/*************************************************************************/ /* space_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "globals.h" #include "space_sw.h" #include "collision_solver_sw.h" #include "physics_server_sw.h" _FORCE_INLINE_ static bool _match_object_type_query(CollisionObjectSW *p_object, uint32_t p_layer_mask, uint32_t p_type_mask) { if (p_object->get_type()==CollisionObjectSW::TYPE_AREA) return p_type_mask&PhysicsDirectSpaceState::TYPE_MASK_AREA; if ((p_object->get_layer_mask()&p_layer_mask)==0) return false; BodySW *body = static_cast(p_object); return (1<get_mode())&p_type_mask; } bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3& p_from, const Vector3& p_to, RayResult &r_result, const Set& p_exclude, uint32_t p_layer_mask, uint32_t p_object_type_mask, bool p_pick_ray) { ERR_FAIL_COND_V(space->locked,false); Vector3 begin,end; Vector3 normal; begin=p_from; end=p_to; normal=(end-begin).normalized(); int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results); //todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision bool collided=false; Vector3 res_point,res_normal; int res_shape; const CollisionObjectSW *res_obj; real_t min_d=1e10; for(int i=0;iintersection_query_results[i],p_layer_mask,p_object_type_mask)) continue; if (p_pick_ray && !(static_cast(space->intersection_query_results[i])->is_ray_pickable())) continue; if (p_exclude.has( space->intersection_query_results[i]->get_self())) continue; const CollisionObjectSW *col_obj=space->intersection_query_results[i]; int shape_idx=space->intersection_query_subindex_results[i]; Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform(); Vector3 local_from = inv_xform.xform(begin); Vector3 local_to = inv_xform.xform(end); const ShapeSW *shape = col_obj->get_shape(shape_idx); Vector3 shape_point,shape_normal; if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) { Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); shape_point=xform.xform(shape_point); real_t ld = normal.dot(shape_point); if (ldget_instance_id(); if (r_result.collider_id!=0) r_result.collider=ObjectDB::get_instance(r_result.collider_id); else r_result.collider=NULL; r_result.normal=res_normal; r_result.position=res_point; r_result.rid=res_obj->get_self(); r_result.shape=res_shape; return true; } int PhysicsDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Transform& p_xform,float p_margin,ShapeResult *r_results,int p_result_max,const Set& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) { if (p_result_max<=0) return 0; ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape,0); AABB aabb = p_xform.xform(shape->get_aabb()); int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results); int cc=0; //Transform ai = p_xform.affine_inverse(); for(int i=0;i=p_result_max) break; if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask)) continue; //area cant be picked by ray (default) if (p_exclude.has( space->intersection_query_results[i]->get_self())) continue; const CollisionObjectSW *col_obj=space->intersection_query_results[i]; int shape_idx=space->intersection_query_subindex_results[i]; if (!CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), NULL,NULL,NULL,p_margin,0)) continue; if (r_results) { r_results[cc].collider_id=col_obj->get_instance_id(); if (r_results[cc].collider_id!=0) r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id); else r_results[cc].collider=NULL; r_results[cc].rid=col_obj->get_self(); r_results[cc].shape=shape_idx; } cc++; } return cc; } bool PhysicsDirectSpaceStateSW::cast_motion(const RID& p_shape, const Transform& p_xform,const Vector3& p_motion,float p_margin,float &p_closest_safe,float &p_closest_unsafe, const Set& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask,ShapeRestInfo *r_info) { ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape,false); AABB aabb = p_xform.xform(shape->get_aabb()); aabb=aabb.merge(AABB(aabb.pos+p_motion,aabb.size)); //motion aabb=aabb.grow(p_margin); //if (p_motion!=Vector3()) // print_line(p_motion); int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results); float best_safe=1; float best_unsafe=1; Transform xform_inv = p_xform.affine_inverse(); MotionShapeSW mshape; mshape.shape=shape; mshape.motion=xform_inv.basis.xform(p_motion); bool best_first=true; Vector3 closest_A,closest_B; for(int i=0;iintersection_query_results[i],p_layer_mask,p_object_type_mask)) continue; if (p_exclude.has( space->intersection_query_results[i]->get_self())) continue; //ignore excluded const CollisionObjectSW *col_obj=space->intersection_query_results[i]; int shape_idx=space->intersection_query_subindex_results[i]; Vector3 point_A,point_B; Vector3 sep_axis=p_motion.normalized(); Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); //test initial overlap, does it collide if going all the way? if (CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) { //print_line("failed motion cast (no collision)"); continue; } //test initial overlap #if 0 if (CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,NULL,NULL,&sep_axis)) { print_line("failed