vertex_2d); ClassDB::bind_method(D_METHOD("surface_end"), &ImmediateMesh::surface_end); ClassDB::bind_method(D_METHOD("clear_surfaces"), &ImmediateMesh::clear_surfaces); } RID ImmediateMesh::get_rid() const { return mesh; } ImmediateMesh::ImmediateMesh() { mesh = RS::get_singleton()->mesh_create(); } ImmediateMesh::~ImmediateMesh() { ERR_FAIL_NULL(RenderingServer::get_singleton()); RS::get_singleton()->free(mesh); }