/*************************************************************************/ /* aabb.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef AABB_H #define AABB_H #include "vector3.h" #include "plane.h" /** * AABB / AABB (Axis Aligned Bounding Box) * This is implemented by a point (pos) and the box size */ class AABB { public: Vector3 pos; Vector3 size; float get_area() const; /// get area _FORCE_INLINE_ bool has_no_area() const { return (size.x<=CMP_EPSILON || size.y<=CMP_EPSILON || size.z<=CMP_EPSILON); } _FORCE_INLINE_ bool has_no_surface() const { return (size.x<=CMP_EPSILON && size.y<=CMP_EPSILON && size.z<=CMP_EPSILON); } const Vector3& get_pos() const { return pos; } void set_pos(const Vector3& p_pos) { pos=p_pos; } const Vector3& get_size() const { return size; } void set_size(const Vector3& p_size) { size=p_size; } bool operator==(const AABB& p_rval) const; bool operator!=(const AABB& p_rval) const; _FORCE_INLINE_ bool intersects(const AABB& p_aabb) const; /// Both AABBs overlap _FORCE_INLINE_ bool encloses(const AABB & p_aabb) const; /// p_aabb is completely inside this AABB merge(const AABB& p_with) const; void merge_with(const AABB& p_aabb); ///merge with another AABB AABB intersection(const AABB& p_aabb) const; ///get box where two intersect, empty if no intersection occurs bool intersects_segment(const Vector3& p_from, const Vector3& p_to,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const; bool intersects_ray(const Vector3& p_from, const Vector3& p_dir,Vector3* r_clip=NULL,Vector3* r_normal=NULL) const; _FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_plane, int p_plane_count) const; bool intersects_plane(const Plane &p_plane) const; _FORCE_INLINE_ bool has_point(const Vector3& p_point) const; _FORCE_INLINE_ Vector3 get_support(const Vector3& p_normal) const; Vector3 get_longest_axis() const; int get_longest_axis_index() const; _FORCE_INLINE_ real_t get_longest_axis_size() const; Vector3 get_shortest_axis() const; int get_shortest_axis_index() const; _FORCE_INLINE_ real_t get_shortest_axis_size() const; AABB grow(real_t p_by) const; void grow_by(real_t p_amount); void get_edge(int p_edge,Vector3& r_from,Vector3& r_to) const; _FORCE_INLINE_ Vector3 get_endpoint(int p_point) const; AABB expand(const Vector3& p_vector) const; _FORCE_INLINE_ void project_range_in_plane(const Plane& p_plane,float &r_min,float& r_max) const; _FORCE_INLINE_ void expand_to(const Vector3& p_vector); /** expand to contain a point if necesary */ operator String() const; _FORCE_INLINE_ AABB() {} inline AABB(const Vector3 &p_pos,const Vector3& p_size) { pos=p_pos; size=p_size; } }; inline bool AABB::intersects(const AABB& p_aabb) const { if ( pos.x > (p_aabb.pos.x + p_aabb.size.x) ) return false; if ( (pos.x+size.x) < p_aabb.pos.x ) return false; if ( pos.y > (p_aabb.pos.y + p_aabb.size.y) ) return false; if ( (pos.y+size.y) < p_aabb.pos.y ) return false; if ( pos.z > (p_aabb.pos.z + p_aabb.size.z) ) return false; if ( (pos.z+size.z) < p_aabb.pos.z ) return false; return true; } inline bool AABB::encloses(const AABB & p_aabb) const { Vector3 src_min=pos; Vector3 src_max=pos+size; Vector3 dst_min=p_aabb.pos; Vector3 dst_max=p_aabb.pos+p_aabb.size; return ( (src_min.x <= dst_min.x) && (src_max.x > dst_max.x) && (src_min.y <= dst_min.y) && (src_max.y > dst_max.y) && (src_min.z <= dst_min.z) && (src_max.z > dst_max.z) ); } Vector3 AABB::get_support(const Vector3& p_normal) const { Vector3 half_extents = size * 0.5; Vector3 ofs = pos + half_extents; return Vector3( (p_normal.x>0) ? -half_extents.x : half_extents.x, (p_normal.y>0) ? -half_extents.y : half_extents.y, (p_normal.z>0) ? -half_extents.z : half_extents.z )+ofs; } Vector3 AABB::get_endpoint(int p_point) const { switch(p_point) { case 0: return Vector3( pos.x , pos.y , pos.z ); case 1: return Vector3( pos.x , pos.y , pos.z+size.z ); case 2: return Vector3( pos.x , pos.y+size.y , pos.z ); case 3: return Vector3( pos.x , pos.y+size.y , pos.z+size.z ); case 4: return Vector3( pos.x+size.x , pos.y , pos.z ); case 5: return Vector3( pos.x+size.x , pos.y , pos.z+size.z ); case 6: return Vector3( pos.x+size.x , pos.y+size.y , pos.z ); case 7: return Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z ); }; ERR_FAIL_V(Vector3()); } bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count) const { #if 1 Vector3 half_extents = size * 0.5; Vector3 ofs = pos + half_extents; for(int i=0;i0) ? -half_extents.x : half_extents.x, (p.normal.y>0) ? -half_extents.y : half_extents.y, (p.normal.z>0) ? -half_extents.z : half_extents.z ); point+=ofs; if (p.is_point_over(point)) return false; } return true; #else //cache all points to check against! // #warning should be easy to optimize, just use the same as when taking the support and use only that point Vector3 points[8] = { Vector3( pos.x , pos.y , pos.z ), Vector3( pos.x , pos.y , pos.z+size.z ), Vector3( pos.x , pos.y+size.y , pos.z ), Vector3( pos.x , pos.y+size.y , pos.z+size.z ), Vector3( pos.x+size.x , pos.y , pos.z ), Vector3( pos.x+size.x , pos.y , pos.z+size.z ), Vector3( pos.x+size.x , pos.y+size.y , pos.z ), Vector3( pos.x+size.x , pos.y+size.y , pos.z+size.z ), }; for (int i=0;ipos.x+size.x) return false; if (p_point.y>pos.y+size.y) return false; if (p_point.z>pos.z+size.z) return false; return true; } inline void AABB::expand_to(const Vector3& p_vector) { Vector3 begin=pos; Vector3 end=pos+size; if (p_vector.xend.x) end.x=p_vector.x; if (p_vector.y>end.y) end.y=p_vector.y; if (p_vector.z>end.z) end.z=p_vector.z; pos=begin; size=end-begin; } void AABB::project_range_in_plane(const Plane& p_plane,float &r_min,float& r_max) const { Vector3 half_extents( size.x * 0.5, size.y * 0.5, size.z * 0.5 ); Vector3 center( pos.x + half_extents.x, pos.y + half_extents.y, pos.z + half_extents.z ); float length = p_plane.normal.abs().dot(half_extents); float distance = p_plane.distance_to( center ); r_min = distance - length; r_max = distance + length; } inline real_t AABB::get_longest_axis_size() const { real_t max_size=size.x; if (size.y > max_size ) { max_size=size.y; } if (size.z > max_size ) { max_size=size.z; } return max_size; } inline real_t AABB::get_shortest_axis_size() const { real_t max_size=size.x; if (size.y < max_size ) { max_size=size.y; } if (size.z < max_size ) { max_size=size.z; } return max_size; } typedef AABB Rect3; #endif // AABB_H