initial cast (collision at begining)"); return false; } #else sep_axis=p_motion.normalized(); if (!CollisionSolverSW::solve_distance(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) { //print_line("failed motion cast (no collision)"); return false; } #endif //just do kinematic solving float low=0; float hi=1; Vector3 mnormal=p_motion.normalized(); for(int i=0;i<8;i++) { //steps should be customizable.. float ofs = (low+hi)*0.5; Vector3 sep=mnormal; //important optimization for this to work fast enough mshape.motion=xform_inv.basis.xform(p_motion*ofs); Vector3 lA,lB; bool collided = !CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,lA,lB,aabb,&sep); if (collided) { //print_line(itos(i)+": "+rtos(ofs)); hi=ofs; } else { point_A=lA; point_B=lB; low=ofs; } } if (lowcollider_id=col_obj->get_instance_id(); r_info->rid=col_obj->get_self(); r_info->shape=shape_idx; r_info->point=closest_B; r_info->normal=(closest_A-closest_B).normalized(); best_first=false; if (col_obj->get_type()==CollisionObjectSW::TYPE_BODY) { const BodySW *body=static_cast(col_obj); r_info->linear_velocity= body->get_linear_velocity() + (body->get_angular_velocity()).cross(body->get_transform().origin - closest_B); } } } p_closest_safe=best_safe; p_closest_unsafe=best_unsafe; return true; } bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform& p_shape_xform,float p_margin,Vector3 *r_results,int p_result_max,int &r_result_count, const Set& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask){ if (p_result_max<=0) return 0; ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape,0); AABB aabb = p_shape_xform.xform(shape->get_aabb()); aabb=aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results); bool collided=false; r_result_count=0; PhysicsServerSW::CollCbkData cbk; cbk.max=p_result_max; cbk.amount=0; cbk.ptr=r_results; CollisionSolverSW::CallbackResult cbkres=NULL; PhysicsServerSW::CollCbkData *cbkptr=NULL; if (p_result_max>0) { cbkptr=&cbk; cbkres=PhysicsServerSW::_shape_col_cbk; } for(int i=0;iintersection_query_results[i],p_layer_mask,p_object_type_mask)) continue; const CollisionObjectSW *col_obj=space->intersection_query_results[i]; int shape_idx=space->intersection_query_subindex_results[i]; if (p_exclude.has( col_obj->get_self() )) { continue; } //print_line("AGAINST: "+itos(col_obj->get_self().get_id())+":"+itos(shape_idx)); //print_line("THE ABBB: "+(col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).xform(col_obj->get_shape(shape_idx)->get_aabb())); if (CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),cbkres,cbkptr,NULL,p_margin)) { collided=true; } } r_result_count=cbk.amount; return collided; } struct _RestCallbackData { const CollisionObjectSW *object; const CollisionObjectSW *best_object; int shape; int best_shape; Vector3 best_contact; Vector3 best_normal; float best_len; }; static void _rest_cbk_result(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) { _RestCallbackData *rd=(_RestCallbackData*)p_userdata; Vector3 contact_rel = p_point_B - p_point_A; float len = contact_rel.length(); if (len <= rd->best_len) return; rd->best_len=len; rd->best_contact=p_point_B; rd->best_normal=contact_rel/len; rd->best_object=rd->object; rd->best_shape=rd->shape; } bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform& p_shape_xform,float p_margin,ShapeRestInfo *r_info, const Set& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) { ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape,0); AABB aabb = p_shape_xform.xform(shape->get_aabb()); aabb=aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results); _RestCallbackData rcd; rcd.best_len=0; rcd.best_object=NULL; rcd.best_shape=0; for(int i=0;iintersection_query_results[i],p_layer_mask,p_object_type_mask)) continue; const CollisionObjectSW *col_obj=space->intersection_query_results[i]; int shape_idx=space->intersection_query_subindex_results[i]; if (p_exclude.has( col_obj->get_self() )) continue; rcd.object=col_obj; rcd.shape=shape_idx; bool sc = CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),_rest_cbk_result,&rcd,NULL,p_margin); if (!sc) continue; } if (rcd.best_len==0) return false; r_info->collider_id=rcd.best_object->get_instance_id(); r_info->shape=rcd.best_shape; r_info->normal=rcd.best_normal; r_info->point=rcd.best_contact; r_info->rid=rcd.best_object->get_self(); if (rcd.best_object->get_type()==CollisionObjectSW::TYPE_BODY) { const BodySW *body = static_cast(rcd.best_object); r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(body->get_transform().origin-rcd.best_contact);// * mPos); } else { r_info->linear_velocity=Vector3(); } return true; } PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() { space=NULL; } //////////////////////////////////////////////////////////////////////////////////////////////////////////// void* SpaceSW::_broadphase_pair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_self) { CollisionObjectSW::Type type_A=A->get_type(); CollisionObjectSW::Type type_B=B->get_type(); if (type_A>type_B) { SWAP(A,B); SWAP(p_subindex_A,p_subindex_B); SWAP(type_A,type_B); } SpaceSW *self = (SpaceSW*)p_self; self->collision_pairs++; if (type_A==CollisionObjectSW::TYPE_AREA) { AreaSW *area=static_cast(A); if (type_B==CollisionObjectSW::TYPE_AREA) { AreaSW *area_b=static_cast(B); Area2PairSW *area2_pair = memnew(Area2PairSW(area_b,p_subindex_B,area,p_subindex_A) ); return area2_pair; } else { BodySW *body=static_cast(B); AreaPairSW *area_pair = memnew(AreaPairSW(body,p_subindex_B,area,p_subindex_A) ); return area_pair; } } else { BodyPairSW *b = memnew( BodyPairSW((BodySW*)A,p_subindex_A,(BodySW*)B,p_subindex_B) ); return b; } return NULL; } void SpaceSW::_broadphase_unpair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_data,void *p_self) { SpaceSW *self = (SpaceSW*)p_self; self->collision_pairs--; ConstraintSW *c = (ConstraintSW*)p_data; memdelete(c); } const SelfList::List& SpaceSW::get_active_body_list() const { return active_list; } void SpaceSW::body_add_to_active_list(SelfList* p_body) { active_list.add(p_body); } void SpaceSW::body_remove_from_active_list(SelfList* p_body) { active_list.remove(p_body); } void SpaceSW::body_add_to_inertia_update_list(SelfList* p_body) { inertia_update_list.add(p_body); } void SpaceSW::body_remove_from_inertia_update_list(SelfList* p_body) { inertia_update_list.remove(p_body); } BroadPhaseSW *SpaceSW::get_broadphase() { return broadphase; } void SpaceSW::add_object(CollisionObjectSW *p_object) { ERR_FAIL_COND( objects.has(p_object) ); objects.insert(p_object); } void SpaceSW::remove_object(CollisionObjectSW *p_object) { ERR_FAIL_COND( !objects.has(p_object) ); objects.erase(p_object); } const Set &SpaceSW::get_objects() const { return objects; } void SpaceSW::body_add_to_state_query_list(SelfList* p_body) { state_query_list.add(p_body); } void SpaceSW::body_remove_from_state_query_list(SelfList* p_body) { state_query_list.remove(p_body); } void SpaceSW::area_add_to_monitor_query_list(SelfList* p_area) { monitor_query_list.add(p_area); } void SpaceSW::area_remove_from_monitor_query_list(SelfList* p_area) { monitor_query_list.remove(p_area); } void SpaceSW::area_add_to_moved_list(SelfList* p_area) { area_moved_list.add(p_area); } void SpaceSW::area_remove_from_moved_list(SelfList* p_area) { area_moved_list.remove(p_area); } const SelfList::List& SpaceSW::get_moved_area_list() const { return area_moved_list; } void SpaceSW::call_queries() { while(state_query_list.first()) { BodySW * b = state_query_list.first()->self(); b->call_queries(); state_query_list.remove(state_query_list.first()); } while(monitor_query_list.first()) { AreaSW * a = monitor_query_list.first()->self(); a->call_queries(); monitor_query_list.remove(monitor_query_list.first()); } } void SpaceSW::setup() { contact_debug_count=0; while(inertia_update_list.first()) { inertia_update_list.first()->self()->update_inertias(); inertia_update_list.remove(inertia_update_list.first()); } } void SpaceSW::update() { broadphase->update(); } void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) { switch(p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break; case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break; case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break; case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_threshold=p_value; break; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_threshold=p_value; break; case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio=p_value; break; case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break; } } real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const { switch(p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius; case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation; case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration; case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_threshold; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_threshold; case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio; case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias; } return 0; } void SpaceSW::lock() { locked=true; } void SpaceSW::unlock() { locked=false; } bool SpaceSW::is_locked() const { return locked; } PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() { return direct_access; } SpaceSW::SpaceSW() { collision_pairs=0; active_objects=0; island_count=0; contact_debug_count=0; locked=false; contact_recycle_radius=0.01; contact_max_separation=0.05; contact_max_allowed_penetration= 0.01; constraint_bias = 0.01; body_linear_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_linear",0.1); body_angular_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_angular", (8.0 / 180.0 * Math_PI) ); body_time_to_sleep=GLOBAL_DEF("physics/time_before_sleep",0.5); body_angular_velocity_damp_ratio=10; broadphase = BroadPhaseSW::create_func(); broadphase->set_pair_callback(_broadphase_pair,this); broadphase->set_unpair_callback(_broadphase_unpair,this); area=NULL; direct_access = memnew( PhysicsDirectSpaceStateSW ); direct_access->space=this; for(int i=0;